1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/acpi.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/interrupt.h>
26 #include <linux/msi.h>
27 #include <asm/pci-direct.h>
28 #include <asm/amd_iommu_proto.h>
29 #include <asm/amd_iommu_types.h>
30 #include <asm/amd_iommu.h>
31 #include <asm/iommu.h>
32 #include <asm/gart.h>
33 #include <asm/x86_init.h>
34 #include <asm/iommu_table.h>
35 /*
36 * definitions for the ACPI scanning code
37 */
38 #define IVRS_HEADER_LENGTH 48
39
40 #define ACPI_IVHD_TYPE 0x10
41 #define ACPI_IVMD_TYPE_ALL 0x20
42 #define ACPI_IVMD_TYPE 0x21
43 #define ACPI_IVMD_TYPE_RANGE 0x22
44
45 #define IVHD_DEV_ALL 0x01
46 #define IVHD_DEV_SELECT 0x02
47 #define IVHD_DEV_SELECT_RANGE_START 0x03
48 #define IVHD_DEV_RANGE_END 0x04
49 #define IVHD_DEV_ALIAS 0x42
50 #define IVHD_DEV_ALIAS_RANGE 0x43
51 #define IVHD_DEV_EXT_SELECT 0x46
52 #define IVHD_DEV_EXT_SELECT_RANGE 0x47
53
54 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01
55 #define IVHD_FLAG_PASSPW_EN_MASK 0x02
56 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
57 #define IVHD_FLAG_ISOC_EN_MASK 0x08
58
59 #define IVMD_FLAG_EXCL_RANGE 0x08
60 #define IVMD_FLAG_UNITY_MAP 0x01
61
62 #define ACPI_DEVFLAG_INITPASS 0x01
63 #define ACPI_DEVFLAG_EXTINT 0x02
64 #define ACPI_DEVFLAG_NMI 0x04
65 #define ACPI_DEVFLAG_SYSMGT1 0x10
66 #define ACPI_DEVFLAG_SYSMGT2 0x20
67 #define ACPI_DEVFLAG_LINT0 0x40
68 #define ACPI_DEVFLAG_LINT1 0x80
69 #define ACPI_DEVFLAG_ATSDIS 0x10000000
70
71 /*
72 * ACPI table definitions
73 *
74 * These data structures are laid over the table to parse the important values
75 * out of it.
76 */
77
78 /*
79 * structure describing one IOMMU in the ACPI table. Typically followed by one
80 * or more ivhd_entrys.
81 */
82 struct ivhd_header {
83 u8 type;
84 u8 flags;
85 u16 length;
86 u16 devid;
87 u16 cap_ptr;
88 u64 mmio_phys;
89 u16 pci_seg;
90 u16 info;
91 u32 reserved;
92 } __attribute__((packed));
93
94 /*
95 * A device entry describing which devices a specific IOMMU translates and
96 * which requestor ids they use.
97 */
98 struct ivhd_entry {
99 u8 type;
100 u16 devid;
101 u8 flags;
102 u32 ext;
103 } __attribute__((packed));
104
105 /*
106 * An AMD IOMMU memory definition structure. It defines things like exclusion
107 * ranges for devices and regions that should be unity mapped.
108 */
109 struct ivmd_header {
110 u8 type;
111 u8 flags;
112 u16 length;
113 u16 devid;
114 u16 aux;
115 u64 resv;
116 u64 range_start;
117 u64 range_length;
118 } __attribute__((packed));
119
120 bool amd_iommu_dump;
121
122 static int __initdata amd_iommu_detected;
123 static bool __initdata amd_iommu_disabled;
124
125 u16 amd_iommu_last_bdf; /* largest PCI device id we have
126 to handle */
127 LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
128 we find in ACPI */
129 bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
130
131 LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
132 system */
133
134 /* Array to assign indices to IOMMUs*/
135 struct amd_iommu *amd_iommus[MAX_IOMMUS];
136 int amd_iommus_present;
137
138 /* IOMMUs have a non-present cache? */
139 bool amd_iommu_np_cache __read_mostly;
140
141 /*
142 * The ACPI table parsing functions set this variable on an error
143 */
144 static int __initdata amd_iommu_init_err;
145
146 /*
147 * List of protection domains - used during resume
148 */
149 LIST_HEAD(amd_iommu_pd_list);
150 spinlock_t amd_iommu_pd_lock;
151
152 /*
153 * Pointer to the device table which is shared by all AMD IOMMUs
154 * it is indexed by the PCI device id or the HT unit id and contains
155 * information about the domain the device belongs to as well as the
156 * page table root pointer.
157 */
158 struct dev_table_entry *amd_iommu_dev_table;
159
160 /*
161 * The alias table is a driver specific data structure which contains the
162 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
163 * More than one device can share the same requestor id.
164 */
165 u16 *amd_iommu_alias_table;
166
167 /*
168 * The rlookup table is used to find the IOMMU which is responsible
169 * for a specific device. It is also indexed by the PCI device id.
170 */
171 struct amd_iommu **amd_iommu_rlookup_table;
172
173 /*
174 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
175 * to know which ones are already in use.
176 */
177 unsigned long *amd_iommu_pd_alloc_bitmap;
178
179 static u32 dev_table_size; /* size of the device table */
180 static u32 alias_table_size; /* size of the alias table */
181 static u32 rlookup_table_size; /* size if the rlookup table */
182
update_last_devid(u16 devid)183 static inline void update_last_devid(u16 devid)
184 {
185 if (devid > amd_iommu_last_bdf)
186 amd_iommu_last_bdf = devid;
187 }
188
tbl_size(int entry_size)189 static inline unsigned long tbl_size(int entry_size)
190 {
191 unsigned shift = PAGE_SHIFT +
192 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
193
194 return 1UL << shift;
195 }
196
197 /* Access to l1 and l2 indexed register spaces */
198
iommu_read_l1(struct amd_iommu * iommu,u16 l1,u8 address)199 static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
200 {
201 u32 val;
202
203 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
204 pci_read_config_dword(iommu->dev, 0xfc, &val);
205 return val;
206 }
207
iommu_write_l1(struct amd_iommu * iommu,u16 l1,u8 address,u32 val)208 static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
209 {
210 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
211 pci_write_config_dword(iommu->dev, 0xfc, val);
212 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
213 }
214
iommu_read_l2(struct amd_iommu * iommu,u8 address)215 static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
216 {
217 u32 val;
218
219 pci_write_config_dword(iommu->dev, 0xf0, address);
220 pci_read_config_dword(iommu->dev, 0xf4, &val);
221 return val;
222 }
223
iommu_write_l2(struct amd_iommu * iommu,u8 address,u32 val)224 static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
225 {
226 pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
227 pci_write_config_dword(iommu->dev, 0xf4, val);
228 }
229
230 /****************************************************************************
231 *
232 * AMD IOMMU MMIO register space handling functions
233 *
234 * These functions are used to program the IOMMU device registers in
235 * MMIO space required for that driver.
236 *
237 ****************************************************************************/
238
239 /*
240 * This function set the exclusion range in the IOMMU. DMA accesses to the
241 * exclusion range are passed through untranslated
242 */
iommu_set_exclusion_range(struct amd_iommu * iommu)243 static void iommu_set_exclusion_range(struct amd_iommu *iommu)
244 {
245 u64 start = iommu->exclusion_start & PAGE_MASK;
246 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
247 u64 entry;
248
249 if (!iommu->exclusion_start)
250 return;
251
252 entry = start | MMIO_EXCL_ENABLE_MASK;
253 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
254 &entry, sizeof(entry));
255
256 entry = limit;
257 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
258 &entry, sizeof(entry));
259 }
260
261 /* Programs the physical address of the device table into the IOMMU hardware */
iommu_set_device_table(struct amd_iommu * iommu)262 static void __init iommu_set_device_table(struct amd_iommu *iommu)
263 {
264 u64 entry;
265
266 BUG_ON(iommu->mmio_base == NULL);
267
268 entry = virt_to_phys(amd_iommu_dev_table);
269 entry |= (dev_table_size >> 12) - 1;
270 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
271 &entry, sizeof(entry));
272 }
273
274 /* Generic functions to enable/disable certain features of the IOMMU. */
iommu_feature_enable(struct amd_iommu * iommu,u8 bit)275 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
276 {
277 u32 ctrl;
278
279 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
280 ctrl |= (1 << bit);
281 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
282 }
283
iommu_feature_disable(struct amd_iommu * iommu,u8 bit)284 static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
285 {
286 u32 ctrl;
287
288 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
289 ctrl &= ~(1 << bit);
290 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
291 }
292
293 /* Function to enable the hardware */
iommu_enable(struct amd_iommu * iommu)294 static void iommu_enable(struct amd_iommu *iommu)
295 {
296 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
297 dev_name(&iommu->dev->dev), iommu->cap_ptr);
298
299 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
300 }
301
iommu_disable(struct amd_iommu * iommu)302 static void iommu_disable(struct amd_iommu *iommu)
303 {
304 /* Disable command buffer */
305 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
306
307 /* Disable event logging and event interrupts */
308 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
309 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
310
311 /* Disable IOMMU hardware itself */
312 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
313 }
314
315 /*
316 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
317 * the system has one.
318 */
iommu_map_mmio_space(u64 address)319 static u8 * __init iommu_map_mmio_space(u64 address)
320 {
321 u8 *ret;
322
323 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
324 pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
325 address);
326 pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
327 return NULL;
328 }
329
330 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
331 if (ret != NULL)
332 return ret;
333
334 release_mem_region(address, MMIO_REGION_LENGTH);
335
336 return NULL;
337 }
338
iommu_unmap_mmio_space(struct amd_iommu * iommu)339 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
340 {
341 if (iommu->mmio_base)
342 iounmap(iommu->mmio_base);
343 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
344 }
345
346 /****************************************************************************
347 *
348 * The functions below belong to the first pass of AMD IOMMU ACPI table
349 * parsing. In this pass we try to find out the highest device id this
350 * code has to handle. Upon this information the size of the shared data
351 * structures is determined later.
352 *
353 ****************************************************************************/
354
355 /*
356 * This function calculates the length of a given IVHD entry
357 */
ivhd_entry_length(u8 * ivhd)358 static inline int ivhd_entry_length(u8 *ivhd)
359 {
360 return 0x04 << (*ivhd >> 6);
361 }
362
363 /*
364 * This function reads the last device id the IOMMU has to handle from the PCI
365 * capability header for this IOMMU
366 */
find_last_devid_on_pci(int bus,int dev,int fn,int cap_ptr)367 static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
368 {
369 u32 cap;
370
371 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
372 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
373
374 return 0;
375 }
376
377 /*
378 * After reading the highest device id from the IOMMU PCI capability header
379 * this function looks if there is a higher device id defined in the ACPI table
380 */
find_last_devid_from_ivhd(struct ivhd_header * h)381 static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
382 {
383 u8 *p = (void *)h, *end = (void *)h;
384 struct ivhd_entry *dev;
385
386 p += sizeof(*h);
387 end += h->length;
388
389 find_last_devid_on_pci(PCI_BUS(h->devid),
390 PCI_SLOT(h->devid),
391 PCI_FUNC(h->devid),
392 h->cap_ptr);
393
394 while (p < end) {
395 dev = (struct ivhd_entry *)p;
396 switch (dev->type) {
397 case IVHD_DEV_SELECT:
398 case IVHD_DEV_RANGE_END:
399 case IVHD_DEV_ALIAS:
400 case IVHD_DEV_EXT_SELECT:
401 /* all the above subfield types refer to device ids */
402 update_last_devid(dev->devid);
403 break;
404 default:
405 break;
406 }
407 p += ivhd_entry_length(p);
408 }
409
410 WARN_ON(p != end);
411
412 return 0;
413 }
414
415 /*
416 * Iterate over all IVHD entries in the ACPI table and find the highest device
417 * id which we need to handle. This is the first of three functions which parse
418 * the ACPI table. So we check the checksum here.
419 */
find_last_devid_acpi(struct acpi_table_header * table)420 static int __init find_last_devid_acpi(struct acpi_table_header *table)
421 {
422 int i;
423 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
424 struct ivhd_header *h;
425
426 /*
427 * Validate checksum here so we don't need to do it when
428 * we actually parse the table
429 */
430 for (i = 0; i < table->length; ++i)
431 checksum += p[i];
432 if (checksum != 0) {
433 /* ACPI table corrupt */
434 amd_iommu_init_err = -ENODEV;
435 return 0;
436 }
437
438 p += IVRS_HEADER_LENGTH;
439
440 end += table->length;
441 while (p < end) {
442 h = (struct ivhd_header *)p;
443 switch (h->type) {
444 case ACPI_IVHD_TYPE:
445 find_last_devid_from_ivhd(h);
446 break;
447 default:
448 break;
449 }
450 p += h->length;
451 }
452 WARN_ON(p != end);
453
454 return 0;
455 }
456
457 /****************************************************************************
458 *
459 * The following functions belong the the code path which parses the ACPI table
460 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
461 * data structures, initialize the device/alias/rlookup table and also
462 * basically initialize the hardware.
463 *
464 ****************************************************************************/
465
466 /*
467 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
468 * write commands to that buffer later and the IOMMU will execute them
469 * asynchronously
470 */
alloc_command_buffer(struct amd_iommu * iommu)471 static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
472 {
473 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
474 get_order(CMD_BUFFER_SIZE));
475
476 if (cmd_buf == NULL)
477 return NULL;
478
479 iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
480
481 return cmd_buf;
482 }
483
484 /*
485 * This function resets the command buffer if the IOMMU stopped fetching
486 * commands from it.
487 */
amd_iommu_reset_cmd_buffer(struct amd_iommu * iommu)488 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
489 {
490 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
491
492 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
493 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
494
495 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
496 }
497
498 /*
499 * This function writes the command buffer address to the hardware and
500 * enables it.
501 */
iommu_enable_command_buffer(struct amd_iommu * iommu)502 static void iommu_enable_command_buffer(struct amd_iommu *iommu)
503 {
504 u64 entry;
505
506 BUG_ON(iommu->cmd_buf == NULL);
507
508 entry = (u64)virt_to_phys(iommu->cmd_buf);
509 entry |= MMIO_CMD_SIZE_512;
510
511 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
512 &entry, sizeof(entry));
513
514 amd_iommu_reset_cmd_buffer(iommu);
515 iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
516 }
517
free_command_buffer(struct amd_iommu * iommu)518 static void __init free_command_buffer(struct amd_iommu *iommu)
519 {
520 free_pages((unsigned long)iommu->cmd_buf,
521 get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
522 }
523
524 /* allocates the memory where the IOMMU will log its events to */
alloc_event_buffer(struct amd_iommu * iommu)525 static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
526 {
527 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
528 get_order(EVT_BUFFER_SIZE));
529
530 if (iommu->evt_buf == NULL)
531 return NULL;
532
533 iommu->evt_buf_size = EVT_BUFFER_SIZE;
534
535 return iommu->evt_buf;
536 }
537
iommu_enable_event_buffer(struct amd_iommu * iommu)538 static void iommu_enable_event_buffer(struct amd_iommu *iommu)
539 {
540 u64 entry;
541
542 BUG_ON(iommu->evt_buf == NULL);
543
544 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
545
546 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
547 &entry, sizeof(entry));
548
549 /* set head and tail to zero manually */
550 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
551 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
552
553 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
554 }
555
free_event_buffer(struct amd_iommu * iommu)556 static void __init free_event_buffer(struct amd_iommu *iommu)
557 {
558 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
559 }
560
561 /* sets a specific bit in the device table entry. */
set_dev_entry_bit(u16 devid,u8 bit)562 static void set_dev_entry_bit(u16 devid, u8 bit)
563 {
564 int i = (bit >> 5) & 0x07;
565 int _bit = bit & 0x1f;
566
567 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
568 }
569
get_dev_entry_bit(u16 devid,u8 bit)570 static int get_dev_entry_bit(u16 devid, u8 bit)
571 {
572 int i = (bit >> 5) & 0x07;
573 int _bit = bit & 0x1f;
574
575 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
576 }
577
578
amd_iommu_apply_erratum_63(u16 devid)579 void amd_iommu_apply_erratum_63(u16 devid)
580 {
581 int sysmgt;
582
583 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
584 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
585
586 if (sysmgt == 0x01)
587 set_dev_entry_bit(devid, DEV_ENTRY_IW);
588 }
589
590 /* Writes the specific IOMMU for a device into the rlookup table */
set_iommu_for_device(struct amd_iommu * iommu,u16 devid)591 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
592 {
593 amd_iommu_rlookup_table[devid] = iommu;
594 }
595
596 /*
597 * This function takes the device specific flags read from the ACPI
598 * table and sets up the device table entry with that information
599 */
set_dev_entry_from_acpi(struct amd_iommu * iommu,u16 devid,u32 flags,u32 ext_flags)600 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
601 u16 devid, u32 flags, u32 ext_flags)
602 {
603 if (flags & ACPI_DEVFLAG_INITPASS)
604 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
605 if (flags & ACPI_DEVFLAG_EXTINT)
606 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
607 if (flags & ACPI_DEVFLAG_NMI)
608 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
609 if (flags & ACPI_DEVFLAG_SYSMGT1)
610 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
611 if (flags & ACPI_DEVFLAG_SYSMGT2)
612 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
613 if (flags & ACPI_DEVFLAG_LINT0)
614 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
615 if (flags & ACPI_DEVFLAG_LINT1)
616 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
617
618 amd_iommu_apply_erratum_63(devid);
619
620 set_iommu_for_device(iommu, devid);
621 }
622
623 /*
624 * Reads the device exclusion range from ACPI and initialize IOMMU with
625 * it
626 */
set_device_exclusion_range(u16 devid,struct ivmd_header * m)627 static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
628 {
629 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
630
631 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
632 return;
633
634 if (iommu) {
635 /*
636 * We only can configure exclusion ranges per IOMMU, not
637 * per device. But we can enable the exclusion range per
638 * device. This is done here
639 */
640 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
641 iommu->exclusion_start = m->range_start;
642 iommu->exclusion_length = m->range_length;
643 }
644 }
645
646 /*
647 * This function reads some important data from the IOMMU PCI space and
648 * initializes the driver data structure with it. It reads the hardware
649 * capabilities and the first/last device entries
650 */
init_iommu_from_pci(struct amd_iommu * iommu)651 static void __init init_iommu_from_pci(struct amd_iommu *iommu)
652 {
653 int cap_ptr = iommu->cap_ptr;
654 u32 range, misc;
655 int i, j;
656
657 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
658 &iommu->cap);
659 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
660 &range);
661 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
662 &misc);
663
664 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
665 MMIO_GET_FD(range));
666 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
667 MMIO_GET_LD(range));
668 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
669
670 if (!is_rd890_iommu(iommu->dev))
671 return;
672
673 /*
674 * Some rd890 systems may not be fully reconfigured by the BIOS, so
675 * it's necessary for us to store this information so it can be
676 * reprogrammed on resume
677 */
678
679 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
680 &iommu->stored_addr_lo);
681 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
682 &iommu->stored_addr_hi);
683
684 /* Low bit locks writes to configuration space */
685 iommu->stored_addr_lo &= ~1;
686
687 for (i = 0; i < 6; i++)
688 for (j = 0; j < 0x12; j++)
689 iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
690
691 for (i = 0; i < 0x83; i++)
692 iommu->stored_l2[i] = iommu_read_l2(iommu, i);
693 }
694
695 /*
696 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
697 * initializes the hardware and our data structures with it.
698 */
init_iommu_from_acpi(struct amd_iommu * iommu,struct ivhd_header * h)699 static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
700 struct ivhd_header *h)
701 {
702 u8 *p = (u8 *)h;
703 u8 *end = p, flags = 0;
704 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
705 u32 ext_flags = 0;
706 bool alias = false;
707 struct ivhd_entry *e;
708
709 /*
710 * First save the recommended feature enable bits from ACPI
711 */
712 iommu->acpi_flags = h->flags;
713
714 /*
715 * Done. Now parse the device entries
716 */
717 p += sizeof(struct ivhd_header);
718 end += h->length;
719
720
721 while (p < end) {
722 e = (struct ivhd_entry *)p;
723 switch (e->type) {
724 case IVHD_DEV_ALL:
725
726 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
727 " last device %02x:%02x.%x flags: %02x\n",
728 PCI_BUS(iommu->first_device),
729 PCI_SLOT(iommu->first_device),
730 PCI_FUNC(iommu->first_device),
731 PCI_BUS(iommu->last_device),
732 PCI_SLOT(iommu->last_device),
733 PCI_FUNC(iommu->last_device),
734 e->flags);
735
736 for (dev_i = iommu->first_device;
737 dev_i <= iommu->last_device; ++dev_i)
738 set_dev_entry_from_acpi(iommu, dev_i,
739 e->flags, 0);
740 break;
741 case IVHD_DEV_SELECT:
742
743 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
744 "flags: %02x\n",
745 PCI_BUS(e->devid),
746 PCI_SLOT(e->devid),
747 PCI_FUNC(e->devid),
748 e->flags);
749
750 devid = e->devid;
751 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
752 break;
753 case IVHD_DEV_SELECT_RANGE_START:
754
755 DUMP_printk(" DEV_SELECT_RANGE_START\t "
756 "devid: %02x:%02x.%x flags: %02x\n",
757 PCI_BUS(e->devid),
758 PCI_SLOT(e->devid),
759 PCI_FUNC(e->devid),
760 e->flags);
761
762 devid_start = e->devid;
763 flags = e->flags;
764 ext_flags = 0;
765 alias = false;
766 break;
767 case IVHD_DEV_ALIAS:
768
769 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
770 "flags: %02x devid_to: %02x:%02x.%x\n",
771 PCI_BUS(e->devid),
772 PCI_SLOT(e->devid),
773 PCI_FUNC(e->devid),
774 e->flags,
775 PCI_BUS(e->ext >> 8),
776 PCI_SLOT(e->ext >> 8),
777 PCI_FUNC(e->ext >> 8));
778
779 devid = e->devid;
780 devid_to = e->ext >> 8;
781 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
782 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
783 amd_iommu_alias_table[devid] = devid_to;
784 break;
785 case IVHD_DEV_ALIAS_RANGE:
786
787 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
788 "devid: %02x:%02x.%x flags: %02x "
789 "devid_to: %02x:%02x.%x\n",
790 PCI_BUS(e->devid),
791 PCI_SLOT(e->devid),
792 PCI_FUNC(e->devid),
793 e->flags,
794 PCI_BUS(e->ext >> 8),
795 PCI_SLOT(e->ext >> 8),
796 PCI_FUNC(e->ext >> 8));
797
798 devid_start = e->devid;
799 flags = e->flags;
800 devid_to = e->ext >> 8;
801 ext_flags = 0;
802 alias = true;
803 break;
804 case IVHD_DEV_EXT_SELECT:
805
806 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
807 "flags: %02x ext: %08x\n",
808 PCI_BUS(e->devid),
809 PCI_SLOT(e->devid),
810 PCI_FUNC(e->devid),
811 e->flags, e->ext);
812
813 devid = e->devid;
814 set_dev_entry_from_acpi(iommu, devid, e->flags,
815 e->ext);
816 break;
817 case IVHD_DEV_EXT_SELECT_RANGE:
818
819 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
820 "%02x:%02x.%x flags: %02x ext: %08x\n",
821 PCI_BUS(e->devid),
822 PCI_SLOT(e->devid),
823 PCI_FUNC(e->devid),
824 e->flags, e->ext);
825
826 devid_start = e->devid;
827 flags = e->flags;
828 ext_flags = e->ext;
829 alias = false;
830 break;
831 case IVHD_DEV_RANGE_END:
832
833 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
834 PCI_BUS(e->devid),
835 PCI_SLOT(e->devid),
836 PCI_FUNC(e->devid));
837
838 devid = e->devid;
839 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
840 if (alias) {
841 amd_iommu_alias_table[dev_i] = devid_to;
842 set_dev_entry_from_acpi(iommu,
843 devid_to, flags, ext_flags);
844 }
845 set_dev_entry_from_acpi(iommu, dev_i,
846 flags, ext_flags);
847 }
848 break;
849 default:
850 break;
851 }
852
853 p += ivhd_entry_length(p);
854 }
855 }
856
857 /* Initializes the device->iommu mapping for the driver */
init_iommu_devices(struct amd_iommu * iommu)858 static int __init init_iommu_devices(struct amd_iommu *iommu)
859 {
860 u16 i;
861
862 for (i = iommu->first_device; i <= iommu->last_device; ++i)
863 set_iommu_for_device(iommu, i);
864
865 return 0;
866 }
867
free_iommu_one(struct amd_iommu * iommu)868 static void __init free_iommu_one(struct amd_iommu *iommu)
869 {
870 free_command_buffer(iommu);
871 free_event_buffer(iommu);
872 iommu_unmap_mmio_space(iommu);
873 }
874
free_iommu_all(void)875 static void __init free_iommu_all(void)
876 {
877 struct amd_iommu *iommu, *next;
878
879 for_each_iommu_safe(iommu, next) {
880 list_del(&iommu->list);
881 free_iommu_one(iommu);
882 kfree(iommu);
883 }
884 }
885
886 /*
887 * This function clues the initialization function for one IOMMU
888 * together and also allocates the command buffer and programs the
889 * hardware. It does NOT enable the IOMMU. This is done afterwards.
890 */
init_iommu_one(struct amd_iommu * iommu,struct ivhd_header * h)891 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
892 {
893 spin_lock_init(&iommu->lock);
894
895 /* Add IOMMU to internal data structures */
896 list_add_tail(&iommu->list, &amd_iommu_list);
897 iommu->index = amd_iommus_present++;
898
899 if (unlikely(iommu->index >= MAX_IOMMUS)) {
900 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
901 return -ENOSYS;
902 }
903
904 /* Index is fine - add IOMMU to the array */
905 amd_iommus[iommu->index] = iommu;
906
907 /*
908 * Copy data from ACPI table entry to the iommu struct
909 */
910 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
911 if (!iommu->dev)
912 return 1;
913
914 iommu->cap_ptr = h->cap_ptr;
915 iommu->pci_seg = h->pci_seg;
916 iommu->mmio_phys = h->mmio_phys;
917 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
918 if (!iommu->mmio_base)
919 return -ENOMEM;
920
921 iommu->cmd_buf = alloc_command_buffer(iommu);
922 if (!iommu->cmd_buf)
923 return -ENOMEM;
924
925 iommu->evt_buf = alloc_event_buffer(iommu);
926 if (!iommu->evt_buf)
927 return -ENOMEM;
928
929 iommu->int_enabled = false;
930
931 init_iommu_from_pci(iommu);
932 init_iommu_from_acpi(iommu, h);
933 init_iommu_devices(iommu);
934
935 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
936 amd_iommu_np_cache = true;
937
938 return pci_enable_device(iommu->dev);
939 }
940
941 /*
942 * Iterates over all IOMMU entries in the ACPI table, allocates the
943 * IOMMU structure and initializes it with init_iommu_one()
944 */
init_iommu_all(struct acpi_table_header * table)945 static int __init init_iommu_all(struct acpi_table_header *table)
946 {
947 u8 *p = (u8 *)table, *end = (u8 *)table;
948 struct ivhd_header *h;
949 struct amd_iommu *iommu;
950 int ret;
951
952 end += table->length;
953 p += IVRS_HEADER_LENGTH;
954
955 while (p < end) {
956 h = (struct ivhd_header *)p;
957 switch (*p) {
958 case ACPI_IVHD_TYPE:
959
960 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
961 "seg: %d flags: %01x info %04x\n",
962 PCI_BUS(h->devid), PCI_SLOT(h->devid),
963 PCI_FUNC(h->devid), h->cap_ptr,
964 h->pci_seg, h->flags, h->info);
965 DUMP_printk(" mmio-addr: %016llx\n",
966 h->mmio_phys);
967
968 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
969 if (iommu == NULL) {
970 amd_iommu_init_err = -ENOMEM;
971 return 0;
972 }
973
974 ret = init_iommu_one(iommu, h);
975 if (ret) {
976 amd_iommu_init_err = ret;
977 return 0;
978 }
979 break;
980 default:
981 break;
982 }
983 p += h->length;
984
985 }
986 WARN_ON(p != end);
987
988 return 0;
989 }
990
991 /****************************************************************************
992 *
993 * The following functions initialize the MSI interrupts for all IOMMUs
994 * in the system. Its a bit challenging because there could be multiple
995 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
996 * pci_dev.
997 *
998 ****************************************************************************/
999
iommu_setup_msi(struct amd_iommu * iommu)1000 static int iommu_setup_msi(struct amd_iommu *iommu)
1001 {
1002 int r;
1003
1004 if (pci_enable_msi(iommu->dev))
1005 return 1;
1006
1007 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
1008 IRQF_SAMPLE_RANDOM,
1009 "AMD-Vi",
1010 NULL);
1011
1012 if (r) {
1013 pci_disable_msi(iommu->dev);
1014 return 1;
1015 }
1016
1017 iommu->int_enabled = true;
1018 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1019
1020 return 0;
1021 }
1022
iommu_init_msi(struct amd_iommu * iommu)1023 static int iommu_init_msi(struct amd_iommu *iommu)
1024 {
1025 if (iommu->int_enabled)
1026 return 0;
1027
1028 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1029 return iommu_setup_msi(iommu);
1030
1031 return 1;
1032 }
1033
1034 /****************************************************************************
1035 *
1036 * The next functions belong to the third pass of parsing the ACPI
1037 * table. In this last pass the memory mapping requirements are
1038 * gathered (like exclusion and unity mapping reanges).
1039 *
1040 ****************************************************************************/
1041
free_unity_maps(void)1042 static void __init free_unity_maps(void)
1043 {
1044 struct unity_map_entry *entry, *next;
1045
1046 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
1047 list_del(&entry->list);
1048 kfree(entry);
1049 }
1050 }
1051
1052 /* called when we find an exclusion range definition in ACPI */
init_exclusion_range(struct ivmd_header * m)1053 static int __init init_exclusion_range(struct ivmd_header *m)
1054 {
1055 int i;
1056
1057 switch (m->type) {
1058 case ACPI_IVMD_TYPE:
1059 set_device_exclusion_range(m->devid, m);
1060 break;
1061 case ACPI_IVMD_TYPE_ALL:
1062 for (i = 0; i <= amd_iommu_last_bdf; ++i)
1063 set_device_exclusion_range(i, m);
1064 break;
1065 case ACPI_IVMD_TYPE_RANGE:
1066 for (i = m->devid; i <= m->aux; ++i)
1067 set_device_exclusion_range(i, m);
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 return 0;
1074 }
1075
1076 /* called for unity map ACPI definition */
init_unity_map_range(struct ivmd_header * m)1077 static int __init init_unity_map_range(struct ivmd_header *m)
1078 {
1079 struct unity_map_entry *e = 0;
1080 char *s;
1081
1082 e = kzalloc(sizeof(*e), GFP_KERNEL);
1083 if (e == NULL)
1084 return -ENOMEM;
1085
1086 switch (m->type) {
1087 default:
1088 kfree(e);
1089 return 0;
1090 case ACPI_IVMD_TYPE:
1091 s = "IVMD_TYPEi\t\t\t";
1092 e->devid_start = e->devid_end = m->devid;
1093 break;
1094 case ACPI_IVMD_TYPE_ALL:
1095 s = "IVMD_TYPE_ALL\t\t";
1096 e->devid_start = 0;
1097 e->devid_end = amd_iommu_last_bdf;
1098 break;
1099 case ACPI_IVMD_TYPE_RANGE:
1100 s = "IVMD_TYPE_RANGE\t\t";
1101 e->devid_start = m->devid;
1102 e->devid_end = m->aux;
1103 break;
1104 }
1105 e->address_start = PAGE_ALIGN(m->range_start);
1106 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1107 e->prot = m->flags >> 1;
1108
1109 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1110 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1111 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1112 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1113 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1114 e->address_start, e->address_end, m->flags);
1115
1116 list_add_tail(&e->list, &amd_iommu_unity_map);
1117
1118 return 0;
1119 }
1120
1121 /* iterates over all memory definitions we find in the ACPI table */
init_memory_definitions(struct acpi_table_header * table)1122 static int __init init_memory_definitions(struct acpi_table_header *table)
1123 {
1124 u8 *p = (u8 *)table, *end = (u8 *)table;
1125 struct ivmd_header *m;
1126
1127 end += table->length;
1128 p += IVRS_HEADER_LENGTH;
1129
1130 while (p < end) {
1131 m = (struct ivmd_header *)p;
1132 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1133 init_exclusion_range(m);
1134 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1135 init_unity_map_range(m);
1136
1137 p += m->length;
1138 }
1139
1140 return 0;
1141 }
1142
1143 /*
1144 * Init the device table to not allow DMA access for devices and
1145 * suppress all page faults
1146 */
init_device_table(void)1147 static void init_device_table(void)
1148 {
1149 u16 devid;
1150
1151 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1152 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1153 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
1154 }
1155 }
1156
iommu_init_flags(struct amd_iommu * iommu)1157 static void iommu_init_flags(struct amd_iommu *iommu)
1158 {
1159 iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
1160 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
1161 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
1162
1163 iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
1164 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
1165 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
1166
1167 iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
1168 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
1169 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
1170
1171 iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
1172 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
1173 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
1174
1175 /*
1176 * make IOMMU memory accesses cache coherent
1177 */
1178 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1179 }
1180
iommu_apply_resume_quirks(struct amd_iommu * iommu)1181 static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1182 {
1183 int i, j;
1184 u32 ioc_feature_control;
1185 struct pci_dev *pdev = NULL;
1186
1187 /* RD890 BIOSes may not have completely reconfigured the iommu */
1188 if (!is_rd890_iommu(iommu->dev))
1189 return;
1190
1191 /*
1192 * First, we need to ensure that the iommu is enabled. This is
1193 * controlled by a register in the northbridge
1194 */
1195 pdev = pci_get_bus_and_slot(iommu->dev->bus->number, PCI_DEVFN(0, 0));
1196
1197 if (!pdev)
1198 return;
1199
1200 /* Select Northbridge indirect register 0x75 and enable writing */
1201 pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
1202 pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
1203
1204 /* Enable the iommu */
1205 if (!(ioc_feature_control & 0x1))
1206 pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
1207
1208 pci_dev_put(pdev);
1209
1210 /* Restore the iommu BAR */
1211 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1212 iommu->stored_addr_lo);
1213 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
1214 iommu->stored_addr_hi);
1215
1216 /* Restore the l1 indirect regs for each of the 6 l1s */
1217 for (i = 0; i < 6; i++)
1218 for (j = 0; j < 0x12; j++)
1219 iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
1220
1221 /* Restore the l2 indirect regs */
1222 for (i = 0; i < 0x83; i++)
1223 iommu_write_l2(iommu, i, iommu->stored_l2[i]);
1224
1225 /* Lock PCI setup registers */
1226 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1227 iommu->stored_addr_lo | 1);
1228 }
1229
1230 /*
1231 * This function finally enables all IOMMUs found in the system after
1232 * they have been initialized
1233 */
enable_iommus(void)1234 static void enable_iommus(void)
1235 {
1236 struct amd_iommu *iommu;
1237
1238 for_each_iommu(iommu) {
1239 iommu_disable(iommu);
1240 iommu_init_flags(iommu);
1241 iommu_set_device_table(iommu);
1242 iommu_enable_command_buffer(iommu);
1243 iommu_enable_event_buffer(iommu);
1244 iommu_set_exclusion_range(iommu);
1245 iommu_init_msi(iommu);
1246 iommu_enable(iommu);
1247 }
1248 }
1249
disable_iommus(void)1250 static void disable_iommus(void)
1251 {
1252 struct amd_iommu *iommu;
1253
1254 for_each_iommu(iommu)
1255 iommu_disable(iommu);
1256 }
1257
1258 /*
1259 * Suspend/Resume support
1260 * disable suspend until real resume implemented
1261 */
1262
amd_iommu_resume(void)1263 static void amd_iommu_resume(void)
1264 {
1265 struct amd_iommu *iommu;
1266
1267 for_each_iommu(iommu)
1268 iommu_apply_resume_quirks(iommu);
1269
1270 /* re-load the hardware */
1271 enable_iommus();
1272
1273 /*
1274 * we have to flush after the IOMMUs are enabled because a
1275 * disabled IOMMU will never execute the commands we send
1276 */
1277 amd_iommu_flush_all_devices();
1278 amd_iommu_flush_all_domains();
1279 }
1280
amd_iommu_suspend(void)1281 static int amd_iommu_suspend(void)
1282 {
1283 /* disable IOMMUs to go out of the way for BIOS */
1284 disable_iommus();
1285
1286 return 0;
1287 }
1288
1289 static struct syscore_ops amd_iommu_syscore_ops = {
1290 .suspend = amd_iommu_suspend,
1291 .resume = amd_iommu_resume,
1292 };
1293
1294 /*
1295 * This is the core init function for AMD IOMMU hardware in the system.
1296 * This function is called from the generic x86 DMA layer initialization
1297 * code.
1298 *
1299 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1300 * three times:
1301 *
1302 * 1 pass) Find the highest PCI device id the driver has to handle.
1303 * Upon this information the size of the data structures is
1304 * determined that needs to be allocated.
1305 *
1306 * 2 pass) Initialize the data structures just allocated with the
1307 * information in the ACPI table about available AMD IOMMUs
1308 * in the system. It also maps the PCI devices in the
1309 * system to specific IOMMUs
1310 *
1311 * 3 pass) After the basic data structures are allocated and
1312 * initialized we update them with information about memory
1313 * remapping requirements parsed out of the ACPI table in
1314 * this last pass.
1315 *
1316 * After that the hardware is initialized and ready to go. In the last
1317 * step we do some Linux specific things like registering the driver in
1318 * the dma_ops interface and initializing the suspend/resume support
1319 * functions. Finally it prints some information about AMD IOMMUs and
1320 * the driver state and enables the hardware.
1321 */
amd_iommu_init(void)1322 static int __init amd_iommu_init(void)
1323 {
1324 int i, ret = 0;
1325
1326 /*
1327 * First parse ACPI tables to find the largest Bus/Dev/Func
1328 * we need to handle. Upon this information the shared data
1329 * structures for the IOMMUs in the system will be allocated
1330 */
1331 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1332 return -ENODEV;
1333
1334 ret = amd_iommu_init_err;
1335 if (ret)
1336 goto out;
1337
1338 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1339 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1340 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1341
1342 ret = -ENOMEM;
1343
1344 /* Device table - directly used by all IOMMUs */
1345 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1346 get_order(dev_table_size));
1347 if (amd_iommu_dev_table == NULL)
1348 goto out;
1349
1350 /*
1351 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1352 * IOMMU see for that device
1353 */
1354 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1355 get_order(alias_table_size));
1356 if (amd_iommu_alias_table == NULL)
1357 goto free;
1358
1359 /* IOMMU rlookup table - find the IOMMU for a specific device */
1360 amd_iommu_rlookup_table = (void *)__get_free_pages(
1361 GFP_KERNEL | __GFP_ZERO,
1362 get_order(rlookup_table_size));
1363 if (amd_iommu_rlookup_table == NULL)
1364 goto free;
1365
1366 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1367 GFP_KERNEL | __GFP_ZERO,
1368 get_order(MAX_DOMAIN_ID/8));
1369 if (amd_iommu_pd_alloc_bitmap == NULL)
1370 goto free;
1371
1372 /* init the device table */
1373 init_device_table();
1374
1375 /*
1376 * let all alias entries point to itself
1377 */
1378 for (i = 0; i <= amd_iommu_last_bdf; ++i)
1379 amd_iommu_alias_table[i] = i;
1380
1381 /*
1382 * never allocate domain 0 because its used as the non-allocated and
1383 * error value placeholder
1384 */
1385 amd_iommu_pd_alloc_bitmap[0] = 1;
1386
1387 spin_lock_init(&amd_iommu_pd_lock);
1388
1389 /*
1390 * now the data structures are allocated and basically initialized
1391 * start the real acpi table scan
1392 */
1393 ret = -ENODEV;
1394 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1395 goto free;
1396
1397 if (amd_iommu_init_err) {
1398 ret = amd_iommu_init_err;
1399 goto free;
1400 }
1401
1402 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1403 goto free;
1404
1405 if (amd_iommu_init_err) {
1406 ret = amd_iommu_init_err;
1407 goto free;
1408 }
1409
1410 ret = amd_iommu_init_devices();
1411 if (ret)
1412 goto free;
1413
1414 enable_iommus();
1415
1416 if (iommu_pass_through)
1417 ret = amd_iommu_init_passthrough();
1418 else
1419 ret = amd_iommu_init_dma_ops();
1420
1421 if (ret)
1422 goto free_disable;
1423
1424 amd_iommu_init_api();
1425
1426 amd_iommu_init_notifier();
1427
1428 register_syscore_ops(&amd_iommu_syscore_ops);
1429
1430 if (iommu_pass_through)
1431 goto out;
1432
1433 if (amd_iommu_unmap_flush)
1434 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1435 else
1436 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1437
1438 x86_platform.iommu_shutdown = disable_iommus;
1439 out:
1440 return ret;
1441
1442 free_disable:
1443 disable_iommus();
1444
1445 free:
1446 amd_iommu_uninit_devices();
1447
1448 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1449 get_order(MAX_DOMAIN_ID/8));
1450
1451 free_pages((unsigned long)amd_iommu_rlookup_table,
1452 get_order(rlookup_table_size));
1453
1454 free_pages((unsigned long)amd_iommu_alias_table,
1455 get_order(alias_table_size));
1456
1457 free_pages((unsigned long)amd_iommu_dev_table,
1458 get_order(dev_table_size));
1459
1460 free_iommu_all();
1461
1462 free_unity_maps();
1463
1464 #ifdef CONFIG_GART_IOMMU
1465 /*
1466 * We failed to initialize the AMD IOMMU - try fallback to GART
1467 * if possible.
1468 */
1469 gart_iommu_init();
1470
1471 #endif
1472
1473 goto out;
1474 }
1475
1476 /****************************************************************************
1477 *
1478 * Early detect code. This code runs at IOMMU detection time in the DMA
1479 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1480 * IOMMUs
1481 *
1482 ****************************************************************************/
early_amd_iommu_detect(struct acpi_table_header * table)1483 static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1484 {
1485 return 0;
1486 }
1487
amd_iommu_detect(void)1488 int __init amd_iommu_detect(void)
1489 {
1490 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1491 return -ENODEV;
1492
1493 if (amd_iommu_disabled)
1494 return -ENODEV;
1495
1496 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1497 iommu_detected = 1;
1498 amd_iommu_detected = 1;
1499 x86_init.iommu.iommu_init = amd_iommu_init;
1500
1501 /* Make sure ACS will be enabled */
1502 pci_request_acs();
1503 return 1;
1504 }
1505 return -ENODEV;
1506 }
1507
1508 /****************************************************************************
1509 *
1510 * Parsing functions for the AMD IOMMU specific kernel command line
1511 * options.
1512 *
1513 ****************************************************************************/
1514
parse_amd_iommu_dump(char * str)1515 static int __init parse_amd_iommu_dump(char *str)
1516 {
1517 amd_iommu_dump = true;
1518
1519 return 1;
1520 }
1521
parse_amd_iommu_options(char * str)1522 static int __init parse_amd_iommu_options(char *str)
1523 {
1524 for (; *str; ++str) {
1525 if (strncmp(str, "fullflush", 9) == 0)
1526 amd_iommu_unmap_flush = true;
1527 if (strncmp(str, "off", 3) == 0)
1528 amd_iommu_disabled = true;
1529 }
1530
1531 return 1;
1532 }
1533
1534 __setup("amd_iommu_dump", parse_amd_iommu_dump);
1535 __setup("amd_iommu=", parse_amd_iommu_options);
1536
1537 IOMMU_INIT_FINISH(amd_iommu_detect,
1538 gart_iommu_hole_init,
1539 0,
1540 0);
1541