1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <joerg.roedel@amd.com>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/pci.h>
21 #include <linux/bitmap.h>
22 #include <linux/slab.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/amd_iommu_proto.h>
32 #include <asm/amd_iommu_types.h>
33 #include <asm/amd_iommu.h>
34 
35 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36 
37 #define EXIT_LOOP_COUNT 10000000
38 
39 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40 
41 /* A list of preallocated protection domains */
42 static LIST_HEAD(iommu_pd_list);
43 static DEFINE_SPINLOCK(iommu_pd_list_lock);
44 
45 /*
46  * Domain for untranslated devices - only allocated
47  * if iommu=pt passed on kernel cmd line.
48  */
49 static struct protection_domain *pt_domain;
50 
51 static struct iommu_ops amd_iommu_ops;
52 
53 /*
54  * general struct to manage commands send to an IOMMU
55  */
56 struct iommu_cmd {
57 	u32 data[4];
58 };
59 
60 static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61 static void update_domain(struct protection_domain *domain);
62 
63 /****************************************************************************
64  *
65  * Helper functions
66  *
67  ****************************************************************************/
68 
get_device_id(struct device * dev)69 static inline u16 get_device_id(struct device *dev)
70 {
71 	struct pci_dev *pdev = to_pci_dev(dev);
72 
73 	return calc_devid(pdev->bus->number, pdev->devfn);
74 }
75 
get_dev_data(struct device * dev)76 static struct iommu_dev_data *get_dev_data(struct device *dev)
77 {
78 	return dev->archdata.iommu;
79 }
80 
81 /*
82  * In this function the list of preallocated protection domains is traversed to
83  * find the domain for a specific device
84  */
find_protection_domain(u16 devid)85 static struct dma_ops_domain *find_protection_domain(u16 devid)
86 {
87 	struct dma_ops_domain *entry, *ret = NULL;
88 	unsigned long flags;
89 	u16 alias = amd_iommu_alias_table[devid];
90 
91 	if (list_empty(&iommu_pd_list))
92 		return NULL;
93 
94 	spin_lock_irqsave(&iommu_pd_list_lock, flags);
95 
96 	list_for_each_entry(entry, &iommu_pd_list, list) {
97 		if (entry->target_dev == devid ||
98 		    entry->target_dev == alias) {
99 			ret = entry;
100 			break;
101 		}
102 	}
103 
104 	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105 
106 	return ret;
107 }
108 
109 /*
110  * This function checks if the driver got a valid device from the caller to
111  * avoid dereferencing invalid pointers.
112  */
check_device(struct device * dev)113 static bool check_device(struct device *dev)
114 {
115 	u16 devid;
116 
117 	if (!dev || !dev->dma_mask)
118 		return false;
119 
120 	/* No device or no PCI device */
121 	if (dev->bus != &pci_bus_type)
122 		return false;
123 
124 	devid = get_device_id(dev);
125 
126 	/* Out of our scope? */
127 	if (devid > amd_iommu_last_bdf)
128 		return false;
129 
130 	if (amd_iommu_rlookup_table[devid] == NULL)
131 		return false;
132 
133 	return true;
134 }
135 
iommu_init_device(struct device * dev)136 static int iommu_init_device(struct device *dev)
137 {
138 	struct iommu_dev_data *dev_data;
139 	struct pci_dev *pdev;
140 	u16 devid, alias;
141 
142 	if (dev->archdata.iommu)
143 		return 0;
144 
145 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 	if (!dev_data)
147 		return -ENOMEM;
148 
149 	dev_data->dev = dev;
150 
151 	devid = get_device_id(dev);
152 	alias = amd_iommu_alias_table[devid];
153 	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 	if (pdev)
155 		dev_data->alias = &pdev->dev;
156 
157 	atomic_set(&dev_data->bind, 0);
158 
159 	dev->archdata.iommu = dev_data;
160 
161 
162 	return 0;
163 }
164 
iommu_uninit_device(struct device * dev)165 static void iommu_uninit_device(struct device *dev)
166 {
167 	kfree(dev->archdata.iommu);
168 }
169 
amd_iommu_uninit_devices(void)170 void __init amd_iommu_uninit_devices(void)
171 {
172 	struct pci_dev *pdev = NULL;
173 
174 	for_each_pci_dev(pdev) {
175 
176 		if (!check_device(&pdev->dev))
177 			continue;
178 
179 		iommu_uninit_device(&pdev->dev);
180 	}
181 }
182 
amd_iommu_init_devices(void)183 int __init amd_iommu_init_devices(void)
184 {
185 	struct pci_dev *pdev = NULL;
186 	int ret = 0;
187 
188 	for_each_pci_dev(pdev) {
189 
190 		if (!check_device(&pdev->dev))
191 			continue;
192 
193 		ret = iommu_init_device(&pdev->dev);
194 		if (ret)
195 			goto out_free;
196 	}
197 
198 	return 0;
199 
200 out_free:
201 
202 	amd_iommu_uninit_devices();
203 
204 	return ret;
205 }
206 #ifdef CONFIG_AMD_IOMMU_STATS
207 
208 /*
209  * Initialization code for statistics collection
210  */
211 
212 DECLARE_STATS_COUNTER(compl_wait);
213 DECLARE_STATS_COUNTER(cnt_map_single);
214 DECLARE_STATS_COUNTER(cnt_unmap_single);
215 DECLARE_STATS_COUNTER(cnt_map_sg);
216 DECLARE_STATS_COUNTER(cnt_unmap_sg);
217 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218 DECLARE_STATS_COUNTER(cnt_free_coherent);
219 DECLARE_STATS_COUNTER(cross_page);
220 DECLARE_STATS_COUNTER(domain_flush_single);
221 DECLARE_STATS_COUNTER(domain_flush_all);
222 DECLARE_STATS_COUNTER(alloced_io_mem);
223 DECLARE_STATS_COUNTER(total_map_requests);
224 
225 static struct dentry *stats_dir;
226 static struct dentry *de_fflush;
227 
amd_iommu_stats_add(struct __iommu_counter * cnt)228 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
229 {
230 	if (stats_dir == NULL)
231 		return;
232 
233 	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 				       &cnt->value);
235 }
236 
amd_iommu_stats_init(void)237 static void amd_iommu_stats_init(void)
238 {
239 	stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 	if (stats_dir == NULL)
241 		return;
242 
243 	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
244 					 (u32 *)&amd_iommu_unmap_flush);
245 
246 	amd_iommu_stats_add(&compl_wait);
247 	amd_iommu_stats_add(&cnt_map_single);
248 	amd_iommu_stats_add(&cnt_unmap_single);
249 	amd_iommu_stats_add(&cnt_map_sg);
250 	amd_iommu_stats_add(&cnt_unmap_sg);
251 	amd_iommu_stats_add(&cnt_alloc_coherent);
252 	amd_iommu_stats_add(&cnt_free_coherent);
253 	amd_iommu_stats_add(&cross_page);
254 	amd_iommu_stats_add(&domain_flush_single);
255 	amd_iommu_stats_add(&domain_flush_all);
256 	amd_iommu_stats_add(&alloced_io_mem);
257 	amd_iommu_stats_add(&total_map_requests);
258 }
259 
260 #endif
261 
262 /****************************************************************************
263  *
264  * Interrupt handling functions
265  *
266  ****************************************************************************/
267 
dump_dte_entry(u16 devid)268 static void dump_dte_entry(u16 devid)
269 {
270 	int i;
271 
272 	for (i = 0; i < 8; ++i)
273 		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 			amd_iommu_dev_table[devid].data[i]);
275 }
276 
dump_command(unsigned long phys_addr)277 static void dump_command(unsigned long phys_addr)
278 {
279 	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 	int i;
281 
282 	for (i = 0; i < 4; ++i)
283 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
284 }
285 
iommu_print_event(struct amd_iommu * iommu,void * __evt)286 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 {
288 	u32 *event = __evt;
289 	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
290 	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 	u64 address = (u64)(((u64)event[3]) << 32) | event[2];
294 
295 	printk(KERN_ERR "AMD-Vi: Event logged [");
296 
297 	switch (type) {
298 	case EVENT_TYPE_ILL_DEV:
299 		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 		       "address=0x%016llx flags=0x%04x]\n",
301 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 		       address, flags);
303 		dump_dte_entry(devid);
304 		break;
305 	case EVENT_TYPE_IO_FAULT:
306 		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 		       domid, address, flags);
310 		break;
311 	case EVENT_TYPE_DEV_TAB_ERR:
312 		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 		       "address=0x%016llx flags=0x%04x]\n",
314 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 		       address, flags);
316 		break;
317 	case EVENT_TYPE_PAGE_TAB_ERR:
318 		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 		       domid, address, flags);
322 		break;
323 	case EVENT_TYPE_ILL_CMD:
324 		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325 		iommu->reset_in_progress = true;
326 		reset_iommu_command_buffer(iommu);
327 		dump_command(address);
328 		break;
329 	case EVENT_TYPE_CMD_HARD_ERR:
330 		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 		       "flags=0x%04x]\n", address, flags);
332 		break;
333 	case EVENT_TYPE_IOTLB_INV_TO:
334 		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 		       "address=0x%016llx]\n",
336 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 		       address);
338 		break;
339 	case EVENT_TYPE_INV_DEV_REQ:
340 		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 		       "address=0x%016llx flags=0x%04x]\n",
342 		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 		       address, flags);
344 		break;
345 	default:
346 		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
347 	}
348 }
349 
iommu_poll_events(struct amd_iommu * iommu)350 static void iommu_poll_events(struct amd_iommu *iommu)
351 {
352 	u32 head, tail;
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&iommu->lock, flags);
356 
357 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
359 
360 	while (head != tail) {
361 		iommu_print_event(iommu, iommu->evt_buf + head);
362 		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
363 	}
364 
365 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
366 
367 	spin_unlock_irqrestore(&iommu->lock, flags);
368 }
369 
amd_iommu_int_handler(int irq,void * data)370 irqreturn_t amd_iommu_int_handler(int irq, void *data)
371 {
372 	struct amd_iommu *iommu;
373 
374 	for_each_iommu(iommu)
375 		iommu_poll_events(iommu);
376 
377 	return IRQ_HANDLED;
378 }
379 
380 /****************************************************************************
381  *
382  * IOMMU command queuing functions
383  *
384  ****************************************************************************/
385 
386 /*
387  * Writes the command to the IOMMUs command buffer and informs the
388  * hardware about the new command. Must be called with iommu->lock held.
389  */
__iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)390 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
391 {
392 	u32 tail, head;
393 	u8 *target;
394 
395 	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
396 	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
397 	target = iommu->cmd_buf + tail;
398 	memcpy_toio(target, cmd, sizeof(*cmd));
399 	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
400 	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
401 	if (tail == head)
402 		return -ENOMEM;
403 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
404 
405 	return 0;
406 }
407 
408 /*
409  * General queuing function for commands. Takes iommu->lock and calls
410  * __iommu_queue_command().
411  */
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)412 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
413 {
414 	unsigned long flags;
415 	int ret;
416 
417 	spin_lock_irqsave(&iommu->lock, flags);
418 	ret = __iommu_queue_command(iommu, cmd);
419 	if (!ret)
420 		iommu->need_sync = true;
421 	spin_unlock_irqrestore(&iommu->lock, flags);
422 
423 	return ret;
424 }
425 
426 /*
427  * This function waits until an IOMMU has completed a completion
428  * wait command
429  */
__iommu_wait_for_completion(struct amd_iommu * iommu)430 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
431 {
432 	int ready = 0;
433 	unsigned status = 0;
434 	unsigned long i = 0;
435 
436 	INC_STATS_COUNTER(compl_wait);
437 
438 	while (!ready && (i < EXIT_LOOP_COUNT)) {
439 		++i;
440 		/* wait for the bit to become one */
441 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
442 		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
443 	}
444 
445 	/* set bit back to zero */
446 	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
447 	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
448 
449 	if (unlikely(i == EXIT_LOOP_COUNT))
450 		iommu->reset_in_progress = true;
451 }
452 
453 /*
454  * This function queues a completion wait command into the command
455  * buffer of an IOMMU
456  */
__iommu_completion_wait(struct amd_iommu * iommu)457 static int __iommu_completion_wait(struct amd_iommu *iommu)
458 {
459 	struct iommu_cmd cmd;
460 
461 	 memset(&cmd, 0, sizeof(cmd));
462 	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
463 	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
464 
465 	 return __iommu_queue_command(iommu, &cmd);
466 }
467 
468 /*
469  * This function is called whenever we need to ensure that the IOMMU has
470  * completed execution of all commands we sent. It sends a
471  * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
472  * us about that by writing a value to a physical address we pass with
473  * the command.
474  */
iommu_completion_wait(struct amd_iommu * iommu)475 static int iommu_completion_wait(struct amd_iommu *iommu)
476 {
477 	int ret = 0;
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&iommu->lock, flags);
481 
482 	if (!iommu->need_sync)
483 		goto out;
484 
485 	ret = __iommu_completion_wait(iommu);
486 
487 	iommu->need_sync = false;
488 
489 	if (ret)
490 		goto out;
491 
492 	__iommu_wait_for_completion(iommu);
493 
494 out:
495 	spin_unlock_irqrestore(&iommu->lock, flags);
496 
497 	if (iommu->reset_in_progress)
498 		reset_iommu_command_buffer(iommu);
499 
500 	return 0;
501 }
502 
iommu_flush_complete(struct protection_domain * domain)503 static void iommu_flush_complete(struct protection_domain *domain)
504 {
505 	int i;
506 
507 	for (i = 0; i < amd_iommus_present; ++i) {
508 		if (!domain->dev_iommu[i])
509 			continue;
510 
511 		/*
512 		 * Devices of this domain are behind this IOMMU
513 		 * We need to wait for completion of all commands.
514 		 */
515 		iommu_completion_wait(amd_iommus[i]);
516 	}
517 }
518 
519 /*
520  * Command send function for invalidating a device table entry
521  */
iommu_flush_device(struct device * dev)522 static int iommu_flush_device(struct device *dev)
523 {
524 	struct amd_iommu *iommu;
525 	struct iommu_cmd cmd;
526 	u16 devid;
527 
528 	devid = get_device_id(dev);
529 	iommu = amd_iommu_rlookup_table[devid];
530 
531 	/* Build command */
532 	memset(&cmd, 0, sizeof(cmd));
533 	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
534 	cmd.data[0] = devid;
535 
536 	return iommu_queue_command(iommu, &cmd);
537 }
538 
__iommu_build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,u16 domid,int pde,int s)539 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
540 					  u16 domid, int pde, int s)
541 {
542 	memset(cmd, 0, sizeof(*cmd));
543 	address &= PAGE_MASK;
544 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
545 	cmd->data[1] |= domid;
546 	cmd->data[2] = lower_32_bits(address);
547 	cmd->data[3] = upper_32_bits(address);
548 	if (s) /* size bit - we flush more than one 4kb page */
549 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
550 	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
551 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
552 }
553 
554 /*
555  * Generic command send function for invalidaing TLB entries
556  */
iommu_queue_inv_iommu_pages(struct amd_iommu * iommu,u64 address,u16 domid,int pde,int s)557 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
558 		u64 address, u16 domid, int pde, int s)
559 {
560 	struct iommu_cmd cmd;
561 	int ret;
562 
563 	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
564 
565 	ret = iommu_queue_command(iommu, &cmd);
566 
567 	return ret;
568 }
569 
570 /*
571  * TLB invalidation function which is called from the mapping functions.
572  * It invalidates a single PTE if the range to flush is within a single
573  * page. Otherwise it flushes the whole TLB of the IOMMU.
574  */
__iommu_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)575 static void __iommu_flush_pages(struct protection_domain *domain,
576 				u64 address, size_t size, int pde)
577 {
578 	int s = 0, i;
579 	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
580 
581 	address &= PAGE_MASK;
582 
583 	if (pages > 1) {
584 		/*
585 		 * If we have to flush more than one page, flush all
586 		 * TLB entries for this domain
587 		 */
588 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
589 		s = 1;
590 	}
591 
592 
593 	for (i = 0; i < amd_iommus_present; ++i) {
594 		if (!domain->dev_iommu[i])
595 			continue;
596 
597 		/*
598 		 * Devices of this domain are behind this IOMMU
599 		 * We need a TLB flush
600 		 */
601 		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
602 					    domain->id, pde, s);
603 	}
604 
605 	return;
606 }
607 
iommu_flush_pages(struct protection_domain * domain,u64 address,size_t size)608 static void iommu_flush_pages(struct protection_domain *domain,
609 			     u64 address, size_t size)
610 {
611 	__iommu_flush_pages(domain, address, size, 0);
612 }
613 
614 /* Flush the whole IO/TLB for a given protection domain */
iommu_flush_tlb(struct protection_domain * domain)615 static void iommu_flush_tlb(struct protection_domain *domain)
616 {
617 	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
618 }
619 
620 /* Flush the whole IO/TLB for a given protection domain - including PDE */
iommu_flush_tlb_pde(struct protection_domain * domain)621 static void iommu_flush_tlb_pde(struct protection_domain *domain)
622 {
623 	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
624 }
625 
626 
627 /*
628  * This function flushes the DTEs for all devices in domain
629  */
iommu_flush_domain_devices(struct protection_domain * domain)630 static void iommu_flush_domain_devices(struct protection_domain *domain)
631 {
632 	struct iommu_dev_data *dev_data;
633 	unsigned long flags;
634 
635 	spin_lock_irqsave(&domain->lock, flags);
636 
637 	list_for_each_entry(dev_data, &domain->dev_list, list)
638 		iommu_flush_device(dev_data->dev);
639 
640 	spin_unlock_irqrestore(&domain->lock, flags);
641 }
642 
iommu_flush_all_domain_devices(void)643 static void iommu_flush_all_domain_devices(void)
644 {
645 	struct protection_domain *domain;
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
649 
650 	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
651 		iommu_flush_domain_devices(domain);
652 		iommu_flush_complete(domain);
653 	}
654 
655 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
656 }
657 
amd_iommu_flush_all_devices(void)658 void amd_iommu_flush_all_devices(void)
659 {
660 	iommu_flush_all_domain_devices();
661 }
662 
663 /*
664  * This function uses heavy locking and may disable irqs for some time. But
665  * this is no issue because it is only called during resume.
666  */
amd_iommu_flush_all_domains(void)667 void amd_iommu_flush_all_domains(void)
668 {
669 	struct protection_domain *domain;
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
673 
674 	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
675 		spin_lock(&domain->lock);
676 		iommu_flush_tlb_pde(domain);
677 		iommu_flush_complete(domain);
678 		spin_unlock(&domain->lock);
679 	}
680 
681 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
682 }
683 
reset_iommu_command_buffer(struct amd_iommu * iommu)684 static void reset_iommu_command_buffer(struct amd_iommu *iommu)
685 {
686 	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
687 
688 	if (iommu->reset_in_progress)
689 		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
690 
691 	amd_iommu_reset_cmd_buffer(iommu);
692 	amd_iommu_flush_all_devices();
693 	amd_iommu_flush_all_domains();
694 
695 	iommu->reset_in_progress = false;
696 }
697 
698 /****************************************************************************
699  *
700  * The functions below are used the create the page table mappings for
701  * unity mapped regions.
702  *
703  ****************************************************************************/
704 
705 /*
706  * This function is used to add another level to an IO page table. Adding
707  * another level increases the size of the address space by 9 bits to a size up
708  * to 64 bits.
709  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)710 static bool increase_address_space(struct protection_domain *domain,
711 				   gfp_t gfp)
712 {
713 	u64 *pte;
714 
715 	if (domain->mode == PAGE_MODE_6_LEVEL)
716 		/* address space already 64 bit large */
717 		return false;
718 
719 	pte = (void *)get_zeroed_page(gfp);
720 	if (!pte)
721 		return false;
722 
723 	*pte             = PM_LEVEL_PDE(domain->mode,
724 					virt_to_phys(domain->pt_root));
725 	domain->pt_root  = pte;
726 	domain->mode    += 1;
727 	domain->updated  = true;
728 
729 	return true;
730 }
731 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)732 static u64 *alloc_pte(struct protection_domain *domain,
733 		      unsigned long address,
734 		      unsigned long page_size,
735 		      u64 **pte_page,
736 		      gfp_t gfp)
737 {
738 	int level, end_lvl;
739 	u64 *pte, *page;
740 
741 	BUG_ON(!is_power_of_2(page_size));
742 
743 	while (address > PM_LEVEL_SIZE(domain->mode))
744 		increase_address_space(domain, gfp);
745 
746 	level   = domain->mode - 1;
747 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
748 	address = PAGE_SIZE_ALIGN(address, page_size);
749 	end_lvl = PAGE_SIZE_LEVEL(page_size);
750 
751 	while (level > end_lvl) {
752 		if (!IOMMU_PTE_PRESENT(*pte)) {
753 			page = (u64 *)get_zeroed_page(gfp);
754 			if (!page)
755 				return NULL;
756 			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
757 		}
758 
759 		/* No level skipping support yet */
760 		if (PM_PTE_LEVEL(*pte) != level)
761 			return NULL;
762 
763 		level -= 1;
764 
765 		pte = IOMMU_PTE_PAGE(*pte);
766 
767 		if (pte_page && level == end_lvl)
768 			*pte_page = pte;
769 
770 		pte = &pte[PM_LEVEL_INDEX(level, address)];
771 	}
772 
773 	return pte;
774 }
775 
776 /*
777  * This function checks if there is a PTE for a given dma address. If
778  * there is one, it returns the pointer to it.
779  */
fetch_pte(struct protection_domain * domain,unsigned long address)780 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
781 {
782 	int level;
783 	u64 *pte;
784 
785 	if (address > PM_LEVEL_SIZE(domain->mode))
786 		return NULL;
787 
788 	level   =  domain->mode - 1;
789 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
790 
791 	while (level > 0) {
792 
793 		/* Not Present */
794 		if (!IOMMU_PTE_PRESENT(*pte))
795 			return NULL;
796 
797 		/* Large PTE */
798 		if (PM_PTE_LEVEL(*pte) == 0x07) {
799 			unsigned long pte_mask, __pte;
800 
801 			/*
802 			 * If we have a series of large PTEs, make
803 			 * sure to return a pointer to the first one.
804 			 */
805 			pte_mask = PTE_PAGE_SIZE(*pte);
806 			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
807 			__pte    = ((unsigned long)pte) & pte_mask;
808 
809 			return (u64 *)__pte;
810 		}
811 
812 		/* No level skipping support yet */
813 		if (PM_PTE_LEVEL(*pte) != level)
814 			return NULL;
815 
816 		level -= 1;
817 
818 		/* Walk to the next level */
819 		pte = IOMMU_PTE_PAGE(*pte);
820 		pte = &pte[PM_LEVEL_INDEX(level, address)];
821 	}
822 
823 	return pte;
824 }
825 
826 /*
827  * Generic mapping functions. It maps a physical address into a DMA
828  * address space. It allocates the page table pages if necessary.
829  * In the future it can be extended to a generic mapping function
830  * supporting all features of AMD IOMMU page tables like level skipping
831  * and full 64 bit address spaces.
832  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,int prot,unsigned long page_size)833 static int iommu_map_page(struct protection_domain *dom,
834 			  unsigned long bus_addr,
835 			  unsigned long phys_addr,
836 			  int prot,
837 			  unsigned long page_size)
838 {
839 	u64 __pte, *pte;
840 	int i, count;
841 
842 	if (!(prot & IOMMU_PROT_MASK))
843 		return -EINVAL;
844 
845 	bus_addr  = PAGE_ALIGN(bus_addr);
846 	phys_addr = PAGE_ALIGN(phys_addr);
847 	count     = PAGE_SIZE_PTE_COUNT(page_size);
848 	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
849 
850 	for (i = 0; i < count; ++i)
851 		if (IOMMU_PTE_PRESENT(pte[i]))
852 			return -EBUSY;
853 
854 	if (page_size > PAGE_SIZE) {
855 		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
856 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
857 	} else
858 		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
859 
860 	if (prot & IOMMU_PROT_IR)
861 		__pte |= IOMMU_PTE_IR;
862 	if (prot & IOMMU_PROT_IW)
863 		__pte |= IOMMU_PTE_IW;
864 
865 	for (i = 0; i < count; ++i)
866 		pte[i] = __pte;
867 
868 	update_domain(dom);
869 
870 	return 0;
871 }
872 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)873 static unsigned long iommu_unmap_page(struct protection_domain *dom,
874 				      unsigned long bus_addr,
875 				      unsigned long page_size)
876 {
877 	unsigned long long unmap_size, unmapped;
878 	u64 *pte;
879 
880 	BUG_ON(!is_power_of_2(page_size));
881 
882 	unmapped = 0;
883 
884 	while (unmapped < page_size) {
885 
886 		pte = fetch_pte(dom, bus_addr);
887 
888 		if (!pte) {
889 			/*
890 			 * No PTE for this address
891 			 * move forward in 4kb steps
892 			 */
893 			unmap_size = PAGE_SIZE;
894 		} else if (PM_PTE_LEVEL(*pte) == 0) {
895 			/* 4kb PTE found for this address */
896 			unmap_size = PAGE_SIZE;
897 			*pte       = 0ULL;
898 		} else {
899 			int count, i;
900 
901 			/* Large PTE found which maps this address */
902 			unmap_size = PTE_PAGE_SIZE(*pte);
903 			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
904 			for (i = 0; i < count; i++)
905 				pte[i] = 0ULL;
906 		}
907 
908 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
909 		unmapped += unmap_size;
910 	}
911 
912 	BUG_ON(!is_power_of_2(unmapped));
913 
914 	return unmapped;
915 }
916 
917 /*
918  * This function checks if a specific unity mapping entry is needed for
919  * this specific IOMMU.
920  */
iommu_for_unity_map(struct amd_iommu * iommu,struct unity_map_entry * entry)921 static int iommu_for_unity_map(struct amd_iommu *iommu,
922 			       struct unity_map_entry *entry)
923 {
924 	u16 bdf, i;
925 
926 	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
927 		bdf = amd_iommu_alias_table[i];
928 		if (amd_iommu_rlookup_table[bdf] == iommu)
929 			return 1;
930 	}
931 
932 	return 0;
933 }
934 
935 /*
936  * This function actually applies the mapping to the page table of the
937  * dma_ops domain.
938  */
dma_ops_unity_map(struct dma_ops_domain * dma_dom,struct unity_map_entry * e)939 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
940 			     struct unity_map_entry *e)
941 {
942 	u64 addr;
943 	int ret;
944 
945 	for (addr = e->address_start; addr < e->address_end;
946 	     addr += PAGE_SIZE) {
947 		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
948 				     PAGE_SIZE);
949 		if (ret)
950 			return ret;
951 		/*
952 		 * if unity mapping is in aperture range mark the page
953 		 * as allocated in the aperture
954 		 */
955 		if (addr < dma_dom->aperture_size)
956 			__set_bit(addr >> PAGE_SHIFT,
957 				  dma_dom->aperture[0]->bitmap);
958 	}
959 
960 	return 0;
961 }
962 
963 /*
964  * Init the unity mappings for a specific IOMMU in the system
965  *
966  * Basically iterates over all unity mapping entries and applies them to
967  * the default domain DMA of that IOMMU if necessary.
968  */
iommu_init_unity_mappings(struct amd_iommu * iommu)969 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
970 {
971 	struct unity_map_entry *entry;
972 	int ret;
973 
974 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
975 		if (!iommu_for_unity_map(iommu, entry))
976 			continue;
977 		ret = dma_ops_unity_map(iommu->default_dom, entry);
978 		if (ret)
979 			return ret;
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Inits the unity mappings required for a specific device
987  */
init_unity_mappings_for_device(struct dma_ops_domain * dma_dom,u16 devid)988 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
989 					  u16 devid)
990 {
991 	struct unity_map_entry *e;
992 	int ret;
993 
994 	list_for_each_entry(e, &amd_iommu_unity_map, list) {
995 		if (!(devid >= e->devid_start && devid <= e->devid_end))
996 			continue;
997 		ret = dma_ops_unity_map(dma_dom, e);
998 		if (ret)
999 			return ret;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 /****************************************************************************
1006  *
1007  * The next functions belong to the address allocator for the dma_ops
1008  * interface functions. They work like the allocators in the other IOMMU
1009  * drivers. Its basically a bitmap which marks the allocated pages in
1010  * the aperture. Maybe it could be enhanced in the future to a more
1011  * efficient allocator.
1012  *
1013  ****************************************************************************/
1014 
1015 /*
1016  * The address allocator core functions.
1017  *
1018  * called with domain->lock held
1019  */
1020 
1021 /*
1022  * Used to reserve address ranges in the aperture (e.g. for exclusion
1023  * ranges.
1024  */
dma_ops_reserve_addresses(struct dma_ops_domain * dom,unsigned long start_page,unsigned int pages)1025 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1026 				      unsigned long start_page,
1027 				      unsigned int pages)
1028 {
1029 	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1030 
1031 	if (start_page + pages > last_page)
1032 		pages = last_page - start_page;
1033 
1034 	for (i = start_page; i < start_page + pages; ++i) {
1035 		int index = i / APERTURE_RANGE_PAGES;
1036 		int page  = i % APERTURE_RANGE_PAGES;
1037 		__set_bit(page, dom->aperture[index]->bitmap);
1038 	}
1039 }
1040 
1041 /*
1042  * This function is used to add a new aperture range to an existing
1043  * aperture in case of dma_ops domain allocation or address allocation
1044  * failure.
1045  */
alloc_new_range(struct dma_ops_domain * dma_dom,bool populate,gfp_t gfp)1046 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1047 			   bool populate, gfp_t gfp)
1048 {
1049 	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1050 	struct amd_iommu *iommu;
1051 	unsigned long i;
1052 
1053 #ifdef CONFIG_IOMMU_STRESS
1054 	populate = false;
1055 #endif
1056 
1057 	if (index >= APERTURE_MAX_RANGES)
1058 		return -ENOMEM;
1059 
1060 	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1061 	if (!dma_dom->aperture[index])
1062 		return -ENOMEM;
1063 
1064 	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1065 	if (!dma_dom->aperture[index]->bitmap)
1066 		goto out_free;
1067 
1068 	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1069 
1070 	if (populate) {
1071 		unsigned long address = dma_dom->aperture_size;
1072 		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1073 		u64 *pte, *pte_page;
1074 
1075 		for (i = 0; i < num_ptes; ++i) {
1076 			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1077 					&pte_page, gfp);
1078 			if (!pte)
1079 				goto out_free;
1080 
1081 			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1082 
1083 			address += APERTURE_RANGE_SIZE / 64;
1084 		}
1085 	}
1086 
1087 	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1088 
1089 	/* Initialize the exclusion range if necessary */
1090 	for_each_iommu(iommu) {
1091 		if (iommu->exclusion_start &&
1092 		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1093 		    && iommu->exclusion_start < dma_dom->aperture_size) {
1094 			unsigned long startpage;
1095 			int pages = iommu_num_pages(iommu->exclusion_start,
1096 						    iommu->exclusion_length,
1097 						    PAGE_SIZE);
1098 			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1099 			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Check for areas already mapped as present in the new aperture
1105 	 * range and mark those pages as reserved in the allocator. Such
1106 	 * mappings may already exist as a result of requested unity
1107 	 * mappings for devices.
1108 	 */
1109 	for (i = dma_dom->aperture[index]->offset;
1110 	     i < dma_dom->aperture_size;
1111 	     i += PAGE_SIZE) {
1112 		u64 *pte = fetch_pte(&dma_dom->domain, i);
1113 		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1114 			continue;
1115 
1116 		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1117 	}
1118 
1119 	update_domain(&dma_dom->domain);
1120 
1121 	return 0;
1122 
1123 out_free:
1124 	update_domain(&dma_dom->domain);
1125 
1126 	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1127 
1128 	kfree(dma_dom->aperture[index]);
1129 	dma_dom->aperture[index] = NULL;
1130 
1131 	return -ENOMEM;
1132 }
1133 
dma_ops_area_alloc(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask,unsigned long start)1134 static unsigned long dma_ops_area_alloc(struct device *dev,
1135 					struct dma_ops_domain *dom,
1136 					unsigned int pages,
1137 					unsigned long align_mask,
1138 					u64 dma_mask,
1139 					unsigned long start)
1140 {
1141 	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1142 	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1143 	int i = start >> APERTURE_RANGE_SHIFT;
1144 	unsigned long boundary_size;
1145 	unsigned long address = -1;
1146 	unsigned long limit;
1147 
1148 	next_bit >>= PAGE_SHIFT;
1149 
1150 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1151 			PAGE_SIZE) >> PAGE_SHIFT;
1152 
1153 	for (;i < max_index; ++i) {
1154 		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1155 
1156 		if (dom->aperture[i]->offset >= dma_mask)
1157 			break;
1158 
1159 		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1160 					       dma_mask >> PAGE_SHIFT);
1161 
1162 		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1163 					   limit, next_bit, pages, 0,
1164 					    boundary_size, align_mask);
1165 		if (address != -1) {
1166 			address = dom->aperture[i]->offset +
1167 				  (address << PAGE_SHIFT);
1168 			dom->next_address = address + (pages << PAGE_SHIFT);
1169 			break;
1170 		}
1171 
1172 		next_bit = 0;
1173 	}
1174 
1175 	return address;
1176 }
1177 
dma_ops_alloc_addresses(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask)1178 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1179 					     struct dma_ops_domain *dom,
1180 					     unsigned int pages,
1181 					     unsigned long align_mask,
1182 					     u64 dma_mask)
1183 {
1184 	unsigned long address;
1185 
1186 #ifdef CONFIG_IOMMU_STRESS
1187 	dom->next_address = 0;
1188 	dom->need_flush = true;
1189 #endif
1190 
1191 	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1192 				     dma_mask, dom->next_address);
1193 
1194 	if (address == -1) {
1195 		dom->next_address = 0;
1196 		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1197 					     dma_mask, 0);
1198 		dom->need_flush = true;
1199 	}
1200 
1201 	if (unlikely(address == -1))
1202 		address = DMA_ERROR_CODE;
1203 
1204 	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1205 
1206 	return address;
1207 }
1208 
1209 /*
1210  * The address free function.
1211  *
1212  * called with domain->lock held
1213  */
dma_ops_free_addresses(struct dma_ops_domain * dom,unsigned long address,unsigned int pages)1214 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1215 				   unsigned long address,
1216 				   unsigned int pages)
1217 {
1218 	unsigned i = address >> APERTURE_RANGE_SHIFT;
1219 	struct aperture_range *range = dom->aperture[i];
1220 
1221 	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1222 
1223 #ifdef CONFIG_IOMMU_STRESS
1224 	if (i < 4)
1225 		return;
1226 #endif
1227 
1228 	if (address >= dom->next_address)
1229 		dom->need_flush = true;
1230 
1231 	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1232 
1233 	bitmap_clear(range->bitmap, address, pages);
1234 
1235 }
1236 
1237 /****************************************************************************
1238  *
1239  * The next functions belong to the domain allocation. A domain is
1240  * allocated for every IOMMU as the default domain. If device isolation
1241  * is enabled, every device get its own domain. The most important thing
1242  * about domains is the page table mapping the DMA address space they
1243  * contain.
1244  *
1245  ****************************************************************************/
1246 
1247 /*
1248  * This function adds a protection domain to the global protection domain list
1249  */
add_domain_to_list(struct protection_domain * domain)1250 static void add_domain_to_list(struct protection_domain *domain)
1251 {
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1255 	list_add(&domain->list, &amd_iommu_pd_list);
1256 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1257 }
1258 
1259 /*
1260  * This function removes a protection domain to the global
1261  * protection domain list
1262  */
del_domain_from_list(struct protection_domain * domain)1263 static void del_domain_from_list(struct protection_domain *domain)
1264 {
1265 	unsigned long flags;
1266 
1267 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1268 	list_del(&domain->list);
1269 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1270 }
1271 
domain_id_alloc(void)1272 static u16 domain_id_alloc(void)
1273 {
1274 	unsigned long flags;
1275 	int id;
1276 
1277 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1278 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1279 	BUG_ON(id == 0);
1280 	if (id > 0 && id < MAX_DOMAIN_ID)
1281 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1282 	else
1283 		id = 0;
1284 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1285 
1286 	return id;
1287 }
1288 
domain_id_free(int id)1289 static void domain_id_free(int id)
1290 {
1291 	unsigned long flags;
1292 
1293 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1294 	if (id > 0 && id < MAX_DOMAIN_ID)
1295 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1296 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1297 }
1298 
free_pagetable(struct protection_domain * domain)1299 static void free_pagetable(struct protection_domain *domain)
1300 {
1301 	int i, j;
1302 	u64 *p1, *p2, *p3;
1303 
1304 	p1 = domain->pt_root;
1305 
1306 	if (!p1)
1307 		return;
1308 
1309 	for (i = 0; i < 512; ++i) {
1310 		if (!IOMMU_PTE_PRESENT(p1[i]))
1311 			continue;
1312 
1313 		p2 = IOMMU_PTE_PAGE(p1[i]);
1314 		for (j = 0; j < 512; ++j) {
1315 			if (!IOMMU_PTE_PRESENT(p2[j]))
1316 				continue;
1317 			p3 = IOMMU_PTE_PAGE(p2[j]);
1318 			free_page((unsigned long)p3);
1319 		}
1320 
1321 		free_page((unsigned long)p2);
1322 	}
1323 
1324 	free_page((unsigned long)p1);
1325 
1326 	domain->pt_root = NULL;
1327 }
1328 
1329 /*
1330  * Free a domain, only used if something went wrong in the
1331  * allocation path and we need to free an already allocated page table
1332  */
dma_ops_domain_free(struct dma_ops_domain * dom)1333 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1334 {
1335 	int i;
1336 
1337 	if (!dom)
1338 		return;
1339 
1340 	del_domain_from_list(&dom->domain);
1341 
1342 	free_pagetable(&dom->domain);
1343 
1344 	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1345 		if (!dom->aperture[i])
1346 			continue;
1347 		free_page((unsigned long)dom->aperture[i]->bitmap);
1348 		kfree(dom->aperture[i]);
1349 	}
1350 
1351 	kfree(dom);
1352 }
1353 
1354 /*
1355  * Allocates a new protection domain usable for the dma_ops functions.
1356  * It also initializes the page table and the address allocator data
1357  * structures required for the dma_ops interface
1358  */
dma_ops_domain_alloc(void)1359 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1360 {
1361 	struct dma_ops_domain *dma_dom;
1362 
1363 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1364 	if (!dma_dom)
1365 		return NULL;
1366 
1367 	spin_lock_init(&dma_dom->domain.lock);
1368 
1369 	dma_dom->domain.id = domain_id_alloc();
1370 	if (dma_dom->domain.id == 0)
1371 		goto free_dma_dom;
1372 	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1373 	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1374 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1375 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1376 	dma_dom->domain.priv = dma_dom;
1377 	if (!dma_dom->domain.pt_root)
1378 		goto free_dma_dom;
1379 
1380 	dma_dom->need_flush = false;
1381 	dma_dom->target_dev = 0xffff;
1382 
1383 	add_domain_to_list(&dma_dom->domain);
1384 
1385 	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1386 		goto free_dma_dom;
1387 
1388 	/*
1389 	 * mark the first page as allocated so we never return 0 as
1390 	 * a valid dma-address. So we can use 0 as error value
1391 	 */
1392 	dma_dom->aperture[0]->bitmap[0] = 1;
1393 	dma_dom->next_address = 0;
1394 
1395 
1396 	return dma_dom;
1397 
1398 free_dma_dom:
1399 	dma_ops_domain_free(dma_dom);
1400 
1401 	return NULL;
1402 }
1403 
1404 /*
1405  * little helper function to check whether a given protection domain is a
1406  * dma_ops domain
1407  */
dma_ops_domain(struct protection_domain * domain)1408 static bool dma_ops_domain(struct protection_domain *domain)
1409 {
1410 	return domain->flags & PD_DMA_OPS_MASK;
1411 }
1412 
set_dte_entry(u16 devid,struct protection_domain * domain)1413 static void set_dte_entry(u16 devid, struct protection_domain *domain)
1414 {
1415 	u64 pte_root = virt_to_phys(domain->pt_root);
1416 
1417 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1418 		    << DEV_ENTRY_MODE_SHIFT;
1419 	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1420 
1421 	amd_iommu_dev_table[devid].data[2] = domain->id;
1422 	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1423 	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1424 }
1425 
clear_dte_entry(u16 devid)1426 static void clear_dte_entry(u16 devid)
1427 {
1428 	/* remove entry from the device table seen by the hardware */
1429 	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1430 	amd_iommu_dev_table[devid].data[1] = 0;
1431 	amd_iommu_dev_table[devid].data[2] = 0;
1432 
1433 	amd_iommu_apply_erratum_63(devid);
1434 }
1435 
do_attach(struct device * dev,struct protection_domain * domain)1436 static void do_attach(struct device *dev, struct protection_domain *domain)
1437 {
1438 	struct iommu_dev_data *dev_data;
1439 	struct amd_iommu *iommu;
1440 	u16 devid;
1441 
1442 	devid    = get_device_id(dev);
1443 	iommu    = amd_iommu_rlookup_table[devid];
1444 	dev_data = get_dev_data(dev);
1445 
1446 	/* Update data structures */
1447 	dev_data->domain = domain;
1448 	list_add(&dev_data->list, &domain->dev_list);
1449 	set_dte_entry(devid, domain);
1450 
1451 	/* Do reference counting */
1452 	domain->dev_iommu[iommu->index] += 1;
1453 	domain->dev_cnt                 += 1;
1454 
1455 	/* Flush the DTE entry */
1456 	iommu_flush_device(dev);
1457 }
1458 
do_detach(struct device * dev)1459 static void do_detach(struct device *dev)
1460 {
1461 	struct iommu_dev_data *dev_data;
1462 	struct amd_iommu *iommu;
1463 	u16 devid;
1464 
1465 	devid    = get_device_id(dev);
1466 	iommu    = amd_iommu_rlookup_table[devid];
1467 	dev_data = get_dev_data(dev);
1468 
1469 	/* decrease reference counters */
1470 	dev_data->domain->dev_iommu[iommu->index] -= 1;
1471 	dev_data->domain->dev_cnt                 -= 1;
1472 
1473 	/* Update data structures */
1474 	dev_data->domain = NULL;
1475 	list_del(&dev_data->list);
1476 	clear_dte_entry(devid);
1477 
1478 	/* Flush the DTE entry */
1479 	iommu_flush_device(dev);
1480 }
1481 
1482 /*
1483  * If a device is not yet associated with a domain, this function does
1484  * assigns it visible for the hardware
1485  */
__attach_device(struct device * dev,struct protection_domain * domain)1486 static int __attach_device(struct device *dev,
1487 			   struct protection_domain *domain)
1488 {
1489 	struct iommu_dev_data *dev_data, *alias_data;
1490 	int ret;
1491 
1492 	dev_data   = get_dev_data(dev);
1493 	alias_data = get_dev_data(dev_data->alias);
1494 
1495 	if (!alias_data)
1496 		return -EINVAL;
1497 
1498 	/* lock domain */
1499 	spin_lock(&domain->lock);
1500 
1501 	/* Some sanity checks */
1502 	ret = -EBUSY;
1503 	if (alias_data->domain != NULL &&
1504 	    alias_data->domain != domain)
1505 		goto out_unlock;
1506 
1507 	if (dev_data->domain != NULL &&
1508 	    dev_data->domain != domain)
1509 		goto out_unlock;
1510 
1511 	/* Do real assignment */
1512 	if (dev_data->alias != dev) {
1513 		alias_data = get_dev_data(dev_data->alias);
1514 		if (alias_data->domain == NULL)
1515 			do_attach(dev_data->alias, domain);
1516 
1517 		atomic_inc(&alias_data->bind);
1518 	}
1519 
1520 	if (dev_data->domain == NULL)
1521 		do_attach(dev, domain);
1522 
1523 	atomic_inc(&dev_data->bind);
1524 
1525 	ret = 0;
1526 
1527 out_unlock:
1528 
1529 	/* ready */
1530 	spin_unlock(&domain->lock);
1531 
1532 	return ret;
1533 }
1534 
1535 /*
1536  * If a device is not yet associated with a domain, this function does
1537  * assigns it visible for the hardware
1538  */
attach_device(struct device * dev,struct protection_domain * domain)1539 static int attach_device(struct device *dev,
1540 			 struct protection_domain *domain)
1541 {
1542 	unsigned long flags;
1543 	int ret;
1544 
1545 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1546 	ret = __attach_device(dev, domain);
1547 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1548 
1549 	/*
1550 	 * We might boot into a crash-kernel here. The crashed kernel
1551 	 * left the caches in the IOMMU dirty. So we have to flush
1552 	 * here to evict all dirty stuff.
1553 	 */
1554 	iommu_flush_tlb_pde(domain);
1555 
1556 	return ret;
1557 }
1558 
1559 /*
1560  * Removes a device from a protection domain (unlocked)
1561  */
__detach_device(struct device * dev)1562 static void __detach_device(struct device *dev)
1563 {
1564 	struct iommu_dev_data *dev_data = get_dev_data(dev);
1565 	struct iommu_dev_data *alias_data;
1566 	struct protection_domain *domain;
1567 	unsigned long flags;
1568 
1569 	BUG_ON(!dev_data->domain);
1570 
1571 	domain = dev_data->domain;
1572 
1573 	spin_lock_irqsave(&domain->lock, flags);
1574 
1575 	if (dev_data->alias != dev) {
1576 		alias_data = get_dev_data(dev_data->alias);
1577 		if (atomic_dec_and_test(&alias_data->bind))
1578 			do_detach(dev_data->alias);
1579 	}
1580 
1581 	if (atomic_dec_and_test(&dev_data->bind))
1582 		do_detach(dev);
1583 
1584 	spin_unlock_irqrestore(&domain->lock, flags);
1585 
1586 	/*
1587 	 * If we run in passthrough mode the device must be assigned to the
1588 	 * passthrough domain if it is detached from any other domain.
1589 	 * Make sure we can deassign from the pt_domain itself.
1590 	 */
1591 	if (iommu_pass_through &&
1592 	    (dev_data->domain == NULL && domain != pt_domain))
1593 		__attach_device(dev, pt_domain);
1594 }
1595 
1596 /*
1597  * Removes a device from a protection domain (with devtable_lock held)
1598  */
detach_device(struct device * dev)1599 static void detach_device(struct device *dev)
1600 {
1601 	unsigned long flags;
1602 
1603 	/* lock device table */
1604 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1605 	__detach_device(dev);
1606 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1607 }
1608 
1609 /*
1610  * Find out the protection domain structure for a given PCI device. This
1611  * will give us the pointer to the page table root for example.
1612  */
domain_for_device(struct device * dev)1613 static struct protection_domain *domain_for_device(struct device *dev)
1614 {
1615 	struct protection_domain *dom;
1616 	struct iommu_dev_data *dev_data, *alias_data;
1617 	unsigned long flags;
1618 	u16 devid, alias;
1619 
1620 	devid      = get_device_id(dev);
1621 	alias      = amd_iommu_alias_table[devid];
1622 	dev_data   = get_dev_data(dev);
1623 	alias_data = get_dev_data(dev_data->alias);
1624 	if (!alias_data)
1625 		return NULL;
1626 
1627 	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1628 	dom = dev_data->domain;
1629 	if (dom == NULL &&
1630 	    alias_data->domain != NULL) {
1631 		__attach_device(dev, alias_data->domain);
1632 		dom = alias_data->domain;
1633 	}
1634 
1635 	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1636 
1637 	return dom;
1638 }
1639 
device_change_notifier(struct notifier_block * nb,unsigned long action,void * data)1640 static int device_change_notifier(struct notifier_block *nb,
1641 				  unsigned long action, void *data)
1642 {
1643 	struct device *dev = data;
1644 	u16 devid;
1645 	struct protection_domain *domain;
1646 	struct dma_ops_domain *dma_domain;
1647 	struct amd_iommu *iommu;
1648 	unsigned long flags;
1649 
1650 	if (!check_device(dev))
1651 		return 0;
1652 
1653 	devid  = get_device_id(dev);
1654 	iommu  = amd_iommu_rlookup_table[devid];
1655 
1656 	switch (action) {
1657 	case BUS_NOTIFY_UNBOUND_DRIVER:
1658 
1659 		domain = domain_for_device(dev);
1660 
1661 		if (!domain)
1662 			goto out;
1663 		if (iommu_pass_through)
1664 			break;
1665 		detach_device(dev);
1666 		break;
1667 	case BUS_NOTIFY_ADD_DEVICE:
1668 
1669 		iommu_init_device(dev);
1670 
1671 		domain = domain_for_device(dev);
1672 
1673 		/* allocate a protection domain if a device is added */
1674 		dma_domain = find_protection_domain(devid);
1675 		if (dma_domain)
1676 			goto out;
1677 		dma_domain = dma_ops_domain_alloc();
1678 		if (!dma_domain)
1679 			goto out;
1680 		dma_domain->target_dev = devid;
1681 
1682 		spin_lock_irqsave(&iommu_pd_list_lock, flags);
1683 		list_add_tail(&dma_domain->list, &iommu_pd_list);
1684 		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1685 
1686 		break;
1687 	case BUS_NOTIFY_DEL_DEVICE:
1688 
1689 		iommu_uninit_device(dev);
1690 
1691 	default:
1692 		goto out;
1693 	}
1694 
1695 	iommu_flush_device(dev);
1696 	iommu_completion_wait(iommu);
1697 
1698 out:
1699 	return 0;
1700 }
1701 
1702 static struct notifier_block device_nb = {
1703 	.notifier_call = device_change_notifier,
1704 };
1705 
amd_iommu_init_notifier(void)1706 void amd_iommu_init_notifier(void)
1707 {
1708 	bus_register_notifier(&pci_bus_type, &device_nb);
1709 }
1710 
1711 /*****************************************************************************
1712  *
1713  * The next functions belong to the dma_ops mapping/unmapping code.
1714  *
1715  *****************************************************************************/
1716 
1717 /*
1718  * In the dma_ops path we only have the struct device. This function
1719  * finds the corresponding IOMMU, the protection domain and the
1720  * requestor id for a given device.
1721  * If the device is not yet associated with a domain this is also done
1722  * in this function.
1723  */
get_domain(struct device * dev)1724 static struct protection_domain *get_domain(struct device *dev)
1725 {
1726 	struct protection_domain *domain;
1727 	struct dma_ops_domain *dma_dom;
1728 	u16 devid = get_device_id(dev);
1729 
1730 	if (!check_device(dev))
1731 		return ERR_PTR(-EINVAL);
1732 
1733 	domain = domain_for_device(dev);
1734 	if (domain != NULL && !dma_ops_domain(domain))
1735 		return ERR_PTR(-EBUSY);
1736 
1737 	if (domain != NULL)
1738 		return domain;
1739 
1740 	/* Device not bount yet - bind it */
1741 	dma_dom = find_protection_domain(devid);
1742 	if (!dma_dom)
1743 		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1744 	attach_device(dev, &dma_dom->domain);
1745 	DUMP_printk("Using protection domain %d for device %s\n",
1746 		    dma_dom->domain.id, dev_name(dev));
1747 
1748 	return &dma_dom->domain;
1749 }
1750 
update_device_table(struct protection_domain * domain)1751 static void update_device_table(struct protection_domain *domain)
1752 {
1753 	struct iommu_dev_data *dev_data;
1754 
1755 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1756 		u16 devid = get_device_id(dev_data->dev);
1757 		set_dte_entry(devid, domain);
1758 	}
1759 }
1760 
update_domain(struct protection_domain * domain)1761 static void update_domain(struct protection_domain *domain)
1762 {
1763 	if (!domain->updated)
1764 		return;
1765 
1766 	update_device_table(domain);
1767 	iommu_flush_domain_devices(domain);
1768 	iommu_flush_tlb_pde(domain);
1769 
1770 	domain->updated = false;
1771 }
1772 
1773 /*
1774  * This function fetches the PTE for a given address in the aperture
1775  */
dma_ops_get_pte(struct dma_ops_domain * dom,unsigned long address)1776 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1777 			    unsigned long address)
1778 {
1779 	struct aperture_range *aperture;
1780 	u64 *pte, *pte_page;
1781 
1782 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1783 	if (!aperture)
1784 		return NULL;
1785 
1786 	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1787 	if (!pte) {
1788 		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1789 				GFP_ATOMIC);
1790 		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1791 	} else
1792 		pte += PM_LEVEL_INDEX(0, address);
1793 
1794 	update_domain(&dom->domain);
1795 
1796 	return pte;
1797 }
1798 
1799 /*
1800  * This is the generic map function. It maps one 4kb page at paddr to
1801  * the given address in the DMA address space for the domain.
1802  */
dma_ops_domain_map(struct dma_ops_domain * dom,unsigned long address,phys_addr_t paddr,int direction)1803 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1804 				     unsigned long address,
1805 				     phys_addr_t paddr,
1806 				     int direction)
1807 {
1808 	u64 *pte, __pte;
1809 
1810 	WARN_ON(address > dom->aperture_size);
1811 
1812 	paddr &= PAGE_MASK;
1813 
1814 	pte  = dma_ops_get_pte(dom, address);
1815 	if (!pte)
1816 		return DMA_ERROR_CODE;
1817 
1818 	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1819 
1820 	if (direction == DMA_TO_DEVICE)
1821 		__pte |= IOMMU_PTE_IR;
1822 	else if (direction == DMA_FROM_DEVICE)
1823 		__pte |= IOMMU_PTE_IW;
1824 	else if (direction == DMA_BIDIRECTIONAL)
1825 		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1826 
1827 	WARN_ON(*pte);
1828 
1829 	*pte = __pte;
1830 
1831 	return (dma_addr_t)address;
1832 }
1833 
1834 /*
1835  * The generic unmapping function for on page in the DMA address space.
1836  */
dma_ops_domain_unmap(struct dma_ops_domain * dom,unsigned long address)1837 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1838 				 unsigned long address)
1839 {
1840 	struct aperture_range *aperture;
1841 	u64 *pte;
1842 
1843 	if (address >= dom->aperture_size)
1844 		return;
1845 
1846 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1847 	if (!aperture)
1848 		return;
1849 
1850 	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1851 	if (!pte)
1852 		return;
1853 
1854 	pte += PM_LEVEL_INDEX(0, address);
1855 
1856 	WARN_ON(!*pte);
1857 
1858 	*pte = 0ULL;
1859 }
1860 
1861 /*
1862  * This function contains common code for mapping of a physically
1863  * contiguous memory region into DMA address space. It is used by all
1864  * mapping functions provided with this IOMMU driver.
1865  * Must be called with the domain lock held.
1866  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,int dir,bool align,u64 dma_mask)1867 static dma_addr_t __map_single(struct device *dev,
1868 			       struct dma_ops_domain *dma_dom,
1869 			       phys_addr_t paddr,
1870 			       size_t size,
1871 			       int dir,
1872 			       bool align,
1873 			       u64 dma_mask)
1874 {
1875 	dma_addr_t offset = paddr & ~PAGE_MASK;
1876 	dma_addr_t address, start, ret;
1877 	unsigned int pages;
1878 	unsigned long align_mask = 0;
1879 	int i;
1880 
1881 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1882 	paddr &= PAGE_MASK;
1883 
1884 	INC_STATS_COUNTER(total_map_requests);
1885 
1886 	if (pages > 1)
1887 		INC_STATS_COUNTER(cross_page);
1888 
1889 	if (align)
1890 		align_mask = (1UL << get_order(size)) - 1;
1891 
1892 retry:
1893 	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1894 					  dma_mask);
1895 	if (unlikely(address == DMA_ERROR_CODE)) {
1896 		/*
1897 		 * setting next_address here will let the address
1898 		 * allocator only scan the new allocated range in the
1899 		 * first run. This is a small optimization.
1900 		 */
1901 		dma_dom->next_address = dma_dom->aperture_size;
1902 
1903 		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1904 			goto out;
1905 
1906 		/*
1907 		 * aperture was successfully enlarged by 128 MB, try
1908 		 * allocation again
1909 		 */
1910 		goto retry;
1911 	}
1912 
1913 	start = address;
1914 	for (i = 0; i < pages; ++i) {
1915 		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1916 		if (ret == DMA_ERROR_CODE)
1917 			goto out_unmap;
1918 
1919 		paddr += PAGE_SIZE;
1920 		start += PAGE_SIZE;
1921 	}
1922 	address += offset;
1923 
1924 	ADD_STATS_COUNTER(alloced_io_mem, size);
1925 
1926 	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1927 		iommu_flush_tlb(&dma_dom->domain);
1928 		dma_dom->need_flush = false;
1929 	} else if (unlikely(amd_iommu_np_cache))
1930 		iommu_flush_pages(&dma_dom->domain, address, size);
1931 
1932 out:
1933 	return address;
1934 
1935 out_unmap:
1936 
1937 	for (--i; i >= 0; --i) {
1938 		start -= PAGE_SIZE;
1939 		dma_ops_domain_unmap(dma_dom, start);
1940 	}
1941 
1942 	dma_ops_free_addresses(dma_dom, address, pages);
1943 
1944 	return DMA_ERROR_CODE;
1945 }
1946 
1947 /*
1948  * Does the reverse of the __map_single function. Must be called with
1949  * the domain lock held too
1950  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)1951 static void __unmap_single(struct dma_ops_domain *dma_dom,
1952 			   dma_addr_t dma_addr,
1953 			   size_t size,
1954 			   int dir)
1955 {
1956 	dma_addr_t flush_addr;
1957 	dma_addr_t i, start;
1958 	unsigned int pages;
1959 
1960 	if ((dma_addr == DMA_ERROR_CODE) ||
1961 	    (dma_addr + size > dma_dom->aperture_size))
1962 		return;
1963 
1964 	flush_addr = dma_addr;
1965 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1966 	dma_addr &= PAGE_MASK;
1967 	start = dma_addr;
1968 
1969 	for (i = 0; i < pages; ++i) {
1970 		dma_ops_domain_unmap(dma_dom, start);
1971 		start += PAGE_SIZE;
1972 	}
1973 
1974 	SUB_STATS_COUNTER(alloced_io_mem, size);
1975 
1976 	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1977 
1978 	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1979 		iommu_flush_pages(&dma_dom->domain, flush_addr, size);
1980 		dma_dom->need_flush = false;
1981 	}
1982 }
1983 
1984 /*
1985  * The exported map_single function for dma_ops.
1986  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)1987 static dma_addr_t map_page(struct device *dev, struct page *page,
1988 			   unsigned long offset, size_t size,
1989 			   enum dma_data_direction dir,
1990 			   struct dma_attrs *attrs)
1991 {
1992 	unsigned long flags;
1993 	struct protection_domain *domain;
1994 	dma_addr_t addr;
1995 	u64 dma_mask;
1996 	phys_addr_t paddr = page_to_phys(page) + offset;
1997 
1998 	INC_STATS_COUNTER(cnt_map_single);
1999 
2000 	domain = get_domain(dev);
2001 	if (PTR_ERR(domain) == -EINVAL)
2002 		return (dma_addr_t)paddr;
2003 	else if (IS_ERR(domain))
2004 		return DMA_ERROR_CODE;
2005 
2006 	dma_mask = *dev->dma_mask;
2007 
2008 	spin_lock_irqsave(&domain->lock, flags);
2009 
2010 	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2011 			    dma_mask);
2012 	if (addr == DMA_ERROR_CODE)
2013 		goto out;
2014 
2015 	iommu_flush_complete(domain);
2016 
2017 out:
2018 	spin_unlock_irqrestore(&domain->lock, flags);
2019 
2020 	return addr;
2021 }
2022 
2023 /*
2024  * The exported unmap_single function for dma_ops.
2025  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2026 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2027 		       enum dma_data_direction dir, struct dma_attrs *attrs)
2028 {
2029 	unsigned long flags;
2030 	struct protection_domain *domain;
2031 
2032 	INC_STATS_COUNTER(cnt_unmap_single);
2033 
2034 	domain = get_domain(dev);
2035 	if (IS_ERR(domain))
2036 		return;
2037 
2038 	spin_lock_irqsave(&domain->lock, flags);
2039 
2040 	__unmap_single(domain->priv, dma_addr, size, dir);
2041 
2042 	iommu_flush_complete(domain);
2043 
2044 	spin_unlock_irqrestore(&domain->lock, flags);
2045 }
2046 
2047 /*
2048  * This is a special map_sg function which is used if we should map a
2049  * device which is not handled by an AMD IOMMU in the system.
2050  */
map_sg_no_iommu(struct device * dev,struct scatterlist * sglist,int nelems,int dir)2051 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2052 			   int nelems, int dir)
2053 {
2054 	struct scatterlist *s;
2055 	int i;
2056 
2057 	for_each_sg(sglist, s, nelems, i) {
2058 		s->dma_address = (dma_addr_t)sg_phys(s);
2059 		s->dma_length  = s->length;
2060 	}
2061 
2062 	return nelems;
2063 }
2064 
2065 /*
2066  * The exported map_sg function for dma_ops (handles scatter-gather
2067  * lists).
2068  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2069 static int map_sg(struct device *dev, struct scatterlist *sglist,
2070 		  int nelems, enum dma_data_direction dir,
2071 		  struct dma_attrs *attrs)
2072 {
2073 	unsigned long flags;
2074 	struct protection_domain *domain;
2075 	int i;
2076 	struct scatterlist *s;
2077 	phys_addr_t paddr;
2078 	int mapped_elems = 0;
2079 	u64 dma_mask;
2080 
2081 	INC_STATS_COUNTER(cnt_map_sg);
2082 
2083 	domain = get_domain(dev);
2084 	if (PTR_ERR(domain) == -EINVAL)
2085 		return map_sg_no_iommu(dev, sglist, nelems, dir);
2086 	else if (IS_ERR(domain))
2087 		return 0;
2088 
2089 	dma_mask = *dev->dma_mask;
2090 
2091 	spin_lock_irqsave(&domain->lock, flags);
2092 
2093 	for_each_sg(sglist, s, nelems, i) {
2094 		paddr = sg_phys(s);
2095 
2096 		s->dma_address = __map_single(dev, domain->priv,
2097 					      paddr, s->length, dir, false,
2098 					      dma_mask);
2099 
2100 		if (s->dma_address) {
2101 			s->dma_length = s->length;
2102 			mapped_elems++;
2103 		} else
2104 			goto unmap;
2105 	}
2106 
2107 	iommu_flush_complete(domain);
2108 
2109 out:
2110 	spin_unlock_irqrestore(&domain->lock, flags);
2111 
2112 	return mapped_elems;
2113 unmap:
2114 	for_each_sg(sglist, s, mapped_elems, i) {
2115 		if (s->dma_address)
2116 			__unmap_single(domain->priv, s->dma_address,
2117 				       s->dma_length, dir);
2118 		s->dma_address = s->dma_length = 0;
2119 	}
2120 
2121 	mapped_elems = 0;
2122 
2123 	goto out;
2124 }
2125 
2126 /*
2127  * The exported map_sg function for dma_ops (handles scatter-gather
2128  * lists).
2129  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2130 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2131 		     int nelems, enum dma_data_direction dir,
2132 		     struct dma_attrs *attrs)
2133 {
2134 	unsigned long flags;
2135 	struct protection_domain *domain;
2136 	struct scatterlist *s;
2137 	int i;
2138 
2139 	INC_STATS_COUNTER(cnt_unmap_sg);
2140 
2141 	domain = get_domain(dev);
2142 	if (IS_ERR(domain))
2143 		return;
2144 
2145 	spin_lock_irqsave(&domain->lock, flags);
2146 
2147 	for_each_sg(sglist, s, nelems, i) {
2148 		__unmap_single(domain->priv, s->dma_address,
2149 			       s->dma_length, dir);
2150 		s->dma_address = s->dma_length = 0;
2151 	}
2152 
2153 	iommu_flush_complete(domain);
2154 
2155 	spin_unlock_irqrestore(&domain->lock, flags);
2156 }
2157 
2158 /*
2159  * The exported alloc_coherent function for dma_ops.
2160  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag)2161 static void *alloc_coherent(struct device *dev, size_t size,
2162 			    dma_addr_t *dma_addr, gfp_t flag)
2163 {
2164 	unsigned long flags;
2165 	void *virt_addr;
2166 	struct protection_domain *domain;
2167 	phys_addr_t paddr;
2168 	u64 dma_mask = dev->coherent_dma_mask;
2169 
2170 	INC_STATS_COUNTER(cnt_alloc_coherent);
2171 
2172 	domain = get_domain(dev);
2173 	if (PTR_ERR(domain) == -EINVAL) {
2174 		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2175 		*dma_addr = __pa(virt_addr);
2176 		return virt_addr;
2177 	} else if (IS_ERR(domain))
2178 		return NULL;
2179 
2180 	dma_mask  = dev->coherent_dma_mask;
2181 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2182 	flag     |= __GFP_ZERO;
2183 
2184 	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2185 	if (!virt_addr)
2186 		return NULL;
2187 
2188 	paddr = virt_to_phys(virt_addr);
2189 
2190 	if (!dma_mask)
2191 		dma_mask = *dev->dma_mask;
2192 
2193 	spin_lock_irqsave(&domain->lock, flags);
2194 
2195 	*dma_addr = __map_single(dev, domain->priv, paddr,
2196 				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2197 
2198 	if (*dma_addr == DMA_ERROR_CODE) {
2199 		spin_unlock_irqrestore(&domain->lock, flags);
2200 		goto out_free;
2201 	}
2202 
2203 	iommu_flush_complete(domain);
2204 
2205 	spin_unlock_irqrestore(&domain->lock, flags);
2206 
2207 	return virt_addr;
2208 
2209 out_free:
2210 
2211 	free_pages((unsigned long)virt_addr, get_order(size));
2212 
2213 	return NULL;
2214 }
2215 
2216 /*
2217  * The exported free_coherent function for dma_ops.
2218  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr)2219 static void free_coherent(struct device *dev, size_t size,
2220 			  void *virt_addr, dma_addr_t dma_addr)
2221 {
2222 	unsigned long flags;
2223 	struct protection_domain *domain;
2224 
2225 	INC_STATS_COUNTER(cnt_free_coherent);
2226 
2227 	domain = get_domain(dev);
2228 	if (IS_ERR(domain))
2229 		goto free_mem;
2230 
2231 	spin_lock_irqsave(&domain->lock, flags);
2232 
2233 	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2234 
2235 	iommu_flush_complete(domain);
2236 
2237 	spin_unlock_irqrestore(&domain->lock, flags);
2238 
2239 free_mem:
2240 	free_pages((unsigned long)virt_addr, get_order(size));
2241 }
2242 
2243 /*
2244  * This function is called by the DMA layer to find out if we can handle a
2245  * particular device. It is part of the dma_ops.
2246  */
amd_iommu_dma_supported(struct device * dev,u64 mask)2247 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2248 {
2249 	return check_device(dev);
2250 }
2251 
2252 /*
2253  * The function for pre-allocating protection domains.
2254  *
2255  * If the driver core informs the DMA layer if a driver grabs a device
2256  * we don't need to preallocate the protection domains anymore.
2257  * For now we have to.
2258  */
prealloc_protection_domains(void)2259 static void prealloc_protection_domains(void)
2260 {
2261 	struct pci_dev *dev = NULL;
2262 	struct dma_ops_domain *dma_dom;
2263 	u16 devid;
2264 
2265 	for_each_pci_dev(dev) {
2266 
2267 		/* Do we handle this device? */
2268 		if (!check_device(&dev->dev))
2269 			continue;
2270 
2271 		/* Is there already any domain for it? */
2272 		if (domain_for_device(&dev->dev))
2273 			continue;
2274 
2275 		devid = get_device_id(&dev->dev);
2276 
2277 		dma_dom = dma_ops_domain_alloc();
2278 		if (!dma_dom)
2279 			continue;
2280 		init_unity_mappings_for_device(dma_dom, devid);
2281 		dma_dom->target_dev = devid;
2282 
2283 		attach_device(&dev->dev, &dma_dom->domain);
2284 
2285 		list_add_tail(&dma_dom->list, &iommu_pd_list);
2286 	}
2287 }
2288 
2289 static struct dma_map_ops amd_iommu_dma_ops = {
2290 	.alloc_coherent = alloc_coherent,
2291 	.free_coherent = free_coherent,
2292 	.map_page = map_page,
2293 	.unmap_page = unmap_page,
2294 	.map_sg = map_sg,
2295 	.unmap_sg = unmap_sg,
2296 	.dma_supported = amd_iommu_dma_supported,
2297 };
2298 
2299 /*
2300  * The function which clues the AMD IOMMU driver into dma_ops.
2301  */
2302 
amd_iommu_init_api(void)2303 void __init amd_iommu_init_api(void)
2304 {
2305 	register_iommu(&amd_iommu_ops);
2306 }
2307 
amd_iommu_init_dma_ops(void)2308 int __init amd_iommu_init_dma_ops(void)
2309 {
2310 	struct amd_iommu *iommu;
2311 	int ret;
2312 
2313 	/*
2314 	 * first allocate a default protection domain for every IOMMU we
2315 	 * found in the system. Devices not assigned to any other
2316 	 * protection domain will be assigned to the default one.
2317 	 */
2318 	for_each_iommu(iommu) {
2319 		iommu->default_dom = dma_ops_domain_alloc();
2320 		if (iommu->default_dom == NULL)
2321 			return -ENOMEM;
2322 		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2323 		ret = iommu_init_unity_mappings(iommu);
2324 		if (ret)
2325 			goto free_domains;
2326 	}
2327 
2328 	/*
2329 	 * Pre-allocate the protection domains for each device.
2330 	 */
2331 	prealloc_protection_domains();
2332 
2333 	iommu_detected = 1;
2334 	swiotlb = 0;
2335 
2336 	/* Make the driver finally visible to the drivers */
2337 	dma_ops = &amd_iommu_dma_ops;
2338 
2339 	amd_iommu_stats_init();
2340 
2341 	return 0;
2342 
2343 free_domains:
2344 
2345 	for_each_iommu(iommu) {
2346 		if (iommu->default_dom)
2347 			dma_ops_domain_free(iommu->default_dom);
2348 	}
2349 
2350 	return ret;
2351 }
2352 
2353 /*****************************************************************************
2354  *
2355  * The following functions belong to the exported interface of AMD IOMMU
2356  *
2357  * This interface allows access to lower level functions of the IOMMU
2358  * like protection domain handling and assignement of devices to domains
2359  * which is not possible with the dma_ops interface.
2360  *
2361  *****************************************************************************/
2362 
cleanup_domain(struct protection_domain * domain)2363 static void cleanup_domain(struct protection_domain *domain)
2364 {
2365 	struct iommu_dev_data *dev_data, *next;
2366 	unsigned long flags;
2367 
2368 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2369 
2370 	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2371 		struct device *dev = dev_data->dev;
2372 
2373 		__detach_device(dev);
2374 		atomic_set(&dev_data->bind, 0);
2375 	}
2376 
2377 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2378 }
2379 
protection_domain_free(struct protection_domain * domain)2380 static void protection_domain_free(struct protection_domain *domain)
2381 {
2382 	if (!domain)
2383 		return;
2384 
2385 	del_domain_from_list(domain);
2386 
2387 	if (domain->id)
2388 		domain_id_free(domain->id);
2389 
2390 	kfree(domain);
2391 }
2392 
protection_domain_alloc(void)2393 static struct protection_domain *protection_domain_alloc(void)
2394 {
2395 	struct protection_domain *domain;
2396 
2397 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2398 	if (!domain)
2399 		return NULL;
2400 
2401 	spin_lock_init(&domain->lock);
2402 	mutex_init(&domain->api_lock);
2403 	domain->id = domain_id_alloc();
2404 	if (!domain->id)
2405 		goto out_err;
2406 	INIT_LIST_HEAD(&domain->dev_list);
2407 
2408 	add_domain_to_list(domain);
2409 
2410 	return domain;
2411 
2412 out_err:
2413 	kfree(domain);
2414 
2415 	return NULL;
2416 }
2417 
amd_iommu_domain_init(struct iommu_domain * dom)2418 static int amd_iommu_domain_init(struct iommu_domain *dom)
2419 {
2420 	struct protection_domain *domain;
2421 
2422 	domain = protection_domain_alloc();
2423 	if (!domain)
2424 		goto out_free;
2425 
2426 	domain->mode    = PAGE_MODE_3_LEVEL;
2427 	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2428 	if (!domain->pt_root)
2429 		goto out_free;
2430 
2431 	dom->priv = domain;
2432 
2433 	return 0;
2434 
2435 out_free:
2436 	protection_domain_free(domain);
2437 
2438 	return -ENOMEM;
2439 }
2440 
amd_iommu_domain_destroy(struct iommu_domain * dom)2441 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2442 {
2443 	struct protection_domain *domain = dom->priv;
2444 
2445 	if (!domain)
2446 		return;
2447 
2448 	if (domain->dev_cnt > 0)
2449 		cleanup_domain(domain);
2450 
2451 	BUG_ON(domain->dev_cnt != 0);
2452 
2453 	free_pagetable(domain);
2454 
2455 	protection_domain_free(domain);
2456 
2457 	dom->priv = NULL;
2458 }
2459 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2460 static void amd_iommu_detach_device(struct iommu_domain *dom,
2461 				    struct device *dev)
2462 {
2463 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2464 	struct amd_iommu *iommu;
2465 	u16 devid;
2466 
2467 	if (!check_device(dev))
2468 		return;
2469 
2470 	devid = get_device_id(dev);
2471 
2472 	if (dev_data->domain != NULL)
2473 		detach_device(dev);
2474 
2475 	iommu = amd_iommu_rlookup_table[devid];
2476 	if (!iommu)
2477 		return;
2478 
2479 	iommu_flush_device(dev);
2480 	iommu_completion_wait(iommu);
2481 }
2482 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2483 static int amd_iommu_attach_device(struct iommu_domain *dom,
2484 				   struct device *dev)
2485 {
2486 	struct protection_domain *domain = dom->priv;
2487 	struct iommu_dev_data *dev_data;
2488 	struct amd_iommu *iommu;
2489 	int ret;
2490 	u16 devid;
2491 
2492 	if (!check_device(dev))
2493 		return -EINVAL;
2494 
2495 	dev_data = dev->archdata.iommu;
2496 
2497 	devid = get_device_id(dev);
2498 
2499 	iommu = amd_iommu_rlookup_table[devid];
2500 	if (!iommu)
2501 		return -EINVAL;
2502 
2503 	if (dev_data->domain)
2504 		detach_device(dev);
2505 
2506 	ret = attach_device(dev, domain);
2507 
2508 	iommu_completion_wait(iommu);
2509 
2510 	return ret;
2511 }
2512 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,int gfp_order,int iommu_prot)2513 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2514 			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2515 {
2516 	unsigned long page_size = 0x1000UL << gfp_order;
2517 	struct protection_domain *domain = dom->priv;
2518 	int prot = 0;
2519 	int ret;
2520 
2521 	if (iommu_prot & IOMMU_READ)
2522 		prot |= IOMMU_PROT_IR;
2523 	if (iommu_prot & IOMMU_WRITE)
2524 		prot |= IOMMU_PROT_IW;
2525 
2526 	mutex_lock(&domain->api_lock);
2527 	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2528 	mutex_unlock(&domain->api_lock);
2529 
2530 	return ret;
2531 }
2532 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,int gfp_order)2533 static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2534 			   int gfp_order)
2535 {
2536 	struct protection_domain *domain = dom->priv;
2537 	unsigned long page_size, unmap_size;
2538 
2539 	page_size  = 0x1000UL << gfp_order;
2540 
2541 	mutex_lock(&domain->api_lock);
2542 	unmap_size = iommu_unmap_page(domain, iova, page_size);
2543 	mutex_unlock(&domain->api_lock);
2544 
2545 	iommu_flush_tlb_pde(domain);
2546 
2547 	return get_order(unmap_size);
2548 }
2549 
amd_iommu_iova_to_phys(struct iommu_domain * dom,unsigned long iova)2550 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2551 					  unsigned long iova)
2552 {
2553 	struct protection_domain *domain = dom->priv;
2554 	unsigned long offset_mask;
2555 	phys_addr_t paddr;
2556 	u64 *pte, __pte;
2557 
2558 	pte = fetch_pte(domain, iova);
2559 
2560 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2561 		return 0;
2562 
2563 	if (PM_PTE_LEVEL(*pte) == 0)
2564 		offset_mask = PAGE_SIZE - 1;
2565 	else
2566 		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2567 
2568 	__pte = *pte & PM_ADDR_MASK;
2569 	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2570 
2571 	return paddr;
2572 }
2573 
amd_iommu_domain_has_cap(struct iommu_domain * domain,unsigned long cap)2574 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2575 				    unsigned long cap)
2576 {
2577 	switch (cap) {
2578 	case IOMMU_CAP_CACHE_COHERENCY:
2579 		return 1;
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static struct iommu_ops amd_iommu_ops = {
2586 	.domain_init = amd_iommu_domain_init,
2587 	.domain_destroy = amd_iommu_domain_destroy,
2588 	.attach_dev = amd_iommu_attach_device,
2589 	.detach_dev = amd_iommu_detach_device,
2590 	.map = amd_iommu_map,
2591 	.unmap = amd_iommu_unmap,
2592 	.iova_to_phys = amd_iommu_iova_to_phys,
2593 	.domain_has_cap = amd_iommu_domain_has_cap,
2594 };
2595 
2596 /*****************************************************************************
2597  *
2598  * The next functions do a basic initialization of IOMMU for pass through
2599  * mode
2600  *
2601  * In passthrough mode the IOMMU is initialized and enabled but not used for
2602  * DMA-API translation.
2603  *
2604  *****************************************************************************/
2605 
amd_iommu_init_passthrough(void)2606 int __init amd_iommu_init_passthrough(void)
2607 {
2608 	struct amd_iommu *iommu;
2609 	struct pci_dev *dev = NULL;
2610 	u16 devid;
2611 
2612 	/* allocate passthrough domain */
2613 	pt_domain = protection_domain_alloc();
2614 	if (!pt_domain)
2615 		return -ENOMEM;
2616 
2617 	pt_domain->mode |= PAGE_MODE_NONE;
2618 
2619 	for_each_pci_dev(dev) {
2620 		if (!check_device(&dev->dev))
2621 			continue;
2622 
2623 		devid = get_device_id(&dev->dev);
2624 
2625 		iommu = amd_iommu_rlookup_table[devid];
2626 		if (!iommu)
2627 			continue;
2628 
2629 		attach_device(&dev->dev, pt_domain);
2630 	}
2631 
2632 	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2633 
2634 	return 0;
2635 }
2636