1/* 2 * umul.S: This routine was taken from glibc-1.09 and is covered 3 * by the GNU Library General Public License Version 2. 4 */ 5 6 7/* 8 * Unsigned multiply. Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the 9 * upper 32 bits of the 64-bit product). 10 * 11 * This code optimizes short (less than 13-bit) multiplies. Short 12 * multiplies require 25 instruction cycles, and long ones require 13 * 45 instruction cycles. 14 * 15 * On return, overflow has occurred (%o1 is not zero) if and only if 16 * the Z condition code is clear, allowing, e.g., the following: 17 * 18 * call .umul 19 * nop 20 * bnz overflow (or tnz) 21 */ 22 23 .globl .umul 24 .globl _Umul 25.umul: 26_Umul: /* needed for export */ 27 or %o0, %o1, %o4 28 mov %o0, %y ! multiplier -> Y 29 30 andncc %o4, 0xfff, %g0 ! test bits 12..31 of *both* args 31 be Lmul_shortway ! if zero, can do it the short way 32 andcc %g0, %g0, %o4 ! zero the partial product and clear N and V 33 34 /* 35 * Long multiply. 32 steps, followed by a final shift step. 36 */ 37 mulscc %o4, %o1, %o4 ! 1 38 mulscc %o4, %o1, %o4 ! 2 39 mulscc %o4, %o1, %o4 ! 3 40 mulscc %o4, %o1, %o4 ! 4 41 mulscc %o4, %o1, %o4 ! 5 42 mulscc %o4, %o1, %o4 ! 6 43 mulscc %o4, %o1, %o4 ! 7 44 mulscc %o4, %o1, %o4 ! 8 45 mulscc %o4, %o1, %o4 ! 9 46 mulscc %o4, %o1, %o4 ! 10 47 mulscc %o4, %o1, %o4 ! 11 48 mulscc %o4, %o1, %o4 ! 12 49 mulscc %o4, %o1, %o4 ! 13 50 mulscc %o4, %o1, %o4 ! 14 51 mulscc %o4, %o1, %o4 ! 15 52 mulscc %o4, %o1, %o4 ! 16 53 mulscc %o4, %o1, %o4 ! 17 54 mulscc %o4, %o1, %o4 ! 18 55 mulscc %o4, %o1, %o4 ! 19 56 mulscc %o4, %o1, %o4 ! 20 57 mulscc %o4, %o1, %o4 ! 21 58 mulscc %o4, %o1, %o4 ! 22 59 mulscc %o4, %o1, %o4 ! 23 60 mulscc %o4, %o1, %o4 ! 24 61 mulscc %o4, %o1, %o4 ! 25 62 mulscc %o4, %o1, %o4 ! 26 63 mulscc %o4, %o1, %o4 ! 27 64 mulscc %o4, %o1, %o4 ! 28 65 mulscc %o4, %o1, %o4 ! 29 66 mulscc %o4, %o1, %o4 ! 30 67 mulscc %o4, %o1, %o4 ! 31 68 mulscc %o4, %o1, %o4 ! 32 69 mulscc %o4, %g0, %o4 ! final shift 70 71 72 /* 73 * Normally, with the shift-and-add approach, if both numbers are 74 * positive you get the correct result. With 32-bit two's-complement 75 * numbers, -x is represented as 76 * 77 * x 32 78 * ( 2 - ------ ) mod 2 * 2 79 * 32 80 * 2 81 * 82 * (the `mod 2' subtracts 1 from 1.bbbb). To avoid lots of 2^32s, 83 * we can treat this as if the radix point were just to the left 84 * of the sign bit (multiply by 2^32), and get 85 * 86 * -x = (2 - x) mod 2 87 * 88 * Then, ignoring the `mod 2's for convenience: 89 * 90 * x * y = xy 91 * -x * y = 2y - xy 92 * x * -y = 2x - xy 93 * -x * -y = 4 - 2x - 2y + xy 94 * 95 * For signed multiplies, we subtract (x << 32) from the partial 96 * product to fix this problem for negative multipliers (see mul.s). 97 * Because of the way the shift into the partial product is calculated 98 * (N xor V), this term is automatically removed for the multiplicand, 99 * so we don't have to adjust. 100 * 101 * But for unsigned multiplies, the high order bit wasn't a sign bit, 102 * and the correction is wrong. So for unsigned multiplies where the 103 * high order bit is one, we end up with xy - (y << 32). To fix it 104 * we add y << 32. 105 */ 106#if 0 107 tst %o1 108 bl,a 1f ! if %o1 < 0 (high order bit = 1), 109 add %o4, %o0, %o4 ! %o4 += %o0 (add y to upper half) 110 1111: 112 rd %y, %o0 ! get lower half of product 113 retl 114 addcc %o4, %g0, %o1 ! put upper half in place and set Z for %o1==0 115#else 116 /* Faster code from tege@sics.se. */ 117 sra %o1, 31, %o2 ! make mask from sign bit 118 and %o0, %o2, %o2 ! %o2 = 0 or %o0, depending on sign of %o1 119 rd %y, %o0 ! get lower half of product 120 retl 121 addcc %o4, %o2, %o1 ! add compensation and put upper half in place 122#endif 123 124Lmul_shortway: 125 /* 126 * Short multiply. 12 steps, followed by a final shift step. 127 * The resulting bits are off by 12 and (32-12) = 20 bit positions, 128 * but there is no problem with %o0 being negative (unlike above), 129 * and overflow is impossible (the answer is at most 24 bits long). 130 */ 131 mulscc %o4, %o1, %o4 ! 1 132 mulscc %o4, %o1, %o4 ! 2 133 mulscc %o4, %o1, %o4 ! 3 134 mulscc %o4, %o1, %o4 ! 4 135 mulscc %o4, %o1, %o4 ! 5 136 mulscc %o4, %o1, %o4 ! 6 137 mulscc %o4, %o1, %o4 ! 7 138 mulscc %o4, %o1, %o4 ! 8 139 mulscc %o4, %o1, %o4 ! 9 140 mulscc %o4, %o1, %o4 ! 10 141 mulscc %o4, %o1, %o4 ! 11 142 mulscc %o4, %o1, %o4 ! 12 143 mulscc %o4, %g0, %o4 ! final shift 144 145 /* 146 * %o4 has 20 of the bits that should be in the result; %y has 147 * the bottom 12 (as %y's top 12). That is: 148 * 149 * %o4 %y 150 * +----------------+----------------+ 151 * | -12- | -20- | -12- | -20- | 152 * +------(---------+------)---------+ 153 * -----result----- 154 * 155 * The 12 bits of %o4 left of the `result' area are all zero; 156 * in fact, all top 20 bits of %o4 are zero. 157 */ 158 159 rd %y, %o5 160 sll %o4, 12, %o0 ! shift middle bits left 12 161 srl %o5, 20, %o5 ! shift low bits right 20 162 or %o5, %o0, %o0 163 retl 164 addcc %g0, %g0, %o1 ! %o1 = zero, and set Z 165 166 .globl .umul_patch 167.umul_patch: 168 umul %o0, %o1, %o0 169 retl 170 rd %y, %o1 171 nop 172