1 /*
2 * arch/s390/kernel/smp.c
3 *
4 * Copyright IBM Corp. 1999, 2009
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
21 */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/workqueue.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/delay.h>
34 #include <linux/cache.h>
35 #include <linux/interrupt.h>
36 #include <linux/irqflags.h>
37 #include <linux/cpu.h>
38 #include <linux/timex.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/ipl.h>
43 #include <asm/setup.h>
44 #include <asm/sigp.h>
45 #include <asm/pgalloc.h>
46 #include <asm/irq.h>
47 #include <asm/s390_ext.h>
48 #include <asm/cpcmd.h>
49 #include <asm/tlbflush.h>
50 #include <asm/timer.h>
51 #include <asm/lowcore.h>
52 #include <asm/sclp.h>
53 #include <asm/cputime.h>
54 #include <asm/vdso.h>
55 #include <asm/cpu.h>
56 #include "entry.h"
57
58 /* logical cpu to cpu address */
59 unsigned short __cpu_logical_map[NR_CPUS];
60
61 static struct task_struct *current_set[NR_CPUS];
62
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65
66 enum s390_cpu_state {
67 CPU_STATE_STANDBY,
68 CPU_STATE_CONFIGURED,
69 };
70
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77
78 static void smp_ext_bitcall(int, int);
79
raw_cpu_stopped(int cpu)80 static int raw_cpu_stopped(int cpu)
81 {
82 u32 status;
83
84 switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
85 case sigp_status_stored:
86 /* Check for stopped and check stop state */
87 if (status & 0x50)
88 return 1;
89 break;
90 default:
91 break;
92 }
93 return 0;
94 }
95
cpu_stopped(int cpu)96 static inline int cpu_stopped(int cpu)
97 {
98 return raw_cpu_stopped(cpu_logical_map(cpu));
99 }
100
smp_switch_to_ipl_cpu(void (* func)(void *),void * data)101 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
102 {
103 struct _lowcore *lc, *current_lc;
104 struct stack_frame *sf;
105 struct pt_regs *regs;
106 unsigned long sp;
107
108 if (smp_processor_id() == 0)
109 func(data);
110 __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
111 /* Disable lowcore protection */
112 __ctl_clear_bit(0, 28);
113 current_lc = lowcore_ptr[smp_processor_id()];
114 lc = lowcore_ptr[0];
115 if (!lc)
116 lc = current_lc;
117 lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
118 lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
119 if (!cpu_online(0))
120 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
121 while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
122 cpu_relax();
123 sp = lc->panic_stack;
124 sp -= sizeof(struct pt_regs);
125 regs = (struct pt_regs *) sp;
126 memcpy(®s->gprs, ¤t_lc->gpregs_save_area, sizeof(regs->gprs));
127 regs->psw = lc->psw_save_area;
128 sp -= STACK_FRAME_OVERHEAD;
129 sf = (struct stack_frame *) sp;
130 sf->back_chain = regs->gprs[15];
131 smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
132 }
133
smp_send_stop(void)134 void smp_send_stop(void)
135 {
136 int cpu, rc;
137
138 /* Disable all interrupts/machine checks */
139 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
140 trace_hardirqs_off();
141
142 /* stop all processors */
143 for_each_online_cpu(cpu) {
144 if (cpu == smp_processor_id())
145 continue;
146 do {
147 rc = sigp(cpu, sigp_stop);
148 } while (rc == sigp_busy);
149
150 while (!cpu_stopped(cpu))
151 cpu_relax();
152 }
153 }
154
155 /*
156 * This is the main routine where commands issued by other
157 * cpus are handled.
158 */
159
do_ext_call_interrupt(unsigned int ext_int_code,unsigned int param32,unsigned long param64)160 static void do_ext_call_interrupt(unsigned int ext_int_code,
161 unsigned int param32, unsigned long param64)
162 {
163 unsigned long bits;
164
165 kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
166 /*
167 * handle bit signal external calls
168 *
169 * For the ec_schedule signal we have to do nothing. All the work
170 * is done automatically when we return from the interrupt.
171 */
172 bits = xchg(&S390_lowcore.ext_call_fast, 0);
173
174 if (test_bit(ec_call_function, &bits))
175 generic_smp_call_function_interrupt();
176
177 if (test_bit(ec_call_function_single, &bits))
178 generic_smp_call_function_single_interrupt();
179 }
180
181 /*
182 * Send an external call sigp to another cpu and return without waiting
183 * for its completion.
184 */
smp_ext_bitcall(int cpu,int sig)185 static void smp_ext_bitcall(int cpu, int sig)
186 {
187 /*
188 * Set signaling bit in lowcore of target cpu and kick it
189 */
190 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
191 while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
192 udelay(10);
193 }
194
arch_send_call_function_ipi_mask(const struct cpumask * mask)195 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
196 {
197 int cpu;
198
199 for_each_cpu(cpu, mask)
200 smp_ext_bitcall(cpu, ec_call_function);
201 }
202
arch_send_call_function_single_ipi(int cpu)203 void arch_send_call_function_single_ipi(int cpu)
204 {
205 smp_ext_bitcall(cpu, ec_call_function_single);
206 }
207
208 #ifndef CONFIG_64BIT
209 /*
210 * this function sends a 'purge tlb' signal to another CPU.
211 */
smp_ptlb_callback(void * info)212 static void smp_ptlb_callback(void *info)
213 {
214 __tlb_flush_local();
215 }
216
smp_ptlb_all(void)217 void smp_ptlb_all(void)
218 {
219 on_each_cpu(smp_ptlb_callback, NULL, 1);
220 }
221 EXPORT_SYMBOL(smp_ptlb_all);
222 #endif /* ! CONFIG_64BIT */
223
224 /*
225 * this function sends a 'reschedule' IPI to another CPU.
226 * it goes straight through and wastes no time serializing
227 * anything. Worst case is that we lose a reschedule ...
228 */
smp_send_reschedule(int cpu)229 void smp_send_reschedule(int cpu)
230 {
231 smp_ext_bitcall(cpu, ec_schedule);
232 }
233
234 /*
235 * parameter area for the set/clear control bit callbacks
236 */
237 struct ec_creg_mask_parms {
238 unsigned long orvals[16];
239 unsigned long andvals[16];
240 };
241
242 /*
243 * callback for setting/clearing control bits
244 */
smp_ctl_bit_callback(void * info)245 static void smp_ctl_bit_callback(void *info)
246 {
247 struct ec_creg_mask_parms *pp = info;
248 unsigned long cregs[16];
249 int i;
250
251 __ctl_store(cregs, 0, 15);
252 for (i = 0; i <= 15; i++)
253 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
254 __ctl_load(cregs, 0, 15);
255 }
256
257 /*
258 * Set a bit in a control register of all cpus
259 */
smp_ctl_set_bit(int cr,int bit)260 void smp_ctl_set_bit(int cr, int bit)
261 {
262 struct ec_creg_mask_parms parms;
263
264 memset(&parms.orvals, 0, sizeof(parms.orvals));
265 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
266 parms.orvals[cr] = 1 << bit;
267 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
268 }
269 EXPORT_SYMBOL(smp_ctl_set_bit);
270
271 /*
272 * Clear a bit in a control register of all cpus
273 */
smp_ctl_clear_bit(int cr,int bit)274 void smp_ctl_clear_bit(int cr, int bit)
275 {
276 struct ec_creg_mask_parms parms;
277
278 memset(&parms.orvals, 0, sizeof(parms.orvals));
279 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
280 parms.andvals[cr] = ~(1L << bit);
281 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
282 }
283 EXPORT_SYMBOL(smp_ctl_clear_bit);
284
285 #ifdef CONFIG_ZFCPDUMP
286
smp_get_save_area(unsigned int cpu,unsigned int phy_cpu)287 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
288 {
289 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
290 return;
291 if (cpu >= NR_CPUS) {
292 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
293 "the dump\n", cpu, NR_CPUS - 1);
294 return;
295 }
296 zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
297 while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
298 cpu_relax();
299 memcpy_real(zfcpdump_save_areas[cpu],
300 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
301 sizeof(struct save_area));
302 }
303
304 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
305 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
306
307 #else
308
smp_get_save_area(unsigned int cpu,unsigned int phy_cpu)309 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
310
311 #endif /* CONFIG_ZFCPDUMP */
312
cpu_known(int cpu_id)313 static int cpu_known(int cpu_id)
314 {
315 int cpu;
316
317 for_each_present_cpu(cpu) {
318 if (__cpu_logical_map[cpu] == cpu_id)
319 return 1;
320 }
321 return 0;
322 }
323
smp_rescan_cpus_sigp(cpumask_t avail)324 static int smp_rescan_cpus_sigp(cpumask_t avail)
325 {
326 int cpu_id, logical_cpu;
327
328 logical_cpu = cpumask_first(&avail);
329 if (logical_cpu >= nr_cpu_ids)
330 return 0;
331 for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
332 if (cpu_known(cpu_id))
333 continue;
334 __cpu_logical_map[logical_cpu] = cpu_id;
335 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
336 if (!cpu_stopped(logical_cpu))
337 continue;
338 cpu_set(logical_cpu, cpu_present_map);
339 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
340 logical_cpu = cpumask_next(logical_cpu, &avail);
341 if (logical_cpu >= nr_cpu_ids)
342 break;
343 }
344 return 0;
345 }
346
smp_rescan_cpus_sclp(cpumask_t avail)347 static int smp_rescan_cpus_sclp(cpumask_t avail)
348 {
349 struct sclp_cpu_info *info;
350 int cpu_id, logical_cpu, cpu;
351 int rc;
352
353 logical_cpu = cpumask_first(&avail);
354 if (logical_cpu >= nr_cpu_ids)
355 return 0;
356 info = kmalloc(sizeof(*info), GFP_KERNEL);
357 if (!info)
358 return -ENOMEM;
359 rc = sclp_get_cpu_info(info);
360 if (rc)
361 goto out;
362 for (cpu = 0; cpu < info->combined; cpu++) {
363 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
364 continue;
365 cpu_id = info->cpu[cpu].address;
366 if (cpu_known(cpu_id))
367 continue;
368 __cpu_logical_map[logical_cpu] = cpu_id;
369 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
370 cpu_set(logical_cpu, cpu_present_map);
371 if (cpu >= info->configured)
372 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
373 else
374 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
375 logical_cpu = cpumask_next(logical_cpu, &avail);
376 if (logical_cpu >= nr_cpu_ids)
377 break;
378 }
379 out:
380 kfree(info);
381 return rc;
382 }
383
__smp_rescan_cpus(void)384 static int __smp_rescan_cpus(void)
385 {
386 cpumask_t avail;
387
388 cpus_xor(avail, cpu_possible_map, cpu_present_map);
389 if (smp_use_sigp_detection)
390 return smp_rescan_cpus_sigp(avail);
391 else
392 return smp_rescan_cpus_sclp(avail);
393 }
394
smp_detect_cpus(void)395 static void __init smp_detect_cpus(void)
396 {
397 unsigned int cpu, c_cpus, s_cpus;
398 struct sclp_cpu_info *info;
399 u16 boot_cpu_addr, cpu_addr;
400
401 c_cpus = 1;
402 s_cpus = 0;
403 boot_cpu_addr = __cpu_logical_map[0];
404 info = kmalloc(sizeof(*info), GFP_KERNEL);
405 if (!info)
406 panic("smp_detect_cpus failed to allocate memory\n");
407 /* Use sigp detection algorithm if sclp doesn't work. */
408 if (sclp_get_cpu_info(info)) {
409 smp_use_sigp_detection = 1;
410 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
411 if (cpu == boot_cpu_addr)
412 continue;
413 if (!raw_cpu_stopped(cpu))
414 continue;
415 smp_get_save_area(c_cpus, cpu);
416 c_cpus++;
417 }
418 goto out;
419 }
420
421 if (info->has_cpu_type) {
422 for (cpu = 0; cpu < info->combined; cpu++) {
423 if (info->cpu[cpu].address == boot_cpu_addr) {
424 smp_cpu_type = info->cpu[cpu].type;
425 break;
426 }
427 }
428 }
429
430 for (cpu = 0; cpu < info->combined; cpu++) {
431 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
432 continue;
433 cpu_addr = info->cpu[cpu].address;
434 if (cpu_addr == boot_cpu_addr)
435 continue;
436 if (!raw_cpu_stopped(cpu_addr)) {
437 s_cpus++;
438 continue;
439 }
440 smp_get_save_area(c_cpus, cpu_addr);
441 c_cpus++;
442 }
443 out:
444 kfree(info);
445 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
446 get_online_cpus();
447 __smp_rescan_cpus();
448 put_online_cpus();
449 }
450
451 /*
452 * Activate a secondary processor.
453 */
start_secondary(void * cpuvoid)454 int __cpuinit start_secondary(void *cpuvoid)
455 {
456 /* Setup the cpu */
457 cpu_init();
458 preempt_disable();
459 /* Enable TOD clock interrupts on the secondary cpu. */
460 init_cpu_timer();
461 /* Enable cpu timer interrupts on the secondary cpu. */
462 init_cpu_vtimer();
463 /* Enable pfault pseudo page faults on this cpu. */
464 pfault_init();
465
466 /* call cpu notifiers */
467 notify_cpu_starting(smp_processor_id());
468 /* Mark this cpu as online */
469 ipi_call_lock();
470 cpu_set(smp_processor_id(), cpu_online_map);
471 ipi_call_unlock();
472 /* Switch on interrupts */
473 local_irq_enable();
474 /* cpu_idle will call schedule for us */
475 cpu_idle();
476 return 0;
477 }
478
479 struct create_idle {
480 struct work_struct work;
481 struct task_struct *idle;
482 struct completion done;
483 int cpu;
484 };
485
smp_fork_idle(struct work_struct * work)486 static void __cpuinit smp_fork_idle(struct work_struct *work)
487 {
488 struct create_idle *c_idle;
489
490 c_idle = container_of(work, struct create_idle, work);
491 c_idle->idle = fork_idle(c_idle->cpu);
492 complete(&c_idle->done);
493 }
494
smp_alloc_lowcore(int cpu)495 static int __cpuinit smp_alloc_lowcore(int cpu)
496 {
497 unsigned long async_stack, panic_stack;
498 struct _lowcore *lowcore;
499
500 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
501 if (!lowcore)
502 return -ENOMEM;
503 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
504 panic_stack = __get_free_page(GFP_KERNEL);
505 if (!panic_stack || !async_stack)
506 goto out;
507 memcpy(lowcore, &S390_lowcore, 512);
508 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
509 lowcore->async_stack = async_stack + ASYNC_SIZE;
510 lowcore->panic_stack = panic_stack + PAGE_SIZE;
511
512 #ifndef CONFIG_64BIT
513 if (MACHINE_HAS_IEEE) {
514 unsigned long save_area;
515
516 save_area = get_zeroed_page(GFP_KERNEL);
517 if (!save_area)
518 goto out;
519 lowcore->extended_save_area_addr = (u32) save_area;
520 }
521 #else
522 if (vdso_alloc_per_cpu(cpu, lowcore))
523 goto out;
524 #endif
525 lowcore_ptr[cpu] = lowcore;
526 return 0;
527
528 out:
529 free_page(panic_stack);
530 free_pages(async_stack, ASYNC_ORDER);
531 free_pages((unsigned long) lowcore, LC_ORDER);
532 return -ENOMEM;
533 }
534
smp_free_lowcore(int cpu)535 static void smp_free_lowcore(int cpu)
536 {
537 struct _lowcore *lowcore;
538
539 lowcore = lowcore_ptr[cpu];
540 #ifndef CONFIG_64BIT
541 if (MACHINE_HAS_IEEE)
542 free_page((unsigned long) lowcore->extended_save_area_addr);
543 #else
544 vdso_free_per_cpu(cpu, lowcore);
545 #endif
546 free_page(lowcore->panic_stack - PAGE_SIZE);
547 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
548 free_pages((unsigned long) lowcore, LC_ORDER);
549 lowcore_ptr[cpu] = NULL;
550 }
551
552 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu)553 int __cpuinit __cpu_up(unsigned int cpu)
554 {
555 struct _lowcore *cpu_lowcore;
556 struct create_idle c_idle;
557 struct task_struct *idle;
558 struct stack_frame *sf;
559 u32 lowcore;
560 int ccode;
561
562 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
563 return -EIO;
564 idle = current_set[cpu];
565 if (!idle) {
566 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
567 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
568 c_idle.cpu = cpu;
569 schedule_work(&c_idle.work);
570 wait_for_completion(&c_idle.done);
571 if (IS_ERR(c_idle.idle))
572 return PTR_ERR(c_idle.idle);
573 idle = c_idle.idle;
574 current_set[cpu] = c_idle.idle;
575 }
576 init_idle(idle, cpu);
577 if (smp_alloc_lowcore(cpu))
578 return -ENOMEM;
579 do {
580 ccode = sigp(cpu, sigp_initial_cpu_reset);
581 if (ccode == sigp_busy)
582 udelay(10);
583 if (ccode == sigp_not_operational)
584 goto err_out;
585 } while (ccode == sigp_busy);
586
587 lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
588 while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
589 udelay(10);
590
591 cpu_lowcore = lowcore_ptr[cpu];
592 cpu_lowcore->kernel_stack = (unsigned long)
593 task_stack_page(idle) + THREAD_SIZE;
594 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
595 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
596 - sizeof(struct pt_regs)
597 - sizeof(struct stack_frame));
598 memset(sf, 0, sizeof(struct stack_frame));
599 sf->gprs[9] = (unsigned long) sf;
600 cpu_lowcore->save_area[15] = (unsigned long) sf;
601 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
602 atomic_inc(&init_mm.context.attach_count);
603 asm volatile(
604 " stam 0,15,0(%0)"
605 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
606 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
607 cpu_lowcore->current_task = (unsigned long) idle;
608 cpu_lowcore->cpu_nr = cpu;
609 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
610 cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
611 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
612 memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
613 MAX_FACILITY_BIT/8);
614 eieio();
615
616 while (sigp(cpu, sigp_restart) == sigp_busy)
617 udelay(10);
618
619 while (!cpu_online(cpu))
620 cpu_relax();
621 return 0;
622
623 err_out:
624 smp_free_lowcore(cpu);
625 return -EIO;
626 }
627
setup_possible_cpus(char * s)628 static int __init setup_possible_cpus(char *s)
629 {
630 int pcpus, cpu;
631
632 pcpus = simple_strtoul(s, NULL, 0);
633 init_cpu_possible(cpumask_of(0));
634 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
635 set_cpu_possible(cpu, true);
636 return 0;
637 }
638 early_param("possible_cpus", setup_possible_cpus);
639
640 #ifdef CONFIG_HOTPLUG_CPU
641
__cpu_disable(void)642 int __cpu_disable(void)
643 {
644 struct ec_creg_mask_parms cr_parms;
645 int cpu = smp_processor_id();
646
647 cpu_clear(cpu, cpu_online_map);
648
649 /* Disable pfault pseudo page faults on this cpu. */
650 pfault_fini();
651
652 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
653 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
654
655 /* disable all external interrupts */
656 cr_parms.orvals[0] = 0;
657 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
658 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
659 /* disable all I/O interrupts */
660 cr_parms.orvals[6] = 0;
661 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
662 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
663 /* disable most machine checks */
664 cr_parms.orvals[14] = 0;
665 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
666 1 << 25 | 1 << 24);
667
668 smp_ctl_bit_callback(&cr_parms);
669
670 return 0;
671 }
672
__cpu_die(unsigned int cpu)673 void __cpu_die(unsigned int cpu)
674 {
675 /* Wait until target cpu is down */
676 while (!cpu_stopped(cpu))
677 cpu_relax();
678 while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
679 udelay(10);
680 smp_free_lowcore(cpu);
681 atomic_dec(&init_mm.context.attach_count);
682 }
683
cpu_die(void)684 void cpu_die(void)
685 {
686 idle_task_exit();
687 while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
688 cpu_relax();
689 for (;;);
690 }
691
692 #endif /* CONFIG_HOTPLUG_CPU */
693
smp_prepare_cpus(unsigned int max_cpus)694 void __init smp_prepare_cpus(unsigned int max_cpus)
695 {
696 #ifndef CONFIG_64BIT
697 unsigned long save_area = 0;
698 #endif
699 unsigned long async_stack, panic_stack;
700 struct _lowcore *lowcore;
701
702 smp_detect_cpus();
703
704 /* request the 0x1201 emergency signal external interrupt */
705 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
706 panic("Couldn't request external interrupt 0x1201");
707
708 /* Reallocate current lowcore, but keep its contents. */
709 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
710 panic_stack = __get_free_page(GFP_KERNEL);
711 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
712 BUG_ON(!lowcore || !panic_stack || !async_stack);
713 #ifndef CONFIG_64BIT
714 if (MACHINE_HAS_IEEE)
715 save_area = get_zeroed_page(GFP_KERNEL);
716 #endif
717 local_irq_disable();
718 local_mcck_disable();
719 lowcore_ptr[smp_processor_id()] = lowcore;
720 *lowcore = S390_lowcore;
721 lowcore->panic_stack = panic_stack + PAGE_SIZE;
722 lowcore->async_stack = async_stack + ASYNC_SIZE;
723 #ifndef CONFIG_64BIT
724 if (MACHINE_HAS_IEEE)
725 lowcore->extended_save_area_addr = (u32) save_area;
726 #endif
727 set_prefix((u32)(unsigned long) lowcore);
728 local_mcck_enable();
729 local_irq_enable();
730 #ifdef CONFIG_64BIT
731 if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
732 BUG();
733 #endif
734 }
735
smp_prepare_boot_cpu(void)736 void __init smp_prepare_boot_cpu(void)
737 {
738 BUG_ON(smp_processor_id() != 0);
739
740 current_thread_info()->cpu = 0;
741 cpu_set(0, cpu_present_map);
742 cpu_set(0, cpu_online_map);
743 S390_lowcore.percpu_offset = __per_cpu_offset[0];
744 current_set[0] = current;
745 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
746 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
747 }
748
smp_cpus_done(unsigned int max_cpus)749 void __init smp_cpus_done(unsigned int max_cpus)
750 {
751 }
752
smp_setup_processor_id(void)753 void __init smp_setup_processor_id(void)
754 {
755 S390_lowcore.cpu_nr = 0;
756 __cpu_logical_map[0] = stap();
757 }
758
759 /*
760 * the frequency of the profiling timer can be changed
761 * by writing a multiplier value into /proc/profile.
762 *
763 * usually you want to run this on all CPUs ;)
764 */
setup_profiling_timer(unsigned int multiplier)765 int setup_profiling_timer(unsigned int multiplier)
766 {
767 return 0;
768 }
769
770 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)771 static ssize_t cpu_configure_show(struct sys_device *dev,
772 struct sysdev_attribute *attr, char *buf)
773 {
774 ssize_t count;
775
776 mutex_lock(&smp_cpu_state_mutex);
777 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
778 mutex_unlock(&smp_cpu_state_mutex);
779 return count;
780 }
781
cpu_configure_store(struct sys_device * dev,struct sysdev_attribute * attr,const char * buf,size_t count)782 static ssize_t cpu_configure_store(struct sys_device *dev,
783 struct sysdev_attribute *attr,
784 const char *buf, size_t count)
785 {
786 int cpu = dev->id;
787 int val, rc;
788 char delim;
789
790 if (sscanf(buf, "%d %c", &val, &delim) != 1)
791 return -EINVAL;
792 if (val != 0 && val != 1)
793 return -EINVAL;
794
795 get_online_cpus();
796 mutex_lock(&smp_cpu_state_mutex);
797 rc = -EBUSY;
798 /* disallow configuration changes of online cpus and cpu 0 */
799 if (cpu_online(cpu) || cpu == 0)
800 goto out;
801 rc = 0;
802 switch (val) {
803 case 0:
804 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
805 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
806 if (!rc) {
807 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
808 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
809 }
810 }
811 break;
812 case 1:
813 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
814 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
815 if (!rc) {
816 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
817 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
818 }
819 }
820 break;
821 default:
822 break;
823 }
824 out:
825 mutex_unlock(&smp_cpu_state_mutex);
826 put_online_cpus();
827 return rc ? rc : count;
828 }
829 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
830 #endif /* CONFIG_HOTPLUG_CPU */
831
cpu_polarization_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)832 static ssize_t cpu_polarization_show(struct sys_device *dev,
833 struct sysdev_attribute *attr, char *buf)
834 {
835 int cpu = dev->id;
836 ssize_t count;
837
838 mutex_lock(&smp_cpu_state_mutex);
839 switch (smp_cpu_polarization[cpu]) {
840 case POLARIZATION_HRZ:
841 count = sprintf(buf, "horizontal\n");
842 break;
843 case POLARIZATION_VL:
844 count = sprintf(buf, "vertical:low\n");
845 break;
846 case POLARIZATION_VM:
847 count = sprintf(buf, "vertical:medium\n");
848 break;
849 case POLARIZATION_VH:
850 count = sprintf(buf, "vertical:high\n");
851 break;
852 default:
853 count = sprintf(buf, "unknown\n");
854 break;
855 }
856 mutex_unlock(&smp_cpu_state_mutex);
857 return count;
858 }
859 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
860
show_cpu_address(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)861 static ssize_t show_cpu_address(struct sys_device *dev,
862 struct sysdev_attribute *attr, char *buf)
863 {
864 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
865 }
866 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
867
868
869 static struct attribute *cpu_common_attrs[] = {
870 #ifdef CONFIG_HOTPLUG_CPU
871 &attr_configure.attr,
872 #endif
873 &attr_address.attr,
874 &attr_polarization.attr,
875 NULL,
876 };
877
878 static struct attribute_group cpu_common_attr_group = {
879 .attrs = cpu_common_attrs,
880 };
881
show_capability(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)882 static ssize_t show_capability(struct sys_device *dev,
883 struct sysdev_attribute *attr, char *buf)
884 {
885 unsigned int capability;
886 int rc;
887
888 rc = get_cpu_capability(&capability);
889 if (rc)
890 return rc;
891 return sprintf(buf, "%u\n", capability);
892 }
893 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
894
show_idle_count(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)895 static ssize_t show_idle_count(struct sys_device *dev,
896 struct sysdev_attribute *attr, char *buf)
897 {
898 struct s390_idle_data *idle;
899 unsigned long long idle_count;
900 unsigned int sequence;
901
902 idle = &per_cpu(s390_idle, dev->id);
903 repeat:
904 sequence = idle->sequence;
905 smp_rmb();
906 if (sequence & 1)
907 goto repeat;
908 idle_count = idle->idle_count;
909 if (idle->idle_enter)
910 idle_count++;
911 smp_rmb();
912 if (idle->sequence != sequence)
913 goto repeat;
914 return sprintf(buf, "%llu\n", idle_count);
915 }
916 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
917
show_idle_time(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)918 static ssize_t show_idle_time(struct sys_device *dev,
919 struct sysdev_attribute *attr, char *buf)
920 {
921 struct s390_idle_data *idle;
922 unsigned long long now, idle_time, idle_enter;
923 unsigned int sequence;
924
925 idle = &per_cpu(s390_idle, dev->id);
926 now = get_clock();
927 repeat:
928 sequence = idle->sequence;
929 smp_rmb();
930 if (sequence & 1)
931 goto repeat;
932 idle_time = idle->idle_time;
933 idle_enter = idle->idle_enter;
934 if (idle_enter != 0ULL && idle_enter < now)
935 idle_time += now - idle_enter;
936 smp_rmb();
937 if (idle->sequence != sequence)
938 goto repeat;
939 return sprintf(buf, "%llu\n", idle_time >> 12);
940 }
941 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
942
943 static struct attribute *cpu_online_attrs[] = {
944 &attr_capability.attr,
945 &attr_idle_count.attr,
946 &attr_idle_time_us.attr,
947 NULL,
948 };
949
950 static struct attribute_group cpu_online_attr_group = {
951 .attrs = cpu_online_attrs,
952 };
953
smp_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)954 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
955 unsigned long action, void *hcpu)
956 {
957 unsigned int cpu = (unsigned int)(long)hcpu;
958 struct cpu *c = &per_cpu(cpu_devices, cpu);
959 struct sys_device *s = &c->sysdev;
960 struct s390_idle_data *idle;
961 int err = 0;
962
963 switch (action) {
964 case CPU_ONLINE:
965 case CPU_ONLINE_FROZEN:
966 idle = &per_cpu(s390_idle, cpu);
967 memset(idle, 0, sizeof(struct s390_idle_data));
968 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
969 break;
970 case CPU_DEAD:
971 case CPU_DEAD_FROZEN:
972 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
973 break;
974 }
975 return notifier_from_errno(err);
976 }
977
978 static struct notifier_block __cpuinitdata smp_cpu_nb = {
979 .notifier_call = smp_cpu_notify,
980 };
981
smp_add_present_cpu(int cpu)982 static int __devinit smp_add_present_cpu(int cpu)
983 {
984 struct cpu *c = &per_cpu(cpu_devices, cpu);
985 struct sys_device *s = &c->sysdev;
986 int rc;
987
988 c->hotpluggable = 1;
989 rc = register_cpu(c, cpu);
990 if (rc)
991 goto out;
992 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
993 if (rc)
994 goto out_cpu;
995 if (!cpu_online(cpu))
996 goto out;
997 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
998 if (!rc)
999 return 0;
1000 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1001 out_cpu:
1002 #ifdef CONFIG_HOTPLUG_CPU
1003 unregister_cpu(c);
1004 #endif
1005 out:
1006 return rc;
1007 }
1008
1009 #ifdef CONFIG_HOTPLUG_CPU
1010
smp_rescan_cpus(void)1011 int __ref smp_rescan_cpus(void)
1012 {
1013 cpumask_t newcpus;
1014 int cpu;
1015 int rc;
1016
1017 get_online_cpus();
1018 mutex_lock(&smp_cpu_state_mutex);
1019 newcpus = cpu_present_map;
1020 rc = __smp_rescan_cpus();
1021 if (rc)
1022 goto out;
1023 cpus_andnot(newcpus, cpu_present_map, newcpus);
1024 for_each_cpu_mask(cpu, newcpus) {
1025 rc = smp_add_present_cpu(cpu);
1026 if (rc)
1027 cpu_clear(cpu, cpu_present_map);
1028 }
1029 rc = 0;
1030 out:
1031 mutex_unlock(&smp_cpu_state_mutex);
1032 put_online_cpus();
1033 if (!cpus_empty(newcpus))
1034 topology_schedule_update();
1035 return rc;
1036 }
1037
rescan_store(struct sysdev_class * class,struct sysdev_class_attribute * attr,const char * buf,size_t count)1038 static ssize_t __ref rescan_store(struct sysdev_class *class,
1039 struct sysdev_class_attribute *attr,
1040 const char *buf,
1041 size_t count)
1042 {
1043 int rc;
1044
1045 rc = smp_rescan_cpus();
1046 return rc ? rc : count;
1047 }
1048 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1049 #endif /* CONFIG_HOTPLUG_CPU */
1050
dispatching_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1051 static ssize_t dispatching_show(struct sysdev_class *class,
1052 struct sysdev_class_attribute *attr,
1053 char *buf)
1054 {
1055 ssize_t count;
1056
1057 mutex_lock(&smp_cpu_state_mutex);
1058 count = sprintf(buf, "%d\n", cpu_management);
1059 mutex_unlock(&smp_cpu_state_mutex);
1060 return count;
1061 }
1062
dispatching_store(struct sysdev_class * dev,struct sysdev_class_attribute * attr,const char * buf,size_t count)1063 static ssize_t dispatching_store(struct sysdev_class *dev,
1064 struct sysdev_class_attribute *attr,
1065 const char *buf,
1066 size_t count)
1067 {
1068 int val, rc;
1069 char delim;
1070
1071 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1072 return -EINVAL;
1073 if (val != 0 && val != 1)
1074 return -EINVAL;
1075 rc = 0;
1076 get_online_cpus();
1077 mutex_lock(&smp_cpu_state_mutex);
1078 if (cpu_management == val)
1079 goto out;
1080 rc = topology_set_cpu_management(val);
1081 if (!rc)
1082 cpu_management = val;
1083 out:
1084 mutex_unlock(&smp_cpu_state_mutex);
1085 put_online_cpus();
1086 return rc ? rc : count;
1087 }
1088 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1089 dispatching_store);
1090
topology_init(void)1091 static int __init topology_init(void)
1092 {
1093 int cpu;
1094 int rc;
1095
1096 register_cpu_notifier(&smp_cpu_nb);
1097
1098 #ifdef CONFIG_HOTPLUG_CPU
1099 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1100 if (rc)
1101 return rc;
1102 #endif
1103 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1104 if (rc)
1105 return rc;
1106 for_each_present_cpu(cpu) {
1107 rc = smp_add_present_cpu(cpu);
1108 if (rc)
1109 return rc;
1110 }
1111 return 0;
1112 }
1113 subsys_initcall(topology_init);
1114