1 /*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
16 * event buffer.
17 *
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
20 */
21 #include <linux/dcookies.h>
22 #include <linux/kref.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 #include <linux/numa.h>
28 #include <linux/oprofile.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include "pr_util.h"
32
33 #define RELEASE_ALL 9999
34
35 static DEFINE_SPINLOCK(buffer_lock);
36 static DEFINE_SPINLOCK(cache_lock);
37 static int num_spu_nodes;
38 int spu_prof_num_nodes;
39
40 struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
41 struct delayed_work spu_work;
42 static unsigned max_spu_buff;
43
spu_buff_add(unsigned long int value,int spu)44 static void spu_buff_add(unsigned long int value, int spu)
45 {
46 /* spu buff is a circular buffer. Add entries to the
47 * head. Head is the index to store the next value.
48 * The buffer is full when there is one available entry
49 * in the queue, i.e. head and tail can't be equal.
50 * That way we can tell the difference between the
51 * buffer being full versus empty.
52 *
53 * ASSUPTION: the buffer_lock is held when this function
54 * is called to lock the buffer, head and tail.
55 */
56 int full = 1;
57
58 if (spu_buff[spu].head >= spu_buff[spu].tail) {
59 if ((spu_buff[spu].head - spu_buff[spu].tail)
60 < (max_spu_buff - 1))
61 full = 0;
62
63 } else if (spu_buff[spu].tail > spu_buff[spu].head) {
64 if ((spu_buff[spu].tail - spu_buff[spu].head)
65 > 1)
66 full = 0;
67 }
68
69 if (!full) {
70 spu_buff[spu].buff[spu_buff[spu].head] = value;
71 spu_buff[spu].head++;
72
73 if (spu_buff[spu].head >= max_spu_buff)
74 spu_buff[spu].head = 0;
75 } else {
76 /* From the user's perspective make the SPU buffer
77 * size management/overflow look like we are using
78 * per cpu buffers. The user uses the same
79 * per cpu parameter to adjust the SPU buffer size.
80 * Increment the sample_lost_overflow to inform
81 * the user the buffer size needs to be increased.
82 */
83 oprofile_cpu_buffer_inc_smpl_lost();
84 }
85 }
86
87 /* This function copies the per SPU buffers to the
88 * OProfile kernel buffer.
89 */
sync_spu_buff(void)90 void sync_spu_buff(void)
91 {
92 int spu;
93 unsigned long flags;
94 int curr_head;
95
96 for (spu = 0; spu < num_spu_nodes; spu++) {
97 /* In case there was an issue and the buffer didn't
98 * get created skip it.
99 */
100 if (spu_buff[spu].buff == NULL)
101 continue;
102
103 /* Hold the lock to make sure the head/tail
104 * doesn't change while spu_buff_add() is
105 * deciding if the buffer is full or not.
106 * Being a little paranoid.
107 */
108 spin_lock_irqsave(&buffer_lock, flags);
109 curr_head = spu_buff[spu].head;
110 spin_unlock_irqrestore(&buffer_lock, flags);
111
112 /* Transfer the current contents to the kernel buffer.
113 * data can still be added to the head of the buffer.
114 */
115 oprofile_put_buff(spu_buff[spu].buff,
116 spu_buff[spu].tail,
117 curr_head, max_spu_buff);
118
119 spin_lock_irqsave(&buffer_lock, flags);
120 spu_buff[spu].tail = curr_head;
121 spin_unlock_irqrestore(&buffer_lock, flags);
122 }
123
124 }
125
wq_sync_spu_buff(struct work_struct * work)126 static void wq_sync_spu_buff(struct work_struct *work)
127 {
128 /* move data from spu buffers to kernel buffer */
129 sync_spu_buff();
130
131 /* only reschedule if profiling is not done */
132 if (spu_prof_running)
133 schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
134 }
135
136 /* Container for caching information about an active SPU task. */
137 struct cached_info {
138 struct vma_to_fileoffset_map *map;
139 struct spu *the_spu; /* needed to access pointer to local_store */
140 struct kref cache_ref;
141 };
142
143 static struct cached_info *spu_info[MAX_NUMNODES * 8];
144
destroy_cached_info(struct kref * kref)145 static void destroy_cached_info(struct kref *kref)
146 {
147 struct cached_info *info;
148
149 info = container_of(kref, struct cached_info, cache_ref);
150 vma_map_free(info->map);
151 kfree(info);
152 module_put(THIS_MODULE);
153 }
154
155 /* Return the cached_info for the passed SPU number.
156 * ATTENTION: Callers are responsible for obtaining the
157 * cache_lock if needed prior to invoking this function.
158 */
get_cached_info(struct spu * the_spu,int spu_num)159 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
160 {
161 struct kref *ref;
162 struct cached_info *ret_info;
163
164 if (spu_num >= num_spu_nodes) {
165 printk(KERN_ERR "SPU_PROF: "
166 "%s, line %d: Invalid index %d into spu info cache\n",
167 __func__, __LINE__, spu_num);
168 ret_info = NULL;
169 goto out;
170 }
171 if (!spu_info[spu_num] && the_spu) {
172 ref = spu_get_profile_private_kref(the_spu->ctx);
173 if (ref) {
174 spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
175 kref_get(&spu_info[spu_num]->cache_ref);
176 }
177 }
178
179 ret_info = spu_info[spu_num];
180 out:
181 return ret_info;
182 }
183
184
185 /* Looks for cached info for the passed spu. If not found, the
186 * cached info is created for the passed spu.
187 * Returns 0 for success; otherwise, -1 for error.
188 */
189 static int
prepare_cached_spu_info(struct spu * spu,unsigned long objectId)190 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
191 {
192 unsigned long flags;
193 struct vma_to_fileoffset_map *new_map;
194 int retval = 0;
195 struct cached_info *info;
196
197 /* We won't bother getting cache_lock here since
198 * don't do anything with the cached_info that's returned.
199 */
200 info = get_cached_info(spu, spu->number);
201
202 if (info) {
203 pr_debug("Found cached SPU info.\n");
204 goto out;
205 }
206
207 /* Create cached_info and set spu_info[spu->number] to point to it.
208 * spu->number is a system-wide value, not a per-node value.
209 */
210 info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
211 if (!info) {
212 printk(KERN_ERR "SPU_PROF: "
213 "%s, line %d: create vma_map failed\n",
214 __func__, __LINE__);
215 retval = -ENOMEM;
216 goto err_alloc;
217 }
218 new_map = create_vma_map(spu, objectId);
219 if (!new_map) {
220 printk(KERN_ERR "SPU_PROF: "
221 "%s, line %d: create vma_map failed\n",
222 __func__, __LINE__);
223 retval = -ENOMEM;
224 goto err_alloc;
225 }
226
227 pr_debug("Created vma_map\n");
228 info->map = new_map;
229 info->the_spu = spu;
230 kref_init(&info->cache_ref);
231 spin_lock_irqsave(&cache_lock, flags);
232 spu_info[spu->number] = info;
233 /* Increment count before passing off ref to SPUFS. */
234 kref_get(&info->cache_ref);
235
236 /* We increment the module refcount here since SPUFS is
237 * responsible for the final destruction of the cached_info,
238 * and it must be able to access the destroy_cached_info()
239 * function defined in the OProfile module. We decrement
240 * the module refcount in destroy_cached_info.
241 */
242 try_module_get(THIS_MODULE);
243 spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
244 destroy_cached_info);
245 spin_unlock_irqrestore(&cache_lock, flags);
246 goto out;
247
248 err_alloc:
249 kfree(info);
250 out:
251 return retval;
252 }
253
254 /*
255 * NOTE: The caller is responsible for locking the
256 * cache_lock prior to calling this function.
257 */
release_cached_info(int spu_index)258 static int release_cached_info(int spu_index)
259 {
260 int index, end;
261
262 if (spu_index == RELEASE_ALL) {
263 end = num_spu_nodes;
264 index = 0;
265 } else {
266 if (spu_index >= num_spu_nodes) {
267 printk(KERN_ERR "SPU_PROF: "
268 "%s, line %d: "
269 "Invalid index %d into spu info cache\n",
270 __func__, __LINE__, spu_index);
271 goto out;
272 }
273 end = spu_index + 1;
274 index = spu_index;
275 }
276 for (; index < end; index++) {
277 if (spu_info[index]) {
278 kref_put(&spu_info[index]->cache_ref,
279 destroy_cached_info);
280 spu_info[index] = NULL;
281 }
282 }
283
284 out:
285 return 0;
286 }
287
288 /* The source code for fast_get_dcookie was "borrowed"
289 * from drivers/oprofile/buffer_sync.c.
290 */
291
292 /* Optimisation. We can manage without taking the dcookie sem
293 * because we cannot reach this code without at least one
294 * dcookie user still being registered (namely, the reader
295 * of the event buffer).
296 */
fast_get_dcookie(struct path * path)297 static inline unsigned long fast_get_dcookie(struct path *path)
298 {
299 unsigned long cookie;
300
301 if (path->dentry->d_flags & DCACHE_COOKIE)
302 return (unsigned long)path->dentry;
303 get_dcookie(path, &cookie);
304 return cookie;
305 }
306
307 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
308 * which corresponds loosely to "application name". Also, determine
309 * the offset for the SPU ELF object. If computed offset is
310 * non-zero, it implies an embedded SPU object; otherwise, it's a
311 * separate SPU binary, in which case we retrieve it's dcookie.
312 * For the embedded case, we must determine if SPU ELF is embedded
313 * in the executable application or another file (i.e., shared lib).
314 * If embedded in a shared lib, we must get the dcookie and return
315 * that to the caller.
316 */
317 static unsigned long
get_exec_dcookie_and_offset(struct spu * spu,unsigned int * offsetp,unsigned long * spu_bin_dcookie,unsigned long spu_ref)318 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
319 unsigned long *spu_bin_dcookie,
320 unsigned long spu_ref)
321 {
322 unsigned long app_cookie = 0;
323 unsigned int my_offset = 0;
324 struct file *app = NULL;
325 struct vm_area_struct *vma;
326 struct mm_struct *mm = spu->mm;
327
328 if (!mm)
329 goto out;
330
331 down_read(&mm->mmap_sem);
332
333 for (vma = mm->mmap; vma; vma = vma->vm_next) {
334 if (!vma->vm_file)
335 continue;
336 if (!(vma->vm_flags & VM_EXECUTABLE))
337 continue;
338 app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
339 pr_debug("got dcookie for %s\n",
340 vma->vm_file->f_dentry->d_name.name);
341 app = vma->vm_file;
342 break;
343 }
344
345 for (vma = mm->mmap; vma; vma = vma->vm_next) {
346 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
347 continue;
348 my_offset = spu_ref - vma->vm_start;
349 if (!vma->vm_file)
350 goto fail_no_image_cookie;
351
352 pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
353 my_offset, spu_ref,
354 vma->vm_file->f_dentry->d_name.name);
355 *offsetp = my_offset;
356 break;
357 }
358
359 *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
360 pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
361
362 up_read(&mm->mmap_sem);
363
364 out:
365 return app_cookie;
366
367 fail_no_image_cookie:
368 up_read(&mm->mmap_sem);
369
370 printk(KERN_ERR "SPU_PROF: "
371 "%s, line %d: Cannot find dcookie for SPU binary\n",
372 __func__, __LINE__);
373 goto out;
374 }
375
376
377
378 /* This function finds or creates cached context information for the
379 * passed SPU and records SPU context information into the OProfile
380 * event buffer.
381 */
process_context_switch(struct spu * spu,unsigned long objectId)382 static int process_context_switch(struct spu *spu, unsigned long objectId)
383 {
384 unsigned long flags;
385 int retval;
386 unsigned int offset = 0;
387 unsigned long spu_cookie = 0, app_dcookie;
388
389 retval = prepare_cached_spu_info(spu, objectId);
390 if (retval)
391 goto out;
392
393 /* Get dcookie first because a mutex_lock is taken in that
394 * code path, so interrupts must not be disabled.
395 */
396 app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
397 if (!app_dcookie || !spu_cookie) {
398 retval = -ENOENT;
399 goto out;
400 }
401
402 /* Record context info in event buffer */
403 spin_lock_irqsave(&buffer_lock, flags);
404 spu_buff_add(ESCAPE_CODE, spu->number);
405 spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
406 spu_buff_add(spu->number, spu->number);
407 spu_buff_add(spu->pid, spu->number);
408 spu_buff_add(spu->tgid, spu->number);
409 spu_buff_add(app_dcookie, spu->number);
410 spu_buff_add(spu_cookie, spu->number);
411 spu_buff_add(offset, spu->number);
412
413 /* Set flag to indicate SPU PC data can now be written out. If
414 * the SPU program counter data is seen before an SPU context
415 * record is seen, the postprocessing will fail.
416 */
417 spu_buff[spu->number].ctx_sw_seen = 1;
418
419 spin_unlock_irqrestore(&buffer_lock, flags);
420 smp_wmb(); /* insure spu event buffer updates are written */
421 /* don't want entries intermingled... */
422 out:
423 return retval;
424 }
425
426 /*
427 * This function is invoked on either a bind_context or unbind_context.
428 * If called for an unbind_context, the val arg is 0; otherwise,
429 * it is the object-id value for the spu context.
430 * The data arg is of type 'struct spu *'.
431 */
spu_active_notify(struct notifier_block * self,unsigned long val,void * data)432 static int spu_active_notify(struct notifier_block *self, unsigned long val,
433 void *data)
434 {
435 int retval;
436 unsigned long flags;
437 struct spu *the_spu = data;
438
439 pr_debug("SPU event notification arrived\n");
440 if (!val) {
441 spin_lock_irqsave(&cache_lock, flags);
442 retval = release_cached_info(the_spu->number);
443 spin_unlock_irqrestore(&cache_lock, flags);
444 } else {
445 retval = process_context_switch(the_spu, val);
446 }
447 return retval;
448 }
449
450 static struct notifier_block spu_active = {
451 .notifier_call = spu_active_notify,
452 };
453
number_of_online_nodes(void)454 static int number_of_online_nodes(void)
455 {
456 u32 cpu; u32 tmp;
457 int nodes = 0;
458 for_each_online_cpu(cpu) {
459 tmp = cbe_cpu_to_node(cpu) + 1;
460 if (tmp > nodes)
461 nodes++;
462 }
463 return nodes;
464 }
465
oprofile_spu_buff_create(void)466 static int oprofile_spu_buff_create(void)
467 {
468 int spu;
469
470 max_spu_buff = oprofile_get_cpu_buffer_size();
471
472 for (spu = 0; spu < num_spu_nodes; spu++) {
473 /* create circular buffers to store the data in.
474 * use locks to manage accessing the buffers
475 */
476 spu_buff[spu].head = 0;
477 spu_buff[spu].tail = 0;
478
479 /*
480 * Create a buffer for each SPU. Can't reliably
481 * create a single buffer for all spus due to not
482 * enough contiguous kernel memory.
483 */
484
485 spu_buff[spu].buff = kzalloc((max_spu_buff
486 * sizeof(unsigned long)),
487 GFP_KERNEL);
488
489 if (!spu_buff[spu].buff) {
490 printk(KERN_ERR "SPU_PROF: "
491 "%s, line %d: oprofile_spu_buff_create "
492 "failed to allocate spu buffer %d.\n",
493 __func__, __LINE__, spu);
494
495 /* release the spu buffers that have been allocated */
496 while (spu >= 0) {
497 kfree(spu_buff[spu].buff);
498 spu_buff[spu].buff = 0;
499 spu--;
500 }
501 return -ENOMEM;
502 }
503 }
504 return 0;
505 }
506
507 /* The main purpose of this function is to synchronize
508 * OProfile with SPUFS by registering to be notified of
509 * SPU task switches.
510 *
511 * NOTE: When profiling SPUs, we must ensure that only
512 * spu_sync_start is invoked and not the generic sync_start
513 * in drivers/oprofile/oprof.c. A return value of
514 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
515 * accomplish this.
516 */
spu_sync_start(void)517 int spu_sync_start(void)
518 {
519 int spu;
520 int ret = SKIP_GENERIC_SYNC;
521 int register_ret;
522 unsigned long flags = 0;
523
524 spu_prof_num_nodes = number_of_online_nodes();
525 num_spu_nodes = spu_prof_num_nodes * 8;
526 INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
527
528 /* create buffer for storing the SPU data to put in
529 * the kernel buffer.
530 */
531 ret = oprofile_spu_buff_create();
532 if (ret)
533 goto out;
534
535 spin_lock_irqsave(&buffer_lock, flags);
536 for (spu = 0; spu < num_spu_nodes; spu++) {
537 spu_buff_add(ESCAPE_CODE, spu);
538 spu_buff_add(SPU_PROFILING_CODE, spu);
539 spu_buff_add(num_spu_nodes, spu);
540 }
541 spin_unlock_irqrestore(&buffer_lock, flags);
542
543 for (spu = 0; spu < num_spu_nodes; spu++) {
544 spu_buff[spu].ctx_sw_seen = 0;
545 spu_buff[spu].last_guard_val = 0;
546 }
547
548 /* Register for SPU events */
549 register_ret = spu_switch_event_register(&spu_active);
550 if (register_ret) {
551 ret = SYNC_START_ERROR;
552 goto out;
553 }
554
555 pr_debug("spu_sync_start -- running.\n");
556 out:
557 return ret;
558 }
559
560 /* Record SPU program counter samples to the oprofile event buffer. */
spu_sync_buffer(int spu_num,unsigned int * samples,int num_samples)561 void spu_sync_buffer(int spu_num, unsigned int *samples,
562 int num_samples)
563 {
564 unsigned long long file_offset;
565 unsigned long flags;
566 int i;
567 struct vma_to_fileoffset_map *map;
568 struct spu *the_spu;
569 unsigned long long spu_num_ll = spu_num;
570 unsigned long long spu_num_shifted = spu_num_ll << 32;
571 struct cached_info *c_info;
572
573 /* We need to obtain the cache_lock here because it's
574 * possible that after getting the cached_info, the SPU job
575 * corresponding to this cached_info may end, thus resulting
576 * in the destruction of the cached_info.
577 */
578 spin_lock_irqsave(&cache_lock, flags);
579 c_info = get_cached_info(NULL, spu_num);
580 if (!c_info) {
581 /* This legitimately happens when the SPU task ends before all
582 * samples are recorded.
583 * No big deal -- so we just drop a few samples.
584 */
585 pr_debug("SPU_PROF: No cached SPU contex "
586 "for SPU #%d. Dropping samples.\n", spu_num);
587 goto out;
588 }
589
590 map = c_info->map;
591 the_spu = c_info->the_spu;
592 spin_lock(&buffer_lock);
593 for (i = 0; i < num_samples; i++) {
594 unsigned int sample = *(samples+i);
595 int grd_val = 0;
596 file_offset = 0;
597 if (sample == 0)
598 continue;
599 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
600
601 /* If overlays are used by this SPU application, the guard
602 * value is non-zero, indicating which overlay section is in
603 * use. We need to discard samples taken during the time
604 * period which an overlay occurs (i.e., guard value changes).
605 */
606 if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
607 spu_buff[spu_num].last_guard_val = grd_val;
608 /* Drop the rest of the samples. */
609 break;
610 }
611
612 /* We must ensure that the SPU context switch has been written
613 * out before samples for the SPU. Otherwise, the SPU context
614 * information is not available and the postprocessing of the
615 * SPU PC will fail with no available anonymous map information.
616 */
617 if (spu_buff[spu_num].ctx_sw_seen)
618 spu_buff_add((file_offset | spu_num_shifted),
619 spu_num);
620 }
621 spin_unlock(&buffer_lock);
622 out:
623 spin_unlock_irqrestore(&cache_lock, flags);
624 }
625
626
spu_sync_stop(void)627 int spu_sync_stop(void)
628 {
629 unsigned long flags = 0;
630 int ret;
631 int k;
632
633 ret = spu_switch_event_unregister(&spu_active);
634
635 if (ret)
636 printk(KERN_ERR "SPU_PROF: "
637 "%s, line %d: spu_switch_event_unregister " \
638 "returned %d\n",
639 __func__, __LINE__, ret);
640
641 /* flush any remaining data in the per SPU buffers */
642 sync_spu_buff();
643
644 spin_lock_irqsave(&cache_lock, flags);
645 ret = release_cached_info(RELEASE_ALL);
646 spin_unlock_irqrestore(&cache_lock, flags);
647
648 /* remove scheduled work queue item rather then waiting
649 * for every queued entry to execute. Then flush pending
650 * system wide buffer to event buffer.
651 */
652 cancel_delayed_work(&spu_work);
653
654 for (k = 0; k < num_spu_nodes; k++) {
655 spu_buff[k].ctx_sw_seen = 0;
656
657 /*
658 * spu_sys_buff will be null if there was a problem
659 * allocating the buffer. Only delete if it exists.
660 */
661 kfree(spu_buff[k].buff);
662 spu_buff[k].buff = 0;
663 }
664 pr_debug("spu_sync_stop -- done.\n");
665 return ret;
666 }
667
668