1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: Maynard Johnson <maynardj@us.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13 
14 /* The purpose of this file is to handle SPU event task switching
15  * and to record SPU context information into the OProfile
16  * event buffer.
17  *
18  * Additionally, the spu_sync_buffer function is provided as a helper
19  * for recoding actual SPU program counter samples to the event buffer.
20  */
21 #include <linux/dcookies.h>
22 #include <linux/kref.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 #include <linux/numa.h>
28 #include <linux/oprofile.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include "pr_util.h"
32 
33 #define RELEASE_ALL 9999
34 
35 static DEFINE_SPINLOCK(buffer_lock);
36 static DEFINE_SPINLOCK(cache_lock);
37 static int num_spu_nodes;
38 int spu_prof_num_nodes;
39 
40 struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
41 struct delayed_work spu_work;
42 static unsigned max_spu_buff;
43 
spu_buff_add(unsigned long int value,int spu)44 static void spu_buff_add(unsigned long int value, int spu)
45 {
46 	/* spu buff is a circular buffer.  Add entries to the
47 	 * head.  Head is the index to store the next value.
48 	 * The buffer is full when there is one available entry
49 	 * in the queue, i.e. head and tail can't be equal.
50 	 * That way we can tell the difference between the
51 	 * buffer being full versus empty.
52 	 *
53 	 *  ASSUPTION: the buffer_lock is held when this function
54 	 *             is called to lock the buffer, head and tail.
55 	 */
56 	int full = 1;
57 
58 	if (spu_buff[spu].head >= spu_buff[spu].tail) {
59 		if ((spu_buff[spu].head - spu_buff[spu].tail)
60 		    <  (max_spu_buff - 1))
61 			full = 0;
62 
63 	} else if (spu_buff[spu].tail > spu_buff[spu].head) {
64 		if ((spu_buff[spu].tail - spu_buff[spu].head)
65 		    > 1)
66 			full = 0;
67 	}
68 
69 	if (!full) {
70 		spu_buff[spu].buff[spu_buff[spu].head] = value;
71 		spu_buff[spu].head++;
72 
73 		if (spu_buff[spu].head >= max_spu_buff)
74 			spu_buff[spu].head = 0;
75 	} else {
76 		/* From the user's perspective make the SPU buffer
77 		 * size management/overflow look like we are using
78 		 * per cpu buffers.  The user uses the same
79 		 * per cpu parameter to adjust the SPU buffer size.
80 		 * Increment the sample_lost_overflow to inform
81 		 * the user the buffer size needs to be increased.
82 		 */
83 		oprofile_cpu_buffer_inc_smpl_lost();
84 	}
85 }
86 
87 /* This function copies the per SPU buffers to the
88  * OProfile kernel buffer.
89  */
sync_spu_buff(void)90 void sync_spu_buff(void)
91 {
92 	int spu;
93 	unsigned long flags;
94 	int curr_head;
95 
96 	for (spu = 0; spu < num_spu_nodes; spu++) {
97 		/* In case there was an issue and the buffer didn't
98 		 * get created skip it.
99 		 */
100 		if (spu_buff[spu].buff == NULL)
101 			continue;
102 
103 		/* Hold the lock to make sure the head/tail
104 		 * doesn't change while spu_buff_add() is
105 		 * deciding if the buffer is full or not.
106 		 * Being a little paranoid.
107 		 */
108 		spin_lock_irqsave(&buffer_lock, flags);
109 		curr_head = spu_buff[spu].head;
110 		spin_unlock_irqrestore(&buffer_lock, flags);
111 
112 		/* Transfer the current contents to the kernel buffer.
113 		 * data can still be added to the head of the buffer.
114 		 */
115 		oprofile_put_buff(spu_buff[spu].buff,
116 				  spu_buff[spu].tail,
117 				  curr_head, max_spu_buff);
118 
119 		spin_lock_irqsave(&buffer_lock, flags);
120 		spu_buff[spu].tail = curr_head;
121 		spin_unlock_irqrestore(&buffer_lock, flags);
122 	}
123 
124 }
125 
wq_sync_spu_buff(struct work_struct * work)126 static void wq_sync_spu_buff(struct work_struct *work)
127 {
128 	/* move data from spu buffers to kernel buffer */
129 	sync_spu_buff();
130 
131 	/* only reschedule if profiling is not done */
132 	if (spu_prof_running)
133 		schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
134 }
135 
136 /* Container for caching information about an active SPU task. */
137 struct cached_info {
138 	struct vma_to_fileoffset_map *map;
139 	struct spu *the_spu;	/* needed to access pointer to local_store */
140 	struct kref cache_ref;
141 };
142 
143 static struct cached_info *spu_info[MAX_NUMNODES * 8];
144 
destroy_cached_info(struct kref * kref)145 static void destroy_cached_info(struct kref *kref)
146 {
147 	struct cached_info *info;
148 
149 	info = container_of(kref, struct cached_info, cache_ref);
150 	vma_map_free(info->map);
151 	kfree(info);
152 	module_put(THIS_MODULE);
153 }
154 
155 /* Return the cached_info for the passed SPU number.
156  * ATTENTION:  Callers are responsible for obtaining the
157  *	       cache_lock if needed prior to invoking this function.
158  */
get_cached_info(struct spu * the_spu,int spu_num)159 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
160 {
161 	struct kref *ref;
162 	struct cached_info *ret_info;
163 
164 	if (spu_num >= num_spu_nodes) {
165 		printk(KERN_ERR "SPU_PROF: "
166 		       "%s, line %d: Invalid index %d into spu info cache\n",
167 		       __func__, __LINE__, spu_num);
168 		ret_info = NULL;
169 		goto out;
170 	}
171 	if (!spu_info[spu_num] && the_spu) {
172 		ref = spu_get_profile_private_kref(the_spu->ctx);
173 		if (ref) {
174 			spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
175 			kref_get(&spu_info[spu_num]->cache_ref);
176 		}
177 	}
178 
179 	ret_info = spu_info[spu_num];
180  out:
181 	return ret_info;
182 }
183 
184 
185 /* Looks for cached info for the passed spu.  If not found, the
186  * cached info is created for the passed spu.
187  * Returns 0 for success; otherwise, -1 for error.
188  */
189 static int
prepare_cached_spu_info(struct spu * spu,unsigned long objectId)190 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
191 {
192 	unsigned long flags;
193 	struct vma_to_fileoffset_map *new_map;
194 	int retval = 0;
195 	struct cached_info *info;
196 
197 	/* We won't bother getting cache_lock here since
198 	 * don't do anything with the cached_info that's returned.
199 	 */
200 	info = get_cached_info(spu, spu->number);
201 
202 	if (info) {
203 		pr_debug("Found cached SPU info.\n");
204 		goto out;
205 	}
206 
207 	/* Create cached_info and set spu_info[spu->number] to point to it.
208 	 * spu->number is a system-wide value, not a per-node value.
209 	 */
210 	info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
211 	if (!info) {
212 		printk(KERN_ERR "SPU_PROF: "
213 		       "%s, line %d: create vma_map failed\n",
214 		       __func__, __LINE__);
215 		retval = -ENOMEM;
216 		goto err_alloc;
217 	}
218 	new_map = create_vma_map(spu, objectId);
219 	if (!new_map) {
220 		printk(KERN_ERR "SPU_PROF: "
221 		       "%s, line %d: create vma_map failed\n",
222 		       __func__, __LINE__);
223 		retval = -ENOMEM;
224 		goto err_alloc;
225 	}
226 
227 	pr_debug("Created vma_map\n");
228 	info->map = new_map;
229 	info->the_spu = spu;
230 	kref_init(&info->cache_ref);
231 	spin_lock_irqsave(&cache_lock, flags);
232 	spu_info[spu->number] = info;
233 	/* Increment count before passing off ref to SPUFS. */
234 	kref_get(&info->cache_ref);
235 
236 	/* We increment the module refcount here since SPUFS is
237 	 * responsible for the final destruction of the cached_info,
238 	 * and it must be able to access the destroy_cached_info()
239 	 * function defined in the OProfile module.  We decrement
240 	 * the module refcount in destroy_cached_info.
241 	 */
242 	try_module_get(THIS_MODULE);
243 	spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
244 				destroy_cached_info);
245 	spin_unlock_irqrestore(&cache_lock, flags);
246 	goto out;
247 
248 err_alloc:
249 	kfree(info);
250 out:
251 	return retval;
252 }
253 
254 /*
255  * NOTE:  The caller is responsible for locking the
256  *	  cache_lock prior to calling this function.
257  */
release_cached_info(int spu_index)258 static int release_cached_info(int spu_index)
259 {
260 	int index, end;
261 
262 	if (spu_index == RELEASE_ALL) {
263 		end = num_spu_nodes;
264 		index = 0;
265 	} else {
266 		if (spu_index >= num_spu_nodes) {
267 			printk(KERN_ERR "SPU_PROF: "
268 				"%s, line %d: "
269 				"Invalid index %d into spu info cache\n",
270 				__func__, __LINE__, spu_index);
271 			goto out;
272 		}
273 		end = spu_index + 1;
274 		index = spu_index;
275 	}
276 	for (; index < end; index++) {
277 		if (spu_info[index]) {
278 			kref_put(&spu_info[index]->cache_ref,
279 				 destroy_cached_info);
280 			spu_info[index] = NULL;
281 		}
282 	}
283 
284 out:
285 	return 0;
286 }
287 
288 /* The source code for fast_get_dcookie was "borrowed"
289  * from drivers/oprofile/buffer_sync.c.
290  */
291 
292 /* Optimisation. We can manage without taking the dcookie sem
293  * because we cannot reach this code without at least one
294  * dcookie user still being registered (namely, the reader
295  * of the event buffer).
296  */
fast_get_dcookie(struct path * path)297 static inline unsigned long fast_get_dcookie(struct path *path)
298 {
299 	unsigned long cookie;
300 
301 	if (path->dentry->d_flags & DCACHE_COOKIE)
302 		return (unsigned long)path->dentry;
303 	get_dcookie(path, &cookie);
304 	return cookie;
305 }
306 
307 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
308  * which corresponds loosely to "application name". Also, determine
309  * the offset for the SPU ELF object.  If computed offset is
310  * non-zero, it implies an embedded SPU object; otherwise, it's a
311  * separate SPU binary, in which case we retrieve it's dcookie.
312  * For the embedded case, we must determine if SPU ELF is embedded
313  * in the executable application or another file (i.e., shared lib).
314  * If embedded in a shared lib, we must get the dcookie and return
315  * that to the caller.
316  */
317 static unsigned long
get_exec_dcookie_and_offset(struct spu * spu,unsigned int * offsetp,unsigned long * spu_bin_dcookie,unsigned long spu_ref)318 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
319 			    unsigned long *spu_bin_dcookie,
320 			    unsigned long spu_ref)
321 {
322 	unsigned long app_cookie = 0;
323 	unsigned int my_offset = 0;
324 	struct file *app = NULL;
325 	struct vm_area_struct *vma;
326 	struct mm_struct *mm = spu->mm;
327 
328 	if (!mm)
329 		goto out;
330 
331 	down_read(&mm->mmap_sem);
332 
333 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
334 		if (!vma->vm_file)
335 			continue;
336 		if (!(vma->vm_flags & VM_EXECUTABLE))
337 			continue;
338 		app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
339 		pr_debug("got dcookie for %s\n",
340 			 vma->vm_file->f_dentry->d_name.name);
341 		app = vma->vm_file;
342 		break;
343 	}
344 
345 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
346 		if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
347 			continue;
348 		my_offset = spu_ref - vma->vm_start;
349 		if (!vma->vm_file)
350 			goto fail_no_image_cookie;
351 
352 		pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
353 			 my_offset, spu_ref,
354 			 vma->vm_file->f_dentry->d_name.name);
355 		*offsetp = my_offset;
356 		break;
357 	}
358 
359 	*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
360 	pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
361 
362 	up_read(&mm->mmap_sem);
363 
364 out:
365 	return app_cookie;
366 
367 fail_no_image_cookie:
368 	up_read(&mm->mmap_sem);
369 
370 	printk(KERN_ERR "SPU_PROF: "
371 		"%s, line %d: Cannot find dcookie for SPU binary\n",
372 		__func__, __LINE__);
373 	goto out;
374 }
375 
376 
377 
378 /* This function finds or creates cached context information for the
379  * passed SPU and records SPU context information into the OProfile
380  * event buffer.
381  */
process_context_switch(struct spu * spu,unsigned long objectId)382 static int process_context_switch(struct spu *spu, unsigned long objectId)
383 {
384 	unsigned long flags;
385 	int retval;
386 	unsigned int offset = 0;
387 	unsigned long spu_cookie = 0, app_dcookie;
388 
389 	retval = prepare_cached_spu_info(spu, objectId);
390 	if (retval)
391 		goto out;
392 
393 	/* Get dcookie first because a mutex_lock is taken in that
394 	 * code path, so interrupts must not be disabled.
395 	 */
396 	app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
397 	if (!app_dcookie || !spu_cookie) {
398 		retval  = -ENOENT;
399 		goto out;
400 	}
401 
402 	/* Record context info in event buffer */
403 	spin_lock_irqsave(&buffer_lock, flags);
404 	spu_buff_add(ESCAPE_CODE, spu->number);
405 	spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
406 	spu_buff_add(spu->number, spu->number);
407 	spu_buff_add(spu->pid, spu->number);
408 	spu_buff_add(spu->tgid, spu->number);
409 	spu_buff_add(app_dcookie, spu->number);
410 	spu_buff_add(spu_cookie, spu->number);
411 	spu_buff_add(offset, spu->number);
412 
413 	/* Set flag to indicate SPU PC data can now be written out.  If
414 	 * the SPU program counter data is seen before an SPU context
415 	 * record is seen, the postprocessing will fail.
416 	 */
417 	spu_buff[spu->number].ctx_sw_seen = 1;
418 
419 	spin_unlock_irqrestore(&buffer_lock, flags);
420 	smp_wmb();	/* insure spu event buffer updates are written */
421 			/* don't want entries intermingled... */
422 out:
423 	return retval;
424 }
425 
426 /*
427  * This function is invoked on either a bind_context or unbind_context.
428  * If called for an unbind_context, the val arg is 0; otherwise,
429  * it is the object-id value for the spu context.
430  * The data arg is of type 'struct spu *'.
431  */
spu_active_notify(struct notifier_block * self,unsigned long val,void * data)432 static int spu_active_notify(struct notifier_block *self, unsigned long val,
433 				void *data)
434 {
435 	int retval;
436 	unsigned long flags;
437 	struct spu *the_spu = data;
438 
439 	pr_debug("SPU event notification arrived\n");
440 	if (!val) {
441 		spin_lock_irqsave(&cache_lock, flags);
442 		retval = release_cached_info(the_spu->number);
443 		spin_unlock_irqrestore(&cache_lock, flags);
444 	} else {
445 		retval = process_context_switch(the_spu, val);
446 	}
447 	return retval;
448 }
449 
450 static struct notifier_block spu_active = {
451 	.notifier_call = spu_active_notify,
452 };
453 
number_of_online_nodes(void)454 static int number_of_online_nodes(void)
455 {
456         u32 cpu; u32 tmp;
457         int nodes = 0;
458         for_each_online_cpu(cpu) {
459                 tmp = cbe_cpu_to_node(cpu) + 1;
460                 if (tmp > nodes)
461                         nodes++;
462         }
463         return nodes;
464 }
465 
oprofile_spu_buff_create(void)466 static int oprofile_spu_buff_create(void)
467 {
468 	int spu;
469 
470 	max_spu_buff = oprofile_get_cpu_buffer_size();
471 
472 	for (spu = 0; spu < num_spu_nodes; spu++) {
473 		/* create circular buffers to store the data in.
474 		 * use locks to manage accessing the buffers
475 		 */
476 		spu_buff[spu].head = 0;
477 		spu_buff[spu].tail = 0;
478 
479 		/*
480 		 * Create a buffer for each SPU.  Can't reliably
481 		 * create a single buffer for all spus due to not
482 		 * enough contiguous kernel memory.
483 		 */
484 
485 		spu_buff[spu].buff = kzalloc((max_spu_buff
486 					      * sizeof(unsigned long)),
487 					     GFP_KERNEL);
488 
489 		if (!spu_buff[spu].buff) {
490 			printk(KERN_ERR "SPU_PROF: "
491 			       "%s, line %d:  oprofile_spu_buff_create "
492 		       "failed to allocate spu buffer %d.\n",
493 			       __func__, __LINE__, spu);
494 
495 			/* release the spu buffers that have been allocated */
496 			while (spu >= 0) {
497 				kfree(spu_buff[spu].buff);
498 				spu_buff[spu].buff = 0;
499 				spu--;
500 			}
501 			return -ENOMEM;
502 		}
503 	}
504 	return 0;
505 }
506 
507 /* The main purpose of this function is to synchronize
508  * OProfile with SPUFS by registering to be notified of
509  * SPU task switches.
510  *
511  * NOTE: When profiling SPUs, we must ensure that only
512  * spu_sync_start is invoked and not the generic sync_start
513  * in drivers/oprofile/oprof.c.	 A return value of
514  * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
515  * accomplish this.
516  */
spu_sync_start(void)517 int spu_sync_start(void)
518 {
519 	int spu;
520 	int ret = SKIP_GENERIC_SYNC;
521 	int register_ret;
522 	unsigned long flags = 0;
523 
524 	spu_prof_num_nodes = number_of_online_nodes();
525 	num_spu_nodes = spu_prof_num_nodes * 8;
526 	INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
527 
528 	/* create buffer for storing the SPU data to put in
529 	 * the kernel buffer.
530 	 */
531 	ret = oprofile_spu_buff_create();
532 	if (ret)
533 		goto out;
534 
535 	spin_lock_irqsave(&buffer_lock, flags);
536 	for (spu = 0; spu < num_spu_nodes; spu++) {
537 		spu_buff_add(ESCAPE_CODE, spu);
538 		spu_buff_add(SPU_PROFILING_CODE, spu);
539 		spu_buff_add(num_spu_nodes, spu);
540 	}
541 	spin_unlock_irqrestore(&buffer_lock, flags);
542 
543 	for (spu = 0; spu < num_spu_nodes; spu++) {
544 		spu_buff[spu].ctx_sw_seen = 0;
545 		spu_buff[spu].last_guard_val = 0;
546 	}
547 
548 	/* Register for SPU events  */
549 	register_ret = spu_switch_event_register(&spu_active);
550 	if (register_ret) {
551 		ret = SYNC_START_ERROR;
552 		goto out;
553 	}
554 
555 	pr_debug("spu_sync_start -- running.\n");
556 out:
557 	return ret;
558 }
559 
560 /* Record SPU program counter samples to the oprofile event buffer. */
spu_sync_buffer(int spu_num,unsigned int * samples,int num_samples)561 void spu_sync_buffer(int spu_num, unsigned int *samples,
562 		     int num_samples)
563 {
564 	unsigned long long file_offset;
565 	unsigned long flags;
566 	int i;
567 	struct vma_to_fileoffset_map *map;
568 	struct spu *the_spu;
569 	unsigned long long spu_num_ll = spu_num;
570 	unsigned long long spu_num_shifted = spu_num_ll << 32;
571 	struct cached_info *c_info;
572 
573 	/* We need to obtain the cache_lock here because it's
574 	 * possible that after getting the cached_info, the SPU job
575 	 * corresponding to this cached_info may end, thus resulting
576 	 * in the destruction of the cached_info.
577 	 */
578 	spin_lock_irqsave(&cache_lock, flags);
579 	c_info = get_cached_info(NULL, spu_num);
580 	if (!c_info) {
581 		/* This legitimately happens when the SPU task ends before all
582 		 * samples are recorded.
583 		 * No big deal -- so we just drop a few samples.
584 		 */
585 		pr_debug("SPU_PROF: No cached SPU contex "
586 			  "for SPU #%d. Dropping samples.\n", spu_num);
587 		goto out;
588 	}
589 
590 	map = c_info->map;
591 	the_spu = c_info->the_spu;
592 	spin_lock(&buffer_lock);
593 	for (i = 0; i < num_samples; i++) {
594 		unsigned int sample = *(samples+i);
595 		int grd_val = 0;
596 		file_offset = 0;
597 		if (sample == 0)
598 			continue;
599 		file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
600 
601 		/* If overlays are used by this SPU application, the guard
602 		 * value is non-zero, indicating which overlay section is in
603 		 * use.	 We need to discard samples taken during the time
604 		 * period which an overlay occurs (i.e., guard value changes).
605 		 */
606 		if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
607 			spu_buff[spu_num].last_guard_val = grd_val;
608 			/* Drop the rest of the samples. */
609 			break;
610 		}
611 
612 		/* We must ensure that the SPU context switch has been written
613 		 * out before samples for the SPU.  Otherwise, the SPU context
614 		 * information is not available and the postprocessing of the
615 		 * SPU PC will fail with no available anonymous map information.
616 		 */
617 		if (spu_buff[spu_num].ctx_sw_seen)
618 			spu_buff_add((file_offset | spu_num_shifted),
619 					 spu_num);
620 	}
621 	spin_unlock(&buffer_lock);
622 out:
623 	spin_unlock_irqrestore(&cache_lock, flags);
624 }
625 
626 
spu_sync_stop(void)627 int spu_sync_stop(void)
628 {
629 	unsigned long flags = 0;
630 	int ret;
631 	int k;
632 
633 	ret = spu_switch_event_unregister(&spu_active);
634 
635 	if (ret)
636 		printk(KERN_ERR "SPU_PROF: "
637 		       "%s, line %d: spu_switch_event_unregister "	\
638 		       "returned %d\n",
639 		       __func__, __LINE__, ret);
640 
641 	/* flush any remaining data in the per SPU buffers */
642 	sync_spu_buff();
643 
644 	spin_lock_irqsave(&cache_lock, flags);
645 	ret = release_cached_info(RELEASE_ALL);
646 	spin_unlock_irqrestore(&cache_lock, flags);
647 
648 	/* remove scheduled work queue item rather then waiting
649 	 * for every queued entry to execute.  Then flush pending
650 	 * system wide buffer to event buffer.
651 	 */
652 	cancel_delayed_work(&spu_work);
653 
654 	for (k = 0; k < num_spu_nodes; k++) {
655 		spu_buff[k].ctx_sw_seen = 0;
656 
657 		/*
658 		 * spu_sys_buff will be null if there was a problem
659 		 * allocating the buffer.  Only delete if it exists.
660 		 */
661 		kfree(spu_buff[k].buff);
662 		spu_buff[k].buff = 0;
663 	}
664 	pr_debug("spu_sync_stop -- done.\n");
665 	return ret;
666 }
667 
668