1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/module.h>
31 #include <linux/kexec.h>
32 #include <linux/debugfs.h>
33 #include <linux/irq.h>
34 #include <linux/memblock.h>
35 
36 #include <asm/prom.h>
37 #include <asm/rtas.h>
38 #include <asm/page.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/smp.h>
44 #include <asm/system.h>
45 #include <asm/mmu.h>
46 #include <asm/paca.h>
47 #include <asm/pgtable.h>
48 #include <asm/pci.h>
49 #include <asm/iommu.h>
50 #include <asm/btext.h>
51 #include <asm/sections.h>
52 #include <asm/machdep.h>
53 #include <asm/pSeries_reconfig.h>
54 #include <asm/pci-bridge.h>
55 #include <asm/phyp_dump.h>
56 #include <asm/kexec.h>
57 #include <mm/mmu_decl.h>
58 
59 #ifdef DEBUG
60 #define DBG(fmt...) printk(KERN_ERR fmt)
61 #else
62 #define DBG(fmt...)
63 #endif
64 
65 #ifdef CONFIG_PPC64
66 int __initdata iommu_is_off;
67 int __initdata iommu_force_on;
68 unsigned long tce_alloc_start, tce_alloc_end;
69 u64 ppc64_rma_size;
70 #endif
71 
early_parse_mem(char * p)72 static int __init early_parse_mem(char *p)
73 {
74 	if (!p)
75 		return 1;
76 
77 	memory_limit = PAGE_ALIGN(memparse(p, &p));
78 	DBG("memory limit = 0x%llx\n", (unsigned long long)memory_limit);
79 
80 	return 0;
81 }
82 early_param("mem", early_parse_mem);
83 
84 /**
85  * move_device_tree - move tree to an unused area, if needed.
86  *
87  * The device tree may be allocated beyond our memory limit, or inside the
88  * crash kernel region for kdump. If so, move it out of the way.
89  */
move_device_tree(void)90 static void __init move_device_tree(void)
91 {
92 	unsigned long start, size;
93 	void *p;
94 
95 	DBG("-> move_device_tree\n");
96 
97 	start = __pa(initial_boot_params);
98 	size = be32_to_cpu(initial_boot_params->totalsize);
99 
100 	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
101 			overlaps_crashkernel(start, size)) {
102 		p = __va(memblock_alloc(size, PAGE_SIZE));
103 		memcpy(p, initial_boot_params, size);
104 		initial_boot_params = (struct boot_param_header *)p;
105 		DBG("Moved device tree to 0x%p\n", p);
106 	}
107 
108 	DBG("<- move_device_tree\n");
109 }
110 
111 /*
112  * ibm,pa-features is a per-cpu property that contains a string of
113  * attribute descriptors, each of which has a 2 byte header plus up
114  * to 254 bytes worth of processor attribute bits.  First header
115  * byte specifies the number of bytes following the header.
116  * Second header byte is an "attribute-specifier" type, of which
117  * zero is the only currently-defined value.
118  * Implementation:  Pass in the byte and bit offset for the feature
119  * that we are interested in.  The function will return -1 if the
120  * pa-features property is missing, or a 1/0 to indicate if the feature
121  * is supported/not supported.  Note that the bit numbers are
122  * big-endian to match the definition in PAPR.
123  */
124 static struct ibm_pa_feature {
125 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
126 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
127 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
128 	unsigned char	pabit;		/* bit number (big-endian) */
129 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
130 } ibm_pa_features[] __initdata = {
131 	{0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
132 	{0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
133 	{CPU_FTR_SLB, 0,		0, 2, 0},
134 	{CPU_FTR_CTRL, 0,		0, 3, 0},
135 	{CPU_FTR_NOEXECUTE, 0,		0, 6, 0},
136 	{CPU_FTR_NODSISRALIGN, 0,	1, 1, 1},
137 	{CPU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
138 	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
139 };
140 
scan_features(unsigned long node,unsigned char * ftrs,unsigned long tablelen,struct ibm_pa_feature * fp,unsigned long ft_size)141 static void __init scan_features(unsigned long node, unsigned char *ftrs,
142 				 unsigned long tablelen,
143 				 struct ibm_pa_feature *fp,
144 				 unsigned long ft_size)
145 {
146 	unsigned long i, len, bit;
147 
148 	/* find descriptor with type == 0 */
149 	for (;;) {
150 		if (tablelen < 3)
151 			return;
152 		len = 2 + ftrs[0];
153 		if (tablelen < len)
154 			return;		/* descriptor 0 not found */
155 		if (ftrs[1] == 0)
156 			break;
157 		tablelen -= len;
158 		ftrs += len;
159 	}
160 
161 	/* loop over bits we know about */
162 	for (i = 0; i < ft_size; ++i, ++fp) {
163 		if (fp->pabyte >= ftrs[0])
164 			continue;
165 		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
166 		if (bit ^ fp->invert) {
167 			cur_cpu_spec->cpu_features |= fp->cpu_features;
168 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
169 		} else {
170 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
171 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
172 		}
173 	}
174 }
175 
check_cpu_pa_features(unsigned long node)176 static void __init check_cpu_pa_features(unsigned long node)
177 {
178 	unsigned char *pa_ftrs;
179 	unsigned long tablelen;
180 
181 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
182 	if (pa_ftrs == NULL)
183 		return;
184 
185 	scan_features(node, pa_ftrs, tablelen,
186 		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
187 }
188 
189 #ifdef CONFIG_PPC_STD_MMU_64
check_cpu_slb_size(unsigned long node)190 static void __init check_cpu_slb_size(unsigned long node)
191 {
192 	u32 *slb_size_ptr;
193 
194 	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
195 	if (slb_size_ptr != NULL) {
196 		mmu_slb_size = *slb_size_ptr;
197 		return;
198 	}
199 	slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
200 	if (slb_size_ptr != NULL) {
201 		mmu_slb_size = *slb_size_ptr;
202 	}
203 }
204 #else
205 #define check_cpu_slb_size(node) do { } while(0)
206 #endif
207 
208 static struct feature_property {
209 	const char *name;
210 	u32 min_value;
211 	unsigned long cpu_feature;
212 	unsigned long cpu_user_ftr;
213 } feature_properties[] __initdata = {
214 #ifdef CONFIG_ALTIVEC
215 	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
216 	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
217 #endif /* CONFIG_ALTIVEC */
218 #ifdef CONFIG_VSX
219 	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
220 	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
221 #endif /* CONFIG_VSX */
222 #ifdef CONFIG_PPC64
223 	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
224 	{"ibm,purr", 1, CPU_FTR_PURR, 0},
225 	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
226 #endif /* CONFIG_PPC64 */
227 };
228 
229 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
identical_pvr_fixup(unsigned long node)230 static inline void identical_pvr_fixup(unsigned long node)
231 {
232 	unsigned int pvr;
233 	char *model = of_get_flat_dt_prop(node, "model", NULL);
234 
235 	/*
236 	 * Since 440GR(x)/440EP(x) processors have the same pvr,
237 	 * we check the node path and set bit 28 in the cur_cpu_spec
238 	 * pvr for EP(x) processor version. This bit is always 0 in
239 	 * the "real" pvr. Then we call identify_cpu again with
240 	 * the new logical pvr to enable FPU support.
241 	 */
242 	if (model && strstr(model, "440EP")) {
243 		pvr = cur_cpu_spec->pvr_value | 0x8;
244 		identify_cpu(0, pvr);
245 		DBG("Using logical pvr %x for %s\n", pvr, model);
246 	}
247 }
248 #else
249 #define identical_pvr_fixup(node) do { } while(0)
250 #endif
251 
check_cpu_feature_properties(unsigned long node)252 static void __init check_cpu_feature_properties(unsigned long node)
253 {
254 	unsigned long i;
255 	struct feature_property *fp = feature_properties;
256 	const u32 *prop;
257 
258 	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
259 		prop = of_get_flat_dt_prop(node, fp->name, NULL);
260 		if (prop && *prop >= fp->min_value) {
261 			cur_cpu_spec->cpu_features |= fp->cpu_feature;
262 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
263 		}
264 	}
265 }
266 
early_init_dt_scan_cpus(unsigned long node,const char * uname,int depth,void * data)267 static int __init early_init_dt_scan_cpus(unsigned long node,
268 					  const char *uname, int depth,
269 					  void *data)
270 {
271 	static int logical_cpuid = 0;
272 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
273 	const u32 *prop;
274 	const u32 *intserv;
275 	int i, nthreads;
276 	unsigned long len;
277 	int found = 0;
278 
279 	/* We are scanning "cpu" nodes only */
280 	if (type == NULL || strcmp(type, "cpu") != 0)
281 		return 0;
282 
283 	/* Get physical cpuid */
284 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
285 	if (intserv) {
286 		nthreads = len / sizeof(int);
287 	} else {
288 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
289 		nthreads = 1;
290 	}
291 
292 	/*
293 	 * Now see if any of these threads match our boot cpu.
294 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
295 	 */
296 	for (i = 0; i < nthreads; i++) {
297 		/*
298 		 * version 2 of the kexec param format adds the phys cpuid of
299 		 * booted proc.
300 		 */
301 		if (initial_boot_params && initial_boot_params->version >= 2) {
302 			if (intserv[i] ==
303 					initial_boot_params->boot_cpuid_phys) {
304 				found = 1;
305 				break;
306 			}
307 		} else {
308 			/*
309 			 * Check if it's the boot-cpu, set it's hw index now,
310 			 * unfortunately this format did not support booting
311 			 * off secondary threads.
312 			 */
313 			if (of_get_flat_dt_prop(node,
314 					"linux,boot-cpu", NULL) != NULL) {
315 				found = 1;
316 				break;
317 			}
318 		}
319 
320 #ifdef CONFIG_SMP
321 		/* logical cpu id is always 0 on UP kernels */
322 		logical_cpuid++;
323 #endif
324 	}
325 
326 	if (found) {
327 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
328 			intserv[i]);
329 		boot_cpuid = logical_cpuid;
330 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
331 
332 		/*
333 		 * PAPR defines "logical" PVR values for cpus that
334 		 * meet various levels of the architecture:
335 		 * 0x0f000001	Architecture version 2.04
336 		 * 0x0f000002	Architecture version 2.05
337 		 * If the cpu-version property in the cpu node contains
338 		 * such a value, we call identify_cpu again with the
339 		 * logical PVR value in order to use the cpu feature
340 		 * bits appropriate for the architecture level.
341 		 *
342 		 * A POWER6 partition in "POWER6 architected" mode
343 		 * uses the 0x0f000002 PVR value; in POWER5+ mode
344 		 * it uses 0x0f000001.
345 		 */
346 		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
347 		if (prop && (*prop & 0xff000000) == 0x0f000000)
348 			identify_cpu(0, *prop);
349 
350 		identical_pvr_fixup(node);
351 	}
352 
353 	check_cpu_feature_properties(node);
354 	check_cpu_pa_features(node);
355 	check_cpu_slb_size(node);
356 
357 #ifdef CONFIG_PPC_PSERIES
358 	if (nthreads > 1)
359 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
360 	else
361 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
362 #endif
363 
364 	return 0;
365 }
366 
early_init_dt_scan_chosen_ppc(unsigned long node,const char * uname,int depth,void * data)367 int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname,
368 					 int depth, void *data)
369 {
370 	unsigned long *lprop;
371 
372 	/* Use common scan routine to determine if this is the chosen node */
373 	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
374 		return 0;
375 
376 #ifdef CONFIG_PPC64
377 	/* check if iommu is forced on or off */
378 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
379 		iommu_is_off = 1;
380 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
381 		iommu_force_on = 1;
382 #endif
383 
384 	/* mem=x on the command line is the preferred mechanism */
385 	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
386 	if (lprop)
387 		memory_limit = *lprop;
388 
389 #ifdef CONFIG_PPC64
390 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
391 	if (lprop)
392 		tce_alloc_start = *lprop;
393 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
394 	if (lprop)
395 		tce_alloc_end = *lprop;
396 #endif
397 
398 #ifdef CONFIG_KEXEC
399 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
400 	if (lprop)
401 		crashk_res.start = *lprop;
402 
403 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
404 	if (lprop)
405 		crashk_res.end = crashk_res.start + *lprop - 1;
406 #endif
407 
408 	/* break now */
409 	return 1;
410 }
411 
412 #ifdef CONFIG_PPC_PSERIES
413 /*
414  * Interpret the ibm,dynamic-memory property in the
415  * /ibm,dynamic-reconfiguration-memory node.
416  * This contains a list of memory blocks along with NUMA affinity
417  * information.
418  */
early_init_dt_scan_drconf_memory(unsigned long node)419 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
420 {
421 	__be32 *dm, *ls, *usm;
422 	unsigned long l, n, flags;
423 	u64 base, size, memblock_size;
424 	unsigned int is_kexec_kdump = 0, rngs;
425 
426 	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
427 	if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
428 		return 0;
429 	memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
430 
431 	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
432 	if (dm == NULL || l < sizeof(__be32))
433 		return 0;
434 
435 	n = *dm++;	/* number of entries */
436 	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
437 		return 0;
438 
439 	/* check if this is a kexec/kdump kernel. */
440 	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
441 						 &l);
442 	if (usm != NULL)
443 		is_kexec_kdump = 1;
444 
445 	for (; n != 0; --n) {
446 		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
447 		flags = dm[3];
448 		/* skip DRC index, pad, assoc. list index, flags */
449 		dm += 4;
450 		/* skip this block if the reserved bit is set in flags (0x80)
451 		   or if the block is not assigned to this partition (0x8) */
452 		if ((flags & 0x80) || !(flags & 0x8))
453 			continue;
454 		size = memblock_size;
455 		rngs = 1;
456 		if (is_kexec_kdump) {
457 			/*
458 			 * For each memblock in ibm,dynamic-memory, a corresponding
459 			 * entry in linux,drconf-usable-memory property contains
460 			 * a counter 'p' followed by 'p' (base, size) duple.
461 			 * Now read the counter from
462 			 * linux,drconf-usable-memory property
463 			 */
464 			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
465 			if (!rngs) /* there are no (base, size) duple */
466 				continue;
467 		}
468 		do {
469 			if (is_kexec_kdump) {
470 				base = dt_mem_next_cell(dt_root_addr_cells,
471 							 &usm);
472 				size = dt_mem_next_cell(dt_root_size_cells,
473 							 &usm);
474 			}
475 			if (iommu_is_off) {
476 				if (base >= 0x80000000ul)
477 					continue;
478 				if ((base + size) > 0x80000000ul)
479 					size = 0x80000000ul - base;
480 			}
481 			memblock_add(base, size);
482 		} while (--rngs);
483 	}
484 	memblock_dump_all();
485 	return 0;
486 }
487 #else
488 #define early_init_dt_scan_drconf_memory(node)	0
489 #endif /* CONFIG_PPC_PSERIES */
490 
early_init_dt_scan_memory_ppc(unsigned long node,const char * uname,int depth,void * data)491 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
492 						const char *uname,
493 						int depth, void *data)
494 {
495 	if (depth == 1 &&
496 	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
497 		return early_init_dt_scan_drconf_memory(node);
498 
499 	return early_init_dt_scan_memory(node, uname, depth, data);
500 }
501 
early_init_dt_add_memory_arch(u64 base,u64 size)502 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
503 {
504 #ifdef CONFIG_PPC64
505 	if (iommu_is_off) {
506 		if (base >= 0x80000000ul)
507 			return;
508 		if ((base + size) > 0x80000000ul)
509 			size = 0x80000000ul - base;
510 	}
511 #endif
512 
513 	/* First MEMBLOCK added, do some special initializations */
514 	if (memstart_addr == ~(phys_addr_t)0)
515 		setup_initial_memory_limit(base, size);
516 	memstart_addr = min((u64)memstart_addr, base);
517 
518 	/* Add the chunk to the MEMBLOCK list */
519 	memblock_add(base, size);
520 }
521 
early_init_dt_alloc_memory_arch(u64 size,u64 align)522 void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
523 {
524 	return __va(memblock_alloc(size, align));
525 }
526 
527 #ifdef CONFIG_BLK_DEV_INITRD
early_init_dt_setup_initrd_arch(unsigned long start,unsigned long end)528 void __init early_init_dt_setup_initrd_arch(unsigned long start,
529 		unsigned long end)
530 {
531 	initrd_start = (unsigned long)__va(start);
532 	initrd_end = (unsigned long)__va(end);
533 	initrd_below_start_ok = 1;
534 }
535 #endif
536 
early_reserve_mem(void)537 static void __init early_reserve_mem(void)
538 {
539 	u64 base, size;
540 	u64 *reserve_map;
541 	unsigned long self_base;
542 	unsigned long self_size;
543 
544 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
545 					initial_boot_params->off_mem_rsvmap);
546 
547 	/* before we do anything, lets reserve the dt blob */
548 	self_base = __pa((unsigned long)initial_boot_params);
549 	self_size = initial_boot_params->totalsize;
550 	memblock_reserve(self_base, self_size);
551 
552 #ifdef CONFIG_BLK_DEV_INITRD
553 	/* then reserve the initrd, if any */
554 	if (initrd_start && (initrd_end > initrd_start))
555 		memblock_reserve(__pa(initrd_start), initrd_end - initrd_start);
556 #endif /* CONFIG_BLK_DEV_INITRD */
557 
558 #ifdef CONFIG_PPC32
559 	/*
560 	 * Handle the case where we might be booting from an old kexec
561 	 * image that setup the mem_rsvmap as pairs of 32-bit values
562 	 */
563 	if (*reserve_map > 0xffffffffull) {
564 		u32 base_32, size_32;
565 		u32 *reserve_map_32 = (u32 *)reserve_map;
566 
567 		while (1) {
568 			base_32 = *(reserve_map_32++);
569 			size_32 = *(reserve_map_32++);
570 			if (size_32 == 0)
571 				break;
572 			/* skip if the reservation is for the blob */
573 			if (base_32 == self_base && size_32 == self_size)
574 				continue;
575 			DBG("reserving: %x -> %x\n", base_32, size_32);
576 			memblock_reserve(base_32, size_32);
577 		}
578 		return;
579 	}
580 #endif
581 	while (1) {
582 		base = *(reserve_map++);
583 		size = *(reserve_map++);
584 		if (size == 0)
585 			break;
586 		DBG("reserving: %llx -> %llx\n", base, size);
587 		memblock_reserve(base, size);
588 	}
589 }
590 
591 #ifdef CONFIG_PHYP_DUMP
592 /**
593  * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg
594  *
595  * Function to find the largest size we need to reserve
596  * during early boot process.
597  *
598  * It either looks for boot param and returns that OR
599  * returns larger of 256 or 5% rounded down to multiples of 256MB.
600  *
601  */
phyp_dump_calculate_reserve_size(void)602 static inline unsigned long phyp_dump_calculate_reserve_size(void)
603 {
604 	unsigned long tmp;
605 
606 	if (phyp_dump_info->reserve_bootvar)
607 		return phyp_dump_info->reserve_bootvar;
608 
609 	/* divide by 20 to get 5% of value */
610 	tmp = memblock_end_of_DRAM();
611 	do_div(tmp, 20);
612 
613 	/* round it down in multiples of 256 */
614 	tmp = tmp & ~0x0FFFFFFFUL;
615 
616 	return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END);
617 }
618 
619 /**
620  * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory
621  *
622  * This routine may reserve memory regions in the kernel only
623  * if the system is supported and a dump was taken in last
624  * boot instance or if the hardware is supported and the
625  * scratch area needs to be setup. In other instances it returns
626  * without reserving anything. The memory in case of dump being
627  * active is freed when the dump is collected (by userland tools).
628  */
phyp_dump_reserve_mem(void)629 static void __init phyp_dump_reserve_mem(void)
630 {
631 	unsigned long base, size;
632 	unsigned long variable_reserve_size;
633 
634 	if (!phyp_dump_info->phyp_dump_configured) {
635 		printk(KERN_ERR "Phyp-dump not supported on this hardware\n");
636 		return;
637 	}
638 
639 	if (!phyp_dump_info->phyp_dump_at_boot) {
640 		printk(KERN_INFO "Phyp-dump disabled at boot time\n");
641 		return;
642 	}
643 
644 	variable_reserve_size = phyp_dump_calculate_reserve_size();
645 
646 	if (phyp_dump_info->phyp_dump_is_active) {
647 		/* Reserve *everything* above RMR.Area freed by userland tools*/
648 		base = variable_reserve_size;
649 		size = memblock_end_of_DRAM() - base;
650 
651 		/* XXX crashed_ram_end is wrong, since it may be beyond
652 		 * the memory_limit, it will need to be adjusted. */
653 		memblock_reserve(base, size);
654 
655 		phyp_dump_info->init_reserve_start = base;
656 		phyp_dump_info->init_reserve_size = size;
657 	} else {
658 		size = phyp_dump_info->cpu_state_size +
659 			phyp_dump_info->hpte_region_size +
660 			variable_reserve_size;
661 		base = memblock_end_of_DRAM() - size;
662 		memblock_reserve(base, size);
663 		phyp_dump_info->init_reserve_start = base;
664 		phyp_dump_info->init_reserve_size = size;
665 	}
666 }
667 #else
phyp_dump_reserve_mem(void)668 static inline void __init phyp_dump_reserve_mem(void) {}
669 #endif /* CONFIG_PHYP_DUMP  && CONFIG_PPC_RTAS */
670 
early_init_devtree(void * params)671 void __init early_init_devtree(void *params)
672 {
673 	phys_addr_t limit;
674 
675 	DBG(" -> early_init_devtree(%p)\n", params);
676 
677 	/* Setup flat device-tree pointer */
678 	initial_boot_params = params;
679 
680 #ifdef CONFIG_PPC_RTAS
681 	/* Some machines might need RTAS info for debugging, grab it now. */
682 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
683 #endif
684 
685 #ifdef CONFIG_PHYP_DUMP
686 	/* scan tree to see if dump occurred during last boot */
687 	of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL);
688 #endif
689 
690 	/* Retrieve various informations from the /chosen node of the
691 	 * device-tree, including the platform type, initrd location and
692 	 * size, TCE reserve, and more ...
693 	 */
694 	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, NULL);
695 
696 	/* Scan memory nodes and rebuild MEMBLOCKs */
697 	memblock_init();
698 
699 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
700 	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
701 
702 	/* Save command line for /proc/cmdline and then parse parameters */
703 	strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
704 	parse_early_param();
705 
706 	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
707 	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
708 	/* If relocatable, reserve first 32k for interrupt vectors etc. */
709 	if (PHYSICAL_START > MEMORY_START)
710 		memblock_reserve(MEMORY_START, 0x8000);
711 	reserve_kdump_trampoline();
712 	reserve_crashkernel();
713 	early_reserve_mem();
714 	phyp_dump_reserve_mem();
715 
716 	limit = memory_limit;
717 	if (! limit) {
718 		phys_addr_t memsize;
719 
720 		/* Ensure that total memory size is page-aligned, because
721 		 * otherwise mark_bootmem() gets upset. */
722 		memblock_analyze();
723 		memsize = memblock_phys_mem_size();
724 		if ((memsize & PAGE_MASK) != memsize)
725 			limit = memsize & PAGE_MASK;
726 	}
727 	memblock_enforce_memory_limit(limit);
728 
729 	memblock_analyze();
730 	memblock_dump_all();
731 
732 	DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
733 
734 	/* We may need to relocate the flat tree, do it now.
735 	 * FIXME .. and the initrd too? */
736 	move_device_tree();
737 
738 	allocate_pacas();
739 
740 	DBG("Scanning CPUs ...\n");
741 
742 	/* Retrieve CPU related informations from the flat tree
743 	 * (altivec support, boot CPU ID, ...)
744 	 */
745 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
746 
747 	DBG(" <- early_init_devtree()\n");
748 }
749 
750 /*******
751  *
752  * New implementation of the OF "find" APIs, return a refcounted
753  * object, call of_node_put() when done.  The device tree and list
754  * are protected by a rw_lock.
755  *
756  * Note that property management will need some locking as well,
757  * this isn't dealt with yet.
758  *
759  *******/
760 
761 /**
762  *	of_find_next_cache_node - Find a node's subsidiary cache
763  *	@np:	node of type "cpu" or "cache"
764  *
765  *	Returns a node pointer with refcount incremented, use
766  *	of_node_put() on it when done.  Caller should hold a reference
767  *	to np.
768  */
of_find_next_cache_node(struct device_node * np)769 struct device_node *of_find_next_cache_node(struct device_node *np)
770 {
771 	struct device_node *child;
772 	const phandle *handle;
773 
774 	handle = of_get_property(np, "l2-cache", NULL);
775 	if (!handle)
776 		handle = of_get_property(np, "next-level-cache", NULL);
777 
778 	if (handle)
779 		return of_find_node_by_phandle(*handle);
780 
781 	/* OF on pmac has nodes instead of properties named "l2-cache"
782 	 * beneath CPU nodes.
783 	 */
784 	if (!strcmp(np->type, "cpu"))
785 		for_each_child_of_node(np, child)
786 			if (!strcmp(child->type, "cache"))
787 				return child;
788 
789 	return NULL;
790 }
791 
792 #ifdef CONFIG_PPC_PSERIES
793 /*
794  * Fix up the uninitialized fields in a new device node:
795  * name, type and pci-specific fields
796  */
797 
of_finish_dynamic_node(struct device_node * node)798 static int of_finish_dynamic_node(struct device_node *node)
799 {
800 	struct device_node *parent = of_get_parent(node);
801 	int err = 0;
802 	const phandle *ibm_phandle;
803 
804 	node->name = of_get_property(node, "name", NULL);
805 	node->type = of_get_property(node, "device_type", NULL);
806 
807 	if (!node->name)
808 		node->name = "<NULL>";
809 	if (!node->type)
810 		node->type = "<NULL>";
811 
812 	if (!parent) {
813 		err = -ENODEV;
814 		goto out;
815 	}
816 
817 	/* We don't support that function on PowerMac, at least
818 	 * not yet
819 	 */
820 	if (machine_is(powermac))
821 		return -ENODEV;
822 
823 	/* fix up new node's phandle field */
824 	if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL)))
825 		node->phandle = *ibm_phandle;
826 
827 out:
828 	of_node_put(parent);
829 	return err;
830 }
831 
prom_reconfig_notifier(struct notifier_block * nb,unsigned long action,void * node)832 static int prom_reconfig_notifier(struct notifier_block *nb,
833 				  unsigned long action, void *node)
834 {
835 	int err;
836 
837 	switch (action) {
838 	case PSERIES_RECONFIG_ADD:
839 		err = of_finish_dynamic_node(node);
840 		if (err < 0) {
841 			printk(KERN_ERR "finish_node returned %d\n", err);
842 			err = NOTIFY_BAD;
843 		}
844 		break;
845 	default:
846 		err = NOTIFY_DONE;
847 		break;
848 	}
849 	return err;
850 }
851 
852 static struct notifier_block prom_reconfig_nb = {
853 	.notifier_call = prom_reconfig_notifier,
854 	.priority = 10, /* This one needs to run first */
855 };
856 
prom_reconfig_setup(void)857 static int __init prom_reconfig_setup(void)
858 {
859 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
860 }
861 __initcall(prom_reconfig_setup);
862 #endif
863 
864 /* Find the device node for a given logical cpu number, also returns the cpu
865  * local thread number (index in ibm,interrupt-server#s) if relevant and
866  * asked for (non NULL)
867  */
of_get_cpu_node(int cpu,unsigned int * thread)868 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
869 {
870 	int hardid;
871 	struct device_node *np;
872 
873 	hardid = get_hard_smp_processor_id(cpu);
874 
875 	for_each_node_by_type(np, "cpu") {
876 		const u32 *intserv;
877 		unsigned int plen, t;
878 
879 		/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
880 		 * fallback to "reg" property and assume no threads
881 		 */
882 		intserv = of_get_property(np, "ibm,ppc-interrupt-server#s",
883 				&plen);
884 		if (intserv == NULL) {
885 			const u32 *reg = of_get_property(np, "reg", NULL);
886 			if (reg == NULL)
887 				continue;
888 			if (*reg == hardid) {
889 				if (thread)
890 					*thread = 0;
891 				return np;
892 			}
893 		} else {
894 			plen /= sizeof(u32);
895 			for (t = 0; t < plen; t++) {
896 				if (hardid == intserv[t]) {
897 					if (thread)
898 						*thread = t;
899 					return np;
900 				}
901 			}
902 		}
903 	}
904 	return NULL;
905 }
906 EXPORT_SYMBOL(of_get_cpu_node);
907 
908 #if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
909 static struct debugfs_blob_wrapper flat_dt_blob;
910 
export_flat_device_tree(void)911 static int __init export_flat_device_tree(void)
912 {
913 	struct dentry *d;
914 
915 	flat_dt_blob.data = initial_boot_params;
916 	flat_dt_blob.size = initial_boot_params->totalsize;
917 
918 	d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
919 				powerpc_debugfs_root, &flat_dt_blob);
920 	if (!d)
921 		return 1;
922 
923 	return 0;
924 }
925 __initcall(export_flat_device_tree);
926 #endif
927