1 /*
2  * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
3  *
4  * Copyright 2007-2009 Analog Devices Inc.
5  *                         Philippe Gerum <rpm@xenomai.org>
6  *
7  * Licensed under the GPL-2.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/cpumask.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/slab.h>
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/mmu_context.h>
29 #include <asm/pgtable.h>
30 #include <asm/pgalloc.h>
31 #include <asm/processor.h>
32 #include <asm/ptrace.h>
33 #include <asm/cpu.h>
34 #include <asm/time.h>
35 #include <linux/err.h>
36 
37 /*
38  * Anomaly notes:
39  * 05000120 - we always define corelock as 32-bit integer in L2
40  */
41 struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
42 
43 #ifdef CONFIG_ICACHE_FLUSH_L1
44 unsigned long blackfin_iflush_l1_entry[NR_CPUS];
45 #endif
46 
47 void __cpuinitdata *init_retx_coreb, *init_saved_retx_coreb,
48 	*init_saved_seqstat_coreb, *init_saved_icplb_fault_addr_coreb,
49 	*init_saved_dcplb_fault_addr_coreb;
50 
51 #define BFIN_IPI_RESCHEDULE   0
52 #define BFIN_IPI_CALL_FUNC    1
53 #define BFIN_IPI_CPU_STOP     2
54 
55 struct blackfin_flush_data {
56 	unsigned long start;
57 	unsigned long end;
58 };
59 
60 void *secondary_stack;
61 
62 
63 struct smp_call_struct {
64 	void (*func)(void *info);
65 	void *info;
66 	int wait;
67 	cpumask_t *waitmask;
68 };
69 
70 static struct blackfin_flush_data smp_flush_data;
71 
72 static DEFINE_SPINLOCK(stop_lock);
73 
74 struct ipi_message {
75 	unsigned long type;
76 	struct smp_call_struct call_struct;
77 };
78 
79 /* A magic number - stress test shows this is safe for common cases */
80 #define BFIN_IPI_MSGQ_LEN 5
81 
82 /* Simple FIFO buffer, overflow leads to panic */
83 struct ipi_message_queue {
84 	spinlock_t lock;
85 	unsigned long count;
86 	unsigned long head; /* head of the queue */
87 	struct ipi_message ipi_message[BFIN_IPI_MSGQ_LEN];
88 };
89 
90 static DEFINE_PER_CPU(struct ipi_message_queue, ipi_msg_queue);
91 
ipi_cpu_stop(unsigned int cpu)92 static void ipi_cpu_stop(unsigned int cpu)
93 {
94 	spin_lock(&stop_lock);
95 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
96 	dump_stack();
97 	spin_unlock(&stop_lock);
98 
99 	cpu_clear(cpu, cpu_online_map);
100 
101 	local_irq_disable();
102 
103 	while (1)
104 		SSYNC();
105 }
106 
ipi_flush_icache(void * info)107 static void ipi_flush_icache(void *info)
108 {
109 	struct blackfin_flush_data *fdata = info;
110 
111 	/* Invalidate the memory holding the bounds of the flushed region. */
112 	blackfin_dcache_invalidate_range((unsigned long)fdata,
113 					 (unsigned long)fdata + sizeof(*fdata));
114 
115 	/* Make sure all write buffers in the data side of the core
116 	 * are flushed before trying to invalidate the icache.  This
117 	 * needs to be after the data flush and before the icache
118 	 * flush so that the SSYNC does the right thing in preventing
119 	 * the instruction prefetcher from hitting things in cached
120 	 * memory at the wrong time -- it runs much further ahead than
121 	 * the pipeline.
122 	 */
123 	SSYNC();
124 
125 	/* ipi_flaush_icache is invoked by generic flush_icache_range,
126 	 * so call blackfin arch icache flush directly here.
127 	 */
128 	blackfin_icache_flush_range(fdata->start, fdata->end);
129 }
130 
ipi_call_function(unsigned int cpu,struct ipi_message * msg)131 static void ipi_call_function(unsigned int cpu, struct ipi_message *msg)
132 {
133 	int wait;
134 	void (*func)(void *info);
135 	void *info;
136 	func = msg->call_struct.func;
137 	info = msg->call_struct.info;
138 	wait = msg->call_struct.wait;
139 	func(info);
140 	if (wait) {
141 #ifdef __ARCH_SYNC_CORE_DCACHE
142 		/*
143 		 * 'wait' usually means synchronization between CPUs.
144 		 * Invalidate D cache in case shared data was changed
145 		 * by func() to ensure cache coherence.
146 		 */
147 		resync_core_dcache();
148 #endif
149 		cpu_clear(cpu, *msg->call_struct.waitmask);
150 	}
151 }
152 
153 /* Use IRQ_SUPPLE_0 to request reschedule.
154  * When returning from interrupt to user space,
155  * there is chance to reschedule */
ipi_handler_int0(int irq,void * dev_instance)156 static irqreturn_t ipi_handler_int0(int irq, void *dev_instance)
157 {
158 	unsigned int cpu = smp_processor_id();
159 
160 	platform_clear_ipi(cpu, IRQ_SUPPLE_0);
161 	return IRQ_HANDLED;
162 }
163 
ipi_handler_int1(int irq,void * dev_instance)164 static irqreturn_t ipi_handler_int1(int irq, void *dev_instance)
165 {
166 	struct ipi_message *msg;
167 	struct ipi_message_queue *msg_queue;
168 	unsigned int cpu = smp_processor_id();
169 	unsigned long flags;
170 
171 	platform_clear_ipi(cpu, IRQ_SUPPLE_1);
172 
173 	msg_queue = &__get_cpu_var(ipi_msg_queue);
174 
175 	spin_lock_irqsave(&msg_queue->lock, flags);
176 
177 	while (msg_queue->count) {
178 		msg = &msg_queue->ipi_message[msg_queue->head];
179 		switch (msg->type) {
180 		case BFIN_IPI_CALL_FUNC:
181 			spin_unlock_irqrestore(&msg_queue->lock, flags);
182 			ipi_call_function(cpu, msg);
183 			spin_lock_irqsave(&msg_queue->lock, flags);
184 			break;
185 		case BFIN_IPI_CPU_STOP:
186 			spin_unlock_irqrestore(&msg_queue->lock, flags);
187 			ipi_cpu_stop(cpu);
188 			spin_lock_irqsave(&msg_queue->lock, flags);
189 			break;
190 		default:
191 			printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%lx\n",
192 			       cpu, msg->type);
193 			break;
194 		}
195 		msg_queue->head++;
196 		msg_queue->head %= BFIN_IPI_MSGQ_LEN;
197 		msg_queue->count--;
198 	}
199 	spin_unlock_irqrestore(&msg_queue->lock, flags);
200 	return IRQ_HANDLED;
201 }
202 
ipi_queue_init(void)203 static void ipi_queue_init(void)
204 {
205 	unsigned int cpu;
206 	struct ipi_message_queue *msg_queue;
207 	for_each_possible_cpu(cpu) {
208 		msg_queue = &per_cpu(ipi_msg_queue, cpu);
209 		spin_lock_init(&msg_queue->lock);
210 		msg_queue->count = 0;
211 		msg_queue->head = 0;
212 	}
213 }
214 
smp_send_message(cpumask_t callmap,unsigned long type,void (* func)(void * info),void * info,int wait)215 static inline void smp_send_message(cpumask_t callmap, unsigned long type,
216 					void (*func) (void *info), void *info, int wait)
217 {
218 	unsigned int cpu;
219 	struct ipi_message_queue *msg_queue;
220 	struct ipi_message *msg;
221 	unsigned long flags, next_msg;
222 	cpumask_t waitmask = callmap; /* waitmask is shared by all cpus */
223 
224 	for_each_cpu_mask(cpu, callmap) {
225 		msg_queue = &per_cpu(ipi_msg_queue, cpu);
226 		spin_lock_irqsave(&msg_queue->lock, flags);
227 		if (msg_queue->count < BFIN_IPI_MSGQ_LEN) {
228 			next_msg = (msg_queue->head + msg_queue->count)
229 					% BFIN_IPI_MSGQ_LEN;
230 			msg = &msg_queue->ipi_message[next_msg];
231 			msg->type = type;
232 			if (type == BFIN_IPI_CALL_FUNC) {
233 				msg->call_struct.func = func;
234 				msg->call_struct.info = info;
235 				msg->call_struct.wait = wait;
236 				msg->call_struct.waitmask = &waitmask;
237 			}
238 			msg_queue->count++;
239 		} else
240 			panic("IPI message queue overflow\n");
241 		spin_unlock_irqrestore(&msg_queue->lock, flags);
242 		platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1);
243 	}
244 
245 	if (wait) {
246 		while (!cpus_empty(waitmask))
247 			blackfin_dcache_invalidate_range(
248 				(unsigned long)(&waitmask),
249 				(unsigned long)(&waitmask));
250 #ifdef __ARCH_SYNC_CORE_DCACHE
251 		/*
252 		 * Invalidate D cache in case shared data was changed by
253 		 * other processors to ensure cache coherence.
254 		 */
255 		resync_core_dcache();
256 #endif
257 	}
258 }
259 
smp_call_function(void (* func)(void * info),void * info,int wait)260 int smp_call_function(void (*func)(void *info), void *info, int wait)
261 {
262 	cpumask_t callmap;
263 
264 	preempt_disable();
265 	callmap = cpu_online_map;
266 	cpu_clear(smp_processor_id(), callmap);
267 	if (!cpus_empty(callmap))
268 		smp_send_message(callmap, BFIN_IPI_CALL_FUNC, func, info, wait);
269 
270 	preempt_enable();
271 
272 	return 0;
273 }
274 EXPORT_SYMBOL_GPL(smp_call_function);
275 
smp_call_function_single(int cpuid,void (* func)(void * info),void * info,int wait)276 int smp_call_function_single(int cpuid, void (*func) (void *info), void *info,
277 				int wait)
278 {
279 	unsigned int cpu = cpuid;
280 	cpumask_t callmap;
281 
282 	if (cpu_is_offline(cpu))
283 		return 0;
284 	cpus_clear(callmap);
285 	cpu_set(cpu, callmap);
286 
287 	smp_send_message(callmap, BFIN_IPI_CALL_FUNC, func, info, wait);
288 
289 	return 0;
290 }
291 EXPORT_SYMBOL_GPL(smp_call_function_single);
292 
smp_send_reschedule(int cpu)293 void smp_send_reschedule(int cpu)
294 {
295 	/* simply trigger an ipi */
296 	if (cpu_is_offline(cpu))
297 		return;
298 	platform_send_ipi_cpu(cpu, IRQ_SUPPLE_0);
299 
300 	return;
301 }
302 
smp_send_stop(void)303 void smp_send_stop(void)
304 {
305 	cpumask_t callmap;
306 
307 	preempt_disable();
308 	callmap = cpu_online_map;
309 	cpu_clear(smp_processor_id(), callmap);
310 	if (!cpus_empty(callmap))
311 		smp_send_message(callmap, BFIN_IPI_CPU_STOP, NULL, NULL, 0);
312 
313 	preempt_enable();
314 
315 	return;
316 }
317 
__cpu_up(unsigned int cpu)318 int __cpuinit __cpu_up(unsigned int cpu)
319 {
320 	int ret;
321 	static struct task_struct *idle;
322 
323 	if (idle)
324 		free_task(idle);
325 
326 	idle = fork_idle(cpu);
327 	if (IS_ERR(idle)) {
328 		printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
329 		return PTR_ERR(idle);
330 	}
331 
332 	secondary_stack = task_stack_page(idle) + THREAD_SIZE;
333 
334 	ret = platform_boot_secondary(cpu, idle);
335 
336 	secondary_stack = NULL;
337 
338 	return ret;
339 }
340 
setup_secondary(unsigned int cpu)341 static void __cpuinit setup_secondary(unsigned int cpu)
342 {
343 	unsigned long ilat;
344 
345 	bfin_write_IMASK(0);
346 	CSYNC();
347 	ilat = bfin_read_ILAT();
348 	CSYNC();
349 	bfin_write_ILAT(ilat);
350 	CSYNC();
351 
352 	/* Enable interrupt levels IVG7-15. IARs have been already
353 	 * programmed by the boot CPU.  */
354 	bfin_irq_flags |= IMASK_IVG15 |
355 	    IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
356 	    IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
357 }
358 
secondary_start_kernel(void)359 void __cpuinit secondary_start_kernel(void)
360 {
361 	unsigned int cpu = smp_processor_id();
362 	struct mm_struct *mm = &init_mm;
363 
364 	if (_bfin_swrst & SWRST_DBL_FAULT_B) {
365 		printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
366 #ifdef CONFIG_DEBUG_DOUBLEFAULT
367 		printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
368 			(int)init_saved_seqstat_coreb & SEQSTAT_EXCAUSE, init_saved_retx_coreb);
369 		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr_coreb);
370 		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr_coreb);
371 #endif
372 		printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
373 			init_retx_coreb);
374 	}
375 
376 	/*
377 	 * We want the D-cache to be enabled early, in case the atomic
378 	 * support code emulates cache coherence (see
379 	 * __ARCH_SYNC_CORE_DCACHE).
380 	 */
381 	init_exception_vectors();
382 
383 	local_irq_disable();
384 
385 	/* Attach the new idle task to the global mm. */
386 	atomic_inc(&mm->mm_users);
387 	atomic_inc(&mm->mm_count);
388 	current->active_mm = mm;
389 
390 	preempt_disable();
391 
392 	setup_secondary(cpu);
393 
394 	platform_secondary_init(cpu);
395 
396 	/* setup local core timer */
397 	bfin_local_timer_setup();
398 
399 	local_irq_enable();
400 
401 	bfin_setup_caches(cpu);
402 
403 	/*
404 	 * Calibrate loops per jiffy value.
405 	 * IRQs need to be enabled here - D-cache can be invalidated
406 	 * in timer irq handler, so core B can read correct jiffies.
407 	 */
408 	calibrate_delay();
409 
410 	cpu_idle();
411 }
412 
smp_prepare_boot_cpu(void)413 void __init smp_prepare_boot_cpu(void)
414 {
415 }
416 
smp_prepare_cpus(unsigned int max_cpus)417 void __init smp_prepare_cpus(unsigned int max_cpus)
418 {
419 	platform_prepare_cpus(max_cpus);
420 	ipi_queue_init();
421 	platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0);
422 	platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1);
423 }
424 
smp_cpus_done(unsigned int max_cpus)425 void __init smp_cpus_done(unsigned int max_cpus)
426 {
427 	unsigned long bogosum = 0;
428 	unsigned int cpu;
429 
430 	for_each_online_cpu(cpu)
431 		bogosum += loops_per_jiffy;
432 
433 	printk(KERN_INFO "SMP: Total of %d processors activated "
434 	       "(%lu.%02lu BogoMIPS).\n",
435 	       num_online_cpus(),
436 	       bogosum / (500000/HZ),
437 	       (bogosum / (5000/HZ)) % 100);
438 }
439 
smp_icache_flush_range_others(unsigned long start,unsigned long end)440 void smp_icache_flush_range_others(unsigned long start, unsigned long end)
441 {
442 	smp_flush_data.start = start;
443 	smp_flush_data.end = end;
444 
445 	if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 0))
446 		printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
447 }
448 EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
449 
450 #ifdef __ARCH_SYNC_CORE_ICACHE
451 unsigned long icache_invld_count[NR_CPUS];
resync_core_icache(void)452 void resync_core_icache(void)
453 {
454 	unsigned int cpu = get_cpu();
455 	blackfin_invalidate_entire_icache();
456 	icache_invld_count[cpu]++;
457 	put_cpu();
458 }
459 EXPORT_SYMBOL(resync_core_icache);
460 #endif
461 
462 #ifdef __ARCH_SYNC_CORE_DCACHE
463 unsigned long dcache_invld_count[NR_CPUS];
464 unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
465 
resync_core_dcache(void)466 void resync_core_dcache(void)
467 {
468 	unsigned int cpu = get_cpu();
469 	blackfin_invalidate_entire_dcache();
470 	dcache_invld_count[cpu]++;
471 	put_cpu();
472 }
473 EXPORT_SYMBOL(resync_core_dcache);
474 #endif
475 
476 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)477 int __cpuexit __cpu_disable(void)
478 {
479 	unsigned int cpu = smp_processor_id();
480 
481 	if (cpu == 0)
482 		return -EPERM;
483 
484 	set_cpu_online(cpu, false);
485 	return 0;
486 }
487 
488 static DECLARE_COMPLETION(cpu_killed);
489 
__cpu_die(unsigned int cpu)490 int __cpuexit __cpu_die(unsigned int cpu)
491 {
492 	return wait_for_completion_timeout(&cpu_killed, 5000);
493 }
494 
cpu_die(void)495 void cpu_die(void)
496 {
497 	complete(&cpu_killed);
498 
499 	atomic_dec(&init_mm.mm_users);
500 	atomic_dec(&init_mm.mm_count);
501 
502 	local_irq_disable();
503 	platform_cpu_die();
504 }
505 #endif
506