1 #ifndef _ALPHA_PGTABLE_H
2 #define _ALPHA_PGTABLE_H
3 
4 #include <asm-generic/4level-fixup.h>
5 
6 /*
7  * This file contains the functions and defines necessary to modify and use
8  * the Alpha page table tree.
9  *
10  * This hopefully works with any standard Alpha page-size, as defined
11  * in <asm/page.h> (currently 8192).
12  */
13 #include <linux/mmzone.h>
14 
15 #include <asm/page.h>
16 #include <asm/processor.h>	/* For TASK_SIZE */
17 #include <asm/machvec.h>
18 
19 struct mm_struct;
20 struct vm_area_struct;
21 
22 /* Certain architectures need to do special things when PTEs
23  * within a page table are directly modified.  Thus, the following
24  * hook is made available.
25  */
26 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
27 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
28 
29 /* PMD_SHIFT determines the size of the area a second-level page table can map */
30 #define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-3))
31 #define PMD_SIZE	(1UL << PMD_SHIFT)
32 #define PMD_MASK	(~(PMD_SIZE-1))
33 
34 /* PGDIR_SHIFT determines what a third-level page table entry can map */
35 #define PGDIR_SHIFT	(PAGE_SHIFT + 2*(PAGE_SHIFT-3))
36 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
37 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
38 
39 /*
40  * Entries per page directory level:  the Alpha is three-level, with
41  * all levels having a one-page page table.
42  */
43 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-3))
44 #define PTRS_PER_PMD	(1UL << (PAGE_SHIFT-3))
45 #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-3))
46 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
47 #define FIRST_USER_ADDRESS	0
48 
49 /* Number of pointers that fit on a page:  this will go away. */
50 #define PTRS_PER_PAGE	(1UL << (PAGE_SHIFT-3))
51 
52 #ifdef CONFIG_ALPHA_LARGE_VMALLOC
53 #define VMALLOC_START		0xfffffe0000000000
54 #else
55 #define VMALLOC_START		(-2*PGDIR_SIZE)
56 #endif
57 #define VMALLOC_END		(-PGDIR_SIZE)
58 
59 /*
60  * OSF/1 PAL-code-imposed page table bits
61  */
62 #define _PAGE_VALID	0x0001
63 #define _PAGE_FOR	0x0002	/* used for page protection (fault on read) */
64 #define _PAGE_FOW	0x0004	/* used for page protection (fault on write) */
65 #define _PAGE_FOE	0x0008	/* used for page protection (fault on exec) */
66 #define _PAGE_ASM	0x0010
67 #define _PAGE_KRE	0x0100	/* xxx - see below on the "accessed" bit */
68 #define _PAGE_URE	0x0200	/* xxx */
69 #define _PAGE_KWE	0x1000	/* used to do the dirty bit in software */
70 #define _PAGE_UWE	0x2000	/* used to do the dirty bit in software */
71 
72 /* .. and these are ours ... */
73 #define _PAGE_DIRTY	0x20000
74 #define _PAGE_ACCESSED	0x40000
75 #define _PAGE_FILE	0x80000	/* set:pagecache, unset:swap */
76 
77 /*
78  * NOTE! The "accessed" bit isn't necessarily exact:  it can be kept exactly
79  * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
80  * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
81  * the KRE/URE bits to watch for it. That way we don't need to overload the
82  * KWE/UWE bits with both handling dirty and accessed.
83  *
84  * Note that the kernel uses the accessed bit just to check whether to page
85  * out a page or not, so it doesn't have to be exact anyway.
86  */
87 
88 #define __DIRTY_BITS	(_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
89 #define __ACCESS_BITS	(_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
90 
91 #define _PFN_MASK	0xFFFFFFFF00000000UL
92 
93 #define _PAGE_TABLE	(_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
94 #define _PAGE_CHG_MASK	(_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
95 
96 /*
97  * All the normal masks have the "page accessed" bits on, as any time they are used,
98  * the page is accessed. They are cleared only by the page-out routines
99  */
100 #define PAGE_NONE	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
101 #define PAGE_SHARED	__pgprot(_PAGE_VALID | __ACCESS_BITS)
102 #define PAGE_COPY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
103 #define PAGE_READONLY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
104 #define PAGE_KERNEL	__pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
105 
106 #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
107 
108 #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
109 #define _PAGE_S(x) _PAGE_NORMAL(x)
110 
111 /*
112  * The hardware can handle write-only mappings, but as the Alpha
113  * architecture does byte-wide writes with a read-modify-write
114  * sequence, it's not practical to have write-without-read privs.
115  * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
116  * arch/alpha/mm/fault.c)
117  */
118 	/* xwr */
119 #define __P000	_PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
120 #define __P001	_PAGE_P(_PAGE_FOE | _PAGE_FOW)
121 #define __P010	_PAGE_P(_PAGE_FOE)
122 #define __P011	_PAGE_P(_PAGE_FOE)
123 #define __P100	_PAGE_P(_PAGE_FOW | _PAGE_FOR)
124 #define __P101	_PAGE_P(_PAGE_FOW)
125 #define __P110	_PAGE_P(0)
126 #define __P111	_PAGE_P(0)
127 
128 #define __S000	_PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
129 #define __S001	_PAGE_S(_PAGE_FOE | _PAGE_FOW)
130 #define __S010	_PAGE_S(_PAGE_FOE)
131 #define __S011	_PAGE_S(_PAGE_FOE)
132 #define __S100	_PAGE_S(_PAGE_FOW | _PAGE_FOR)
133 #define __S101	_PAGE_S(_PAGE_FOW)
134 #define __S110	_PAGE_S(0)
135 #define __S111	_PAGE_S(0)
136 
137 /*
138  * pgprot_noncached() is only for infiniband pci support, and a real
139  * implementation for RAM would be more complicated.
140  */
141 #define pgprot_noncached(prot)	(prot)
142 
143 /*
144  * BAD_PAGETABLE is used when we need a bogus page-table, while
145  * BAD_PAGE is used for a bogus page.
146  *
147  * ZERO_PAGE is a global shared page that is always zero:  used
148  * for zero-mapped memory areas etc..
149  */
150 extern pte_t __bad_page(void);
151 extern pmd_t * __bad_pagetable(void);
152 
153 extern unsigned long __zero_page(void);
154 
155 #define BAD_PAGETABLE	__bad_pagetable()
156 #define BAD_PAGE	__bad_page()
157 #define ZERO_PAGE(vaddr)	(virt_to_page(ZERO_PGE))
158 
159 /* number of bits that fit into a memory pointer */
160 #define BITS_PER_PTR			(8*sizeof(unsigned long))
161 
162 /* to align the pointer to a pointer address */
163 #define PTR_MASK			(~(sizeof(void*)-1))
164 
165 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
166 #define SIZEOF_PTR_LOG2			3
167 
168 /* to find an entry in a page-table */
169 #define PAGE_PTR(address)		\
170   ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
171 
172 /*
173  * On certain platforms whose physical address space can overlap KSEG,
174  * namely EV6 and above, we must re-twiddle the physaddr to restore the
175  * correct high-order bits.
176  *
177  * This is extremely confusing until you realize that this is actually
178  * just working around a userspace bug.  The X server was intending to
179  * provide the physical address but instead provided the KSEG address.
180  * Or tried to, except it's not representable.
181  *
182  * On Tsunami there's nothing meaningful at 0x40000000000, so this is
183  * a safe thing to do.  Come the first core logic that does put something
184  * in this area -- memory or whathaveyou -- then this hack will have
185  * to go away.  So be prepared!
186  */
187 
188 #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG)
189 #error "EV6-only feature in a generic kernel"
190 #endif
191 #if defined(CONFIG_ALPHA_GENERIC) || \
192     (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG))
193 #define KSEG_PFN	(0xc0000000000UL >> PAGE_SHIFT)
194 #define PHYS_TWIDDLE(pfn) \
195   ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \
196   ? ((pfn) ^= KSEG_PFN) : (pfn))
197 #else
198 #define PHYS_TWIDDLE(pfn) (pfn)
199 #endif
200 
201 /*
202  * Conversion functions:  convert a page and protection to a page entry,
203  * and a page entry and page directory to the page they refer to.
204  */
205 #ifndef CONFIG_DISCONTIGMEM
206 #define page_to_pa(page)	(((page) - mem_map) << PAGE_SHIFT)
207 
208 #define pte_pfn(pte)	(pte_val(pte) >> 32)
209 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
210 #define mk_pte(page, pgprot)						\
211 ({									\
212 	pte_t pte;							\
213 									\
214 	pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot);	\
215 	pte;								\
216 })
217 #endif
218 
pfn_pte(unsigned long physpfn,pgprot_t pgprot)219 extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot)
220 { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; }
221 
pte_modify(pte_t pte,pgprot_t newprot)222 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
223 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
224 
pmd_set(pmd_t * pmdp,pte_t * ptep)225 extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
226 { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
227 
pgd_set(pgd_t * pgdp,pmd_t * pmdp)228 extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
229 { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
230 
231 
232 extern inline unsigned long
pmd_page_vaddr(pmd_t pmd)233 pmd_page_vaddr(pmd_t pmd)
234 {
235 	return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET;
236 }
237 
238 #ifndef CONFIG_DISCONTIGMEM
239 #define pmd_page(pmd)	(mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32))
240 #define pgd_page(pgd)	(mem_map + ((pgd_val(pgd) & _PFN_MASK) >> 32))
241 #endif
242 
pgd_page_vaddr(pgd_t pgd)243 extern inline unsigned long pgd_page_vaddr(pgd_t pgd)
244 { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
245 
pte_none(pte_t pte)246 extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
pte_present(pte_t pte)247 extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_VALID; }
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)248 extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
249 {
250 	pte_val(*ptep) = 0;
251 }
252 
pmd_none(pmd_t pmd)253 extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); }
pmd_bad(pmd_t pmd)254 extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; }
pmd_present(pmd_t pmd)255 extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_VALID; }
pmd_clear(pmd_t * pmdp)256 extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; }
257 
pgd_none(pgd_t pgd)258 extern inline int pgd_none(pgd_t pgd)		{ return !pgd_val(pgd); }
pgd_bad(pgd_t pgd)259 extern inline int pgd_bad(pgd_t pgd)		{ return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE; }
pgd_present(pgd_t pgd)260 extern inline int pgd_present(pgd_t pgd)	{ return pgd_val(pgd) & _PAGE_VALID; }
pgd_clear(pgd_t * pgdp)261 extern inline void pgd_clear(pgd_t * pgdp)	{ pgd_val(*pgdp) = 0; }
262 
263 /*
264  * The following only work if pte_present() is true.
265  * Undefined behaviour if not..
266  */
pte_write(pte_t pte)267 extern inline int pte_write(pte_t pte)		{ return !(pte_val(pte) & _PAGE_FOW); }
pte_dirty(pte_t pte)268 extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)269 extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
pte_file(pte_t pte)270 extern inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
pte_special(pte_t pte)271 extern inline int pte_special(pte_t pte)	{ return 0; }
272 
pte_wrprotect(pte_t pte)273 extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) |= _PAGE_FOW; return pte; }
pte_mkclean(pte_t pte)274 extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
pte_mkold(pte_t pte)275 extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
pte_mkwrite(pte_t pte)276 extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) &= ~_PAGE_FOW; return pte; }
pte_mkdirty(pte_t pte)277 extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= __DIRTY_BITS; return pte; }
pte_mkyoung(pte_t pte)278 extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= __ACCESS_BITS; return pte; }
pte_mkspecial(pte_t pte)279 extern inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
280 
281 #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
282 
283 /* to find an entry in a kernel page-table-directory */
284 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
285 
286 /* to find an entry in a page-table-directory. */
287 #define pgd_index(address)	(((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
288 #define pgd_offset(mm, address)	((mm)->pgd+pgd_index(address))
289 
290 /*
291  * The smp_read_barrier_depends() in the following functions are required to
292  * order the load of *dir (the pointer in the top level page table) with any
293  * subsequent load of the returned pmd_t *ret (ret is data dependent on *dir).
294  *
295  * If this ordering is not enforced, the CPU might load an older value of
296  * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for
297  * more details.
298  *
299  * Note that we never change the mm->pgd pointer after the task is running, so
300  * pgd_offset does not require such a barrier.
301  */
302 
303 /* Find an entry in the second-level page table.. */
pmd_offset(pgd_t * dir,unsigned long address)304 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
305 {
306 	pmd_t *ret = (pmd_t *) pgd_page_vaddr(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
307 	smp_read_barrier_depends(); /* see above */
308 	return ret;
309 }
310 
311 /* Find an entry in the third-level page table.. */
pte_offset_kernel(pmd_t * dir,unsigned long address)312 extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address)
313 {
314 	pte_t *ret = (pte_t *) pmd_page_vaddr(*dir)
315 		+ ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
316 	smp_read_barrier_depends(); /* see above */
317 	return ret;
318 }
319 
320 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr))
321 #define pte_unmap(pte)			do { } while (0)
322 
323 extern pgd_t swapper_pg_dir[1024];
324 
325 /*
326  * The Alpha doesn't have any external MMU info:  the kernel page
327  * tables contain all the necessary information.
328  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)329 extern inline void update_mmu_cache(struct vm_area_struct * vma,
330 	unsigned long address, pte_t *ptep)
331 {
332 }
333 
334 /*
335  * Non-present pages:  high 24 bits are offset, next 8 bits type,
336  * low 32 bits zero.
337  */
mk_swap_pte(unsigned long type,unsigned long offset)338 extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
339 { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
340 
341 #define __swp_type(x)		(((x).val >> 32) & 0xff)
342 #define __swp_offset(x)		((x).val >> 40)
343 #define __swp_entry(type, off)	((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) })
344 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
345 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
346 
347 #define pte_to_pgoff(pte)	(pte_val(pte) >> 32)
348 #define pgoff_to_pte(off)	((pte_t) { ((off) << 32) | _PAGE_FILE })
349 
350 #define PTE_FILE_MAX_BITS	32
351 
352 #ifndef CONFIG_DISCONTIGMEM
353 #define kern_addr_valid(addr)	(1)
354 #endif
355 
356 #define io_remap_pfn_range(vma, start, pfn, size, prot)	\
357 		remap_pfn_range(vma, start, pfn, size, prot)
358 
359 #define pte_ERROR(e) \
360 	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
361 #define pmd_ERROR(e) \
362 	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
363 #define pgd_ERROR(e) \
364 	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
365 
366 extern void paging_init(void);
367 
368 #include <asm-generic/pgtable.h>
369 
370 /*
371  * No page table caches to initialise
372  */
373 #define pgtable_cache_init()	do { } while (0)
374 
375 /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT.  */
376 #define HAVE_ARCH_UNMAPPED_AREA
377 
378 #endif /* _ALPHA_PGTABLE_H */
379