1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro, <bir7@leland.Stanford.Edu>
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  */
59 
60 #include <linux/config.h>
61 #include <linux/mm.h>
62 #include <linux/smp_lock.h>
63 #include <linux/socket.h>
64 #include <linux/file.h>
65 #include <linux/net.h>
66 #include <linux/interrupt.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/wanrouter.h>
70 #include <linux/netlink.h>
71 #include <linux/rtnetlink.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 
78 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
79 #include <linux/kmod.h>
80 #endif
81 
82 #include <asm/uaccess.h>
83 
84 #include <net/sock.h>
85 #include <net/scm.h>
86 #include <linux/netfilter.h>
87 
88 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
89 static ssize_t sock_read(struct file *file, char *buf,
90 			 size_t size, loff_t *ppos);
91 static ssize_t sock_write(struct file *file, const char *buf,
92 			  size_t size, loff_t *ppos);
93 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
94 
95 static int sock_close(struct inode *inode, struct file *file);
96 static unsigned int sock_poll(struct file *file,
97 			      struct poll_table_struct *wait);
98 static int sock_ioctl(struct inode *inode, struct file *file,
99 		      unsigned int cmd, unsigned long arg);
100 static int sock_fasync(int fd, struct file *filp, int on);
101 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
102 			  unsigned long count, loff_t *ppos);
103 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
104 			  unsigned long count, loff_t *ppos);
105 static ssize_t sock_sendpage(struct file *file, struct page *page,
106 			     int offset, size_t size, loff_t *ppos, int more);
107 
108 
109 /*
110  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
111  *	in the operation structures but are done directly via the socketcall() multiplexor.
112  */
113 
114 static struct file_operations socket_file_ops = {
115 	llseek:		no_llseek,
116 	read:		sock_read,
117 	write:		sock_write,
118 	poll:		sock_poll,
119 	ioctl:		sock_ioctl,
120 	mmap:		sock_mmap,
121 	open:		sock_no_open,	/* special open code to disallow open via /proc */
122 	release:	sock_close,
123 	fasync:		sock_fasync,
124 	readv:		sock_readv,
125 	writev:		sock_writev,
126 	sendpage:	sock_sendpage
127 };
128 
129 /*
130  *	The protocol list. Each protocol is registered in here.
131  */
132 
133 static struct net_proto_family *net_families[NPROTO];
134 
135 #ifdef CONFIG_SMP
136 static atomic_t net_family_lockct = ATOMIC_INIT(0);
137 static spinlock_t net_family_lock = SPIN_LOCK_UNLOCKED;
138 
139 /* The strategy is: modifications net_family vector are short, do not
140    sleep and veeery rare, but read access should be free of any exclusive
141    locks.
142  */
143 
net_family_write_lock(void)144 static void net_family_write_lock(void)
145 {
146 	spin_lock(&net_family_lock);
147 	while (atomic_read(&net_family_lockct) != 0) {
148 		spin_unlock(&net_family_lock);
149 
150 		yield();
151 
152 		spin_lock(&net_family_lock);
153 	}
154 }
155 
net_family_write_unlock(void)156 static __inline__ void net_family_write_unlock(void)
157 {
158 	spin_unlock(&net_family_lock);
159 }
160 
net_family_read_lock(void)161 static __inline__ void net_family_read_lock(void)
162 {
163 	atomic_inc(&net_family_lockct);
164 	spin_unlock_wait(&net_family_lock);
165 }
166 
net_family_read_unlock(void)167 static __inline__ void net_family_read_unlock(void)
168 {
169 	atomic_dec(&net_family_lockct);
170 }
171 
172 #else
173 #define net_family_write_lock() do { } while(0)
174 #define net_family_write_unlock() do { } while(0)
175 #define net_family_read_lock() do { } while(0)
176 #define net_family_read_unlock() do { } while(0)
177 #endif
178 
179 
180 /*
181  *	Statistics counters of the socket lists
182  */
183 
184 static union {
185 	int	counter;
186 	char	__pad[SMP_CACHE_BYTES];
187 } sockets_in_use[NR_CPUS] __cacheline_aligned = {{0}};
188 
189 /*
190  *	Support routines. Move socket addresses back and forth across the kernel/user
191  *	divide and look after the messy bits.
192  */
193 
194 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
195 					   16 for IP, 16 for IPX,
196 					   24 for IPv6,
197 					   about 80 for AX.25
198 					   must be at least one bigger than
199 					   the AF_UNIX size (see net/unix/af_unix.c
200 					   :unix_mkname()).
201 					 */
202 
203 /**
204  *	move_addr_to_kernel	-	copy a socket address into kernel space
205  *	@uaddr: Address in user space
206  *	@kaddr: Address in kernel space
207  *	@ulen: Length in user space
208  *
209  *	The address is copied into kernel space. If the provided address is
210  *	too long an error code of -EINVAL is returned. If the copy gives
211  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
212  */
213 
move_addr_to_kernel(void * uaddr,int ulen,void * kaddr)214 int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)
215 {
216 	if(ulen<0||ulen>MAX_SOCK_ADDR)
217 		return -EINVAL;
218 	if(ulen==0)
219 		return 0;
220 	if(copy_from_user(kaddr,uaddr,ulen))
221 		return -EFAULT;
222 	return 0;
223 }
224 
225 /**
226  *	move_addr_to_user	-	copy an address to user space
227  *	@kaddr: kernel space address
228  *	@klen: length of address in kernel
229  *	@uaddr: user space address
230  *	@ulen: pointer to user length field
231  *
232  *	The value pointed to by ulen on entry is the buffer length available.
233  *	This is overwritten with the buffer space used. -EINVAL is returned
234  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
235  *	is returned if either the buffer or the length field are not
236  *	accessible.
237  *	After copying the data up to the limit the user specifies, the true
238  *	length of the data is written over the length limit the user
239  *	specified. Zero is returned for a success.
240  */
241 
move_addr_to_user(void * kaddr,int klen,void * uaddr,int * ulen)242 int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen)
243 {
244 	int err;
245 	int len;
246 
247 	if((err=get_user(len, ulen)))
248 		return err;
249 	if(len>klen)
250 		len=klen;
251 	if(len<0 || len> MAX_SOCK_ADDR)
252 		return -EINVAL;
253 	if(len)
254 	{
255 		if(copy_to_user(uaddr,kaddr,len))
256 			return -EFAULT;
257 	}
258 	/*
259 	 *	"fromlen shall refer to the value before truncation.."
260 	 *			1003.1g
261 	 */
262 	return __put_user(klen, ulen);
263 }
264 
265 #define SOCKFS_MAGIC 0x534F434B
sockfs_statfs(struct super_block * sb,struct statfs * buf)266 static int sockfs_statfs(struct super_block *sb, struct statfs *buf)
267 {
268 	buf->f_type = SOCKFS_MAGIC;
269 	buf->f_bsize = 1024;
270 	buf->f_namelen = 255;
271 	return 0;
272 }
273 
274 static struct super_operations sockfs_ops = {
275 	statfs:		sockfs_statfs,
276 };
277 
sockfs_read_super(struct super_block * sb,void * data,int silent)278 static struct super_block * sockfs_read_super(struct super_block *sb, void *data, int silent)
279 {
280 	struct inode *root = new_inode(sb);
281 	if (!root)
282 		return NULL;
283 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
284 	root->i_uid = root->i_gid = 0;
285 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
286 	sb->s_blocksize = 1024;
287 	sb->s_blocksize_bits = 10;
288 	sb->s_magic = SOCKFS_MAGIC;
289 	sb->s_op	= &sockfs_ops;
290 	sb->s_root = d_alloc(NULL, &(const struct qstr) { "socket:", 7, 0 });
291 	if (!sb->s_root) {
292 		iput(root);
293 		return NULL;
294 	}
295 	sb->s_root->d_sb = sb;
296 	sb->s_root->d_parent = sb->s_root;
297 	d_instantiate(sb->s_root, root);
298 	return sb;
299 }
300 
301 static struct vfsmount *sock_mnt;
302 static DECLARE_FSTYPE(sock_fs_type, "sockfs", sockfs_read_super, FS_NOMOUNT);
sockfs_delete_dentry(struct dentry * dentry)303 static int sockfs_delete_dentry(struct dentry *dentry)
304 {
305 	return 1;
306 }
307 static struct dentry_operations sockfs_dentry_operations = {
308 	d_delete:	sockfs_delete_dentry,
309 };
310 
311 /*
312  *	Obtains the first available file descriptor and sets it up for use.
313  *
314  *	This function creates file structure and maps it to fd space
315  *	of current process. On success it returns file descriptor
316  *	and file struct implicitly stored in sock->file.
317  *	Note that another thread may close file descriptor before we return
318  *	from this function. We use the fact that now we do not refer
319  *	to socket after mapping. If one day we will need it, this
320  *	function will increment ref. count on file by 1.
321  *
322  *	In any case returned fd MAY BE not valid!
323  *	This race condition is unavoidable
324  *	with shared fd spaces, we cannot solve it inside kernel,
325  *	but we take care of internal coherence yet.
326  */
327 
sock_map_fd(struct socket * sock)328 int sock_map_fd(struct socket *sock)
329 {
330 	int fd;
331 	struct qstr this;
332 	char name[32];
333 
334 	/*
335 	 *	Find a file descriptor suitable for return to the user.
336 	 */
337 
338 	fd = get_unused_fd();
339 	if (fd >= 0) {
340 		struct file *file = get_empty_filp();
341 
342 		if (!file) {
343 			put_unused_fd(fd);
344 			fd = -ENFILE;
345 			goto out;
346 		}
347 
348 		sprintf(name, "[%lu]", sock->inode->i_ino);
349 		this.name = name;
350 		this.len = strlen(name);
351 		this.hash = sock->inode->i_ino;
352 
353 		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
354 		if (!file->f_dentry) {
355 			put_filp(file);
356 			put_unused_fd(fd);
357 			fd = -ENOMEM;
358 			goto out;
359 		}
360 		file->f_dentry->d_op = &sockfs_dentry_operations;
361 		d_add(file->f_dentry, sock->inode);
362 		file->f_vfsmnt = mntget(sock_mnt);
363 
364 		sock->file = file;
365 		file->f_op = sock->inode->i_fop = &socket_file_ops;
366 		file->f_mode = 3;
367 		file->f_flags = O_RDWR;
368 		file->f_pos = 0;
369 		fd_install(fd, file);
370 	}
371 
372 out:
373 	return fd;
374 }
375 
socki_lookup(struct inode * inode)376 extern __inline__ struct socket *socki_lookup(struct inode *inode)
377 {
378 	return &inode->u.socket_i;
379 }
380 
381 /**
382  *	sockfd_lookup	- 	Go from a file number to its socket slot
383  *	@fd: file handle
384  *	@err: pointer to an error code return
385  *
386  *	The file handle passed in is locked and the socket it is bound
387  *	too is returned. If an error occurs the err pointer is overwritten
388  *	with a negative errno code and NULL is returned. The function checks
389  *	for both invalid handles and passing a handle which is not a socket.
390  *
391  *	On a success the socket object pointer is returned.
392  */
393 
sockfd_lookup(int fd,int * err)394 struct socket *sockfd_lookup(int fd, int *err)
395 {
396 	struct file *file;
397 	struct inode *inode;
398 	struct socket *sock;
399 
400 	if (!(file = fget(fd)))
401 	{
402 		*err = -EBADF;
403 		return NULL;
404 	}
405 
406 	inode = file->f_dentry->d_inode;
407 	if (!inode->i_sock || !(sock = socki_lookup(inode)))
408 	{
409 		*err = -ENOTSOCK;
410 		fput(file);
411 		return NULL;
412 	}
413 
414 	if (sock->file != file) {
415 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
416 		sock->file = file;
417 	}
418 	return sock;
419 }
420 
sockfd_put(struct socket * sock)421 extern __inline__ void sockfd_put(struct socket *sock)
422 {
423 	fput(sock->file);
424 }
425 
426 /**
427  *	sock_alloc	-	allocate a socket
428  *
429  *	Allocate a new inode and socket object. The two are bound together
430  *	and initialised. The socket is then returned. If we are out of inodes
431  *	NULL is returned.
432  */
433 
sock_alloc(void)434 struct socket *sock_alloc(void)
435 {
436 	struct inode * inode;
437 	struct socket * sock;
438 
439 	inode = new_inode(sock_mnt->mnt_sb);
440 	if (!inode)
441 		return NULL;
442 
443 	inode->i_dev = NODEV;
444 	sock = socki_lookup(inode);
445 
446 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
447 	inode->i_sock = 1;
448 	inode->i_uid = current->fsuid;
449 	inode->i_gid = current->fsgid;
450 
451 	sock->inode = inode;
452 	init_waitqueue_head(&sock->wait);
453 	sock->fasync_list = NULL;
454 	sock->state = SS_UNCONNECTED;
455 	sock->flags = 0;
456 	sock->ops = NULL;
457 	sock->sk = NULL;
458 	sock->file = NULL;
459 
460 	sockets_in_use[smp_processor_id()].counter++;
461 	return sock;
462 }
463 
464 /*
465  *	In theory you can't get an open on this inode, but /proc provides
466  *	a back door. Remember to keep it shut otherwise you'll let the
467  *	creepy crawlies in.
468  */
469 
sock_no_open(struct inode * irrelevant,struct file * dontcare)470 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
471 {
472 	return -ENXIO;
473 }
474 
475 /**
476  *	sock_release	-	close a socket
477  *	@sock: socket to close
478  *
479  *	The socket is released from the protocol stack if it has a release
480  *	callback, and the inode is then released if the socket is bound to
481  *	an inode not a file.
482  */
483 
sock_release(struct socket * sock)484 void sock_release(struct socket *sock)
485 {
486 	if (sock->ops)
487 		sock->ops->release(sock);
488 
489 	if (sock->fasync_list)
490 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
491 
492 	sockets_in_use[smp_processor_id()].counter--;
493 	if (!sock->file) {
494 		iput(sock->inode);
495 		return;
496 	}
497 	sock->file=NULL;
498 }
499 
sock_sendmsg(struct socket * sock,struct msghdr * msg,int size)500 int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size)
501 {
502 	int err;
503 	struct scm_cookie scm;
504 
505 	err = scm_send(sock, msg, &scm);
506 	if (err >= 0) {
507 		err = sock->ops->sendmsg(sock, msg, size, &scm);
508 		scm_destroy(&scm);
509 	}
510 	return err;
511 }
512 
sock_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)513 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags)
514 {
515 	struct scm_cookie scm;
516 
517 	memset(&scm, 0, sizeof(scm));
518 
519 	size = sock->ops->recvmsg(sock, msg, size, flags, &scm);
520 	if (size >= 0)
521 		scm_recv(sock, msg, &scm, flags);
522 
523 	return size;
524 }
525 
526 
527 /*
528  *	Read data from a socket. ubuf is a user mode pointer. We make sure the user
529  *	area ubuf...ubuf+size-1 is writable before asking the protocol.
530  */
531 
sock_read(struct file * file,char * ubuf,size_t size,loff_t * ppos)532 static ssize_t sock_read(struct file *file, char *ubuf,
533 			 size_t size, loff_t *ppos)
534 {
535 	struct socket *sock;
536 	struct iovec iov;
537 	struct msghdr msg;
538 	int flags;
539 
540 	if (ppos != &file->f_pos)
541 		return -ESPIPE;
542 	if (size==0)		/* Match SYS5 behaviour */
543 		return 0;
544 
545 	sock = socki_lookup(file->f_dentry->d_inode);
546 
547 	msg.msg_name=NULL;
548 	msg.msg_namelen=0;
549 	msg.msg_iov=&iov;
550 	msg.msg_iovlen=1;
551 	msg.msg_control=NULL;
552 	msg.msg_controllen=0;
553 	iov.iov_base=ubuf;
554 	iov.iov_len=size;
555 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
556 
557 	return sock_recvmsg(sock, &msg, size, flags);
558 }
559 
560 
561 /*
562  *	Write data to a socket. We verify that the user area ubuf..ubuf+size-1
563  *	is readable by the user process.
564  */
565 
sock_write(struct file * file,const char * ubuf,size_t size,loff_t * ppos)566 static ssize_t sock_write(struct file *file, const char *ubuf,
567 			  size_t size, loff_t *ppos)
568 {
569 	struct socket *sock;
570 	struct msghdr msg;
571 	struct iovec iov;
572 
573 	if (ppos != &file->f_pos)
574 		return -ESPIPE;
575 	if(size==0)		/* Match SYS5 behaviour */
576 		return 0;
577 
578 	sock = socki_lookup(file->f_dentry->d_inode);
579 
580 	msg.msg_name=NULL;
581 	msg.msg_namelen=0;
582 	msg.msg_iov=&iov;
583 	msg.msg_iovlen=1;
584 	msg.msg_control=NULL;
585 	msg.msg_controllen=0;
586 	msg.msg_flags=!(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
587 	if (sock->type == SOCK_SEQPACKET)
588 		msg.msg_flags |= MSG_EOR;
589 	iov.iov_base=(void *)ubuf;
590 	iov.iov_len=size;
591 
592 	return sock_sendmsg(sock, &msg, size);
593 }
594 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)595 ssize_t sock_sendpage(struct file *file, struct page *page,
596 		      int offset, size_t size, loff_t *ppos, int more)
597 {
598 	struct socket *sock;
599 	int flags;
600 
601 	if (ppos != &file->f_pos)
602 		return -ESPIPE;
603 
604 	sock = socki_lookup(file->f_dentry->d_inode);
605 
606 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
607 	if (more)
608 		flags |= MSG_MORE;
609 
610 	if (!sock->ops->sendpage)
611 		return sock_no_sendpage(sock, page, offset, size, flags);
612 
613 	return sock->ops->sendpage(sock, page, offset, size, flags);
614 }
615 
sock_readv_writev(int type,struct inode * inode,struct file * file,const struct iovec * iov,long count,long size)616 int sock_readv_writev(int type, struct inode * inode, struct file * file,
617 		      const struct iovec * iov, long count, long size)
618 {
619 	struct msghdr msg;
620 	struct socket *sock;
621 
622 	sock = socki_lookup(inode);
623 
624 	msg.msg_name = NULL;
625 	msg.msg_namelen = 0;
626 	msg.msg_control = NULL;
627 	msg.msg_controllen = 0;
628 	msg.msg_iov = (struct iovec *) iov;
629 	msg.msg_iovlen = count;
630 	msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
631 
632 	/* read() does a VERIFY_WRITE */
633 	if (type == VERIFY_WRITE)
634 		return sock_recvmsg(sock, &msg, size, msg.msg_flags);
635 
636 	if (sock->type == SOCK_SEQPACKET)
637 		msg.msg_flags |= MSG_EOR;
638 
639 	return sock_sendmsg(sock, &msg, size);
640 }
641 
sock_readv(struct file * file,const struct iovec * vector,unsigned long count,loff_t * ppos)642 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
643 			  unsigned long count, loff_t *ppos)
644 {
645 	size_t tot_len = 0;
646 	int i;
647         for (i = 0 ; i < count ; i++)
648                 tot_len += vector[i].iov_len;
649 	return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
650 				 file, vector, count, tot_len);
651 }
652 
sock_writev(struct file * file,const struct iovec * vector,unsigned long count,loff_t * ppos)653 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
654 			   unsigned long count, loff_t *ppos)
655 {
656 	size_t tot_len = 0;
657 	int i;
658         for (i = 0 ; i < count ; i++)
659                 tot_len += vector[i].iov_len;
660 	return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
661 				 file, vector, count, tot_len);
662 }
663 
664 /*
665  *	With an ioctl arg may well be a user mode pointer, but we don't know what to do
666  *	with it - that's up to the protocol still.
667  */
668 
sock_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)669 int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
670 	   unsigned long arg)
671 {
672 	struct socket *sock;
673 	int err;
674 
675 	unlock_kernel();
676 	sock = socki_lookup(inode);
677 	err = sock->ops->ioctl(sock, cmd, arg);
678 	lock_kernel();
679 
680 	return err;
681 }
682 
683 
684 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)685 static unsigned int sock_poll(struct file *file, poll_table * wait)
686 {
687 	struct socket *sock;
688 
689 	/*
690 	 *	We can't return errors to poll, so it's either yes or no.
691 	 */
692 	sock = socki_lookup(file->f_dentry->d_inode);
693 	return sock->ops->poll(file, sock, wait);
694 }
695 
sock_mmap(struct file * file,struct vm_area_struct * vma)696 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
697 {
698 	struct socket *sock = socki_lookup(file->f_dentry->d_inode);
699 
700 	return sock->ops->mmap(file, sock, vma);
701 }
702 
sock_close(struct inode * inode,struct file * filp)703 int sock_close(struct inode *inode, struct file *filp)
704 {
705 	/*
706 	 *	It was possible the inode is NULL we were
707 	 *	closing an unfinished socket.
708 	 */
709 
710 	if (!inode)
711 	{
712 		printk(KERN_DEBUG "sock_close: NULL inode\n");
713 		return 0;
714 	}
715 	sock_fasync(-1, filp, 0);
716 	sock_release(socki_lookup(inode));
717 	return 0;
718 }
719 
720 /*
721  *	Update the socket async list
722  *
723  *	Fasync_list locking strategy.
724  *
725  *	1. fasync_list is modified only under process context socket lock
726  *	   i.e. under semaphore.
727  *	2. fasync_list is used under read_lock(&sk->callback_lock)
728  *	   or under socket lock.
729  *	3. fasync_list can be used from softirq context, so that
730  *	   modification under socket lock have to be enhanced with
731  *	   write_lock_bh(&sk->callback_lock).
732  *							--ANK (990710)
733  */
734 
sock_fasync(int fd,struct file * filp,int on)735 static int sock_fasync(int fd, struct file *filp, int on)
736 {
737 	struct fasync_struct *fa, *fna=NULL, **prev;
738 	struct socket *sock;
739 	struct sock *sk;
740 
741 	if (on)
742 	{
743 		fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
744 		if(fna==NULL)
745 			return -ENOMEM;
746 	}
747 
748 	sock = socki_lookup(filp->f_dentry->d_inode);
749 
750 	if ((sk=sock->sk) == NULL) {
751 		if (fna)
752 			kfree(fna);
753 		return -EINVAL;
754 	}
755 
756 	lock_sock(sk);
757 
758 	prev=&(sock->fasync_list);
759 
760 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
761 		if (fa->fa_file==filp)
762 			break;
763 
764 	if(on)
765 	{
766 		if(fa!=NULL)
767 		{
768 			write_lock_bh(&sk->callback_lock);
769 			fa->fa_fd=fd;
770 			write_unlock_bh(&sk->callback_lock);
771 
772 			kfree(fna);
773 			goto out;
774 		}
775 		fna->fa_file=filp;
776 		fna->fa_fd=fd;
777 		fna->magic=FASYNC_MAGIC;
778 		fna->fa_next=sock->fasync_list;
779 		write_lock_bh(&sk->callback_lock);
780 		sock->fasync_list=fna;
781 		write_unlock_bh(&sk->callback_lock);
782 	}
783 	else
784 	{
785 		if (fa!=NULL)
786 		{
787 			write_lock_bh(&sk->callback_lock);
788 			*prev=fa->fa_next;
789 			write_unlock_bh(&sk->callback_lock);
790 			kfree(fa);
791 		}
792 	}
793 
794 out:
795 	release_sock(sock->sk);
796 	return 0;
797 }
798 
799 /* This function may be called only under socket lock or callback_lock */
800 
sock_wake_async(struct socket * sock,int how,int band)801 int sock_wake_async(struct socket *sock, int how, int band)
802 {
803 	if (!sock || !sock->fasync_list)
804 		return -1;
805 	switch (how)
806 	{
807 	case 1:
808 
809 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
810 			break;
811 		goto call_kill;
812 	case 2:
813 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
814 			break;
815 		/* fall through */
816 	case 0:
817 	call_kill:
818 		__kill_fasync(sock->fasync_list, SIGIO, band);
819 		break;
820 	case 3:
821 		__kill_fasync(sock->fasync_list, SIGURG, band);
822 	}
823 	return 0;
824 }
825 
826 
sock_create(int family,int type,int protocol,struct socket ** res)827 int sock_create(int family, int type, int protocol, struct socket **res)
828 {
829 	int i;
830 	struct socket *sock;
831 
832 	/*
833 	 *	Check protocol is in range
834 	 */
835 	if (family < 0 || family >= NPROTO)
836 		return -EAFNOSUPPORT;
837 	if (type < 0 || type >= SOCK_MAX)
838 		return -EINVAL;
839 
840 	/* Compatibility.
841 
842 	   This uglymoron is moved from INET layer to here to avoid
843 	   deadlock in module load.
844 	 */
845 	if (family == PF_INET && type == SOCK_PACKET) {
846 		static int warned;
847 		if (!warned) {
848 			warned = 1;
849 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
850 		}
851 		family = PF_PACKET;
852 	}
853 
854 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
855 	/* Attempt to load a protocol module if the find failed.
856 	 *
857 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
858 	 * requested real, full-featured networking support upon configuration.
859 	 * Otherwise module support will break!
860 	 */
861 	if (net_families[family]==NULL)
862 	{
863 		char module_name[30];
864 		sprintf(module_name,"net-pf-%d",family);
865 		request_module(module_name);
866 	}
867 #endif
868 
869 	net_family_read_lock();
870 	if (net_families[family] == NULL) {
871 		i = -EAFNOSUPPORT;
872 		goto out;
873 	}
874 
875 /*
876  *	Allocate the socket and allow the family to set things up. if
877  *	the protocol is 0, the family is instructed to select an appropriate
878  *	default.
879  */
880 
881 	if (!(sock = sock_alloc()))
882 	{
883 		printk(KERN_WARNING "socket: no more sockets\n");
884 		i = -ENFILE;		/* Not exactly a match, but its the
885 					   closest posix thing */
886 		goto out;
887 	}
888 
889 	sock->type  = type;
890 
891 	if ((i = net_families[family]->create(sock, protocol)) < 0)
892 	{
893 		sock_release(sock);
894 		goto out;
895 	}
896 
897 	*res = sock;
898 
899 out:
900 	net_family_read_unlock();
901 	return i;
902 }
903 
sys_socket(int family,int type,int protocol)904 asmlinkage long sys_socket(int family, int type, int protocol)
905 {
906 	int retval;
907 	struct socket *sock;
908 
909 	retval = sock_create(family, type, protocol, &sock);
910 	if (retval < 0)
911 		goto out;
912 
913 	retval = sock_map_fd(sock);
914 	if (retval < 0)
915 		goto out_release;
916 
917 out:
918 	/* It may be already another descriptor 8) Not kernel problem. */
919 	return retval;
920 
921 out_release:
922 	sock_release(sock);
923 	return retval;
924 }
925 
926 /*
927  *	Create a pair of connected sockets.
928  */
929 
sys_socketpair(int family,int type,int protocol,int usockvec[2])930 asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2])
931 {
932 	struct socket *sock1, *sock2;
933 	int fd1, fd2, err;
934 
935 	/*
936 	 * Obtain the first socket and check if the underlying protocol
937 	 * supports the socketpair call.
938 	 */
939 
940 	err = sock_create(family, type, protocol, &sock1);
941 	if (err < 0)
942 		goto out;
943 
944 	err = sock_create(family, type, protocol, &sock2);
945 	if (err < 0)
946 		goto out_release_1;
947 
948 	err = sock1->ops->socketpair(sock1, sock2);
949 	if (err < 0)
950 		goto out_release_both;
951 
952 	fd1 = fd2 = -1;
953 
954 	err = sock_map_fd(sock1);
955 	if (err < 0)
956 		goto out_release_both;
957 	fd1 = err;
958 
959 	err = sock_map_fd(sock2);
960 	if (err < 0)
961 		goto out_close_1;
962 	fd2 = err;
963 
964 	/* fd1 and fd2 may be already another descriptors.
965 	 * Not kernel problem.
966 	 */
967 
968 	err = put_user(fd1, &usockvec[0]);
969 	if (!err)
970 		err = put_user(fd2, &usockvec[1]);
971 	if (!err)
972 		return 0;
973 
974 	sys_close(fd2);
975 	sys_close(fd1);
976 	return err;
977 
978 out_close_1:
979         sock_release(sock2);
980 	sys_close(fd1);
981 	return err;
982 
983 out_release_both:
984         sock_release(sock2);
985 out_release_1:
986         sock_release(sock1);
987 out:
988 	return err;
989 }
990 
991 
992 /*
993  *	Bind a name to a socket. Nothing much to do here since it's
994  *	the protocol's responsibility to handle the local address.
995  *
996  *	We move the socket address to kernel space before we call
997  *	the protocol layer (having also checked the address is ok).
998  */
999 
sys_bind(int fd,struct sockaddr * umyaddr,int addrlen)1000 asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)
1001 {
1002 	struct socket *sock;
1003 	char address[MAX_SOCK_ADDR];
1004 	int err;
1005 
1006 	if((sock = sockfd_lookup(fd,&err))!=NULL)
1007 	{
1008 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0)
1009 			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1010 		sockfd_put(sock);
1011 	}
1012 	return err;
1013 }
1014 
1015 
1016 /*
1017  *	Perform a listen. Basically, we allow the protocol to do anything
1018  *	necessary for a listen, and if that works, we mark the socket as
1019  *	ready for listening.
1020  */
1021 
1022 int sysctl_somaxconn = SOMAXCONN;
1023 
sys_listen(int fd,int backlog)1024 asmlinkage long sys_listen(int fd, int backlog)
1025 {
1026 	struct socket *sock;
1027 	int err;
1028 
1029 	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1030 		if ((unsigned) backlog > sysctl_somaxconn)
1031 			backlog = sysctl_somaxconn;
1032 		err=sock->ops->listen(sock, backlog);
1033 		sockfd_put(sock);
1034 	}
1035 	return err;
1036 }
1037 
1038 
1039 /*
1040  *	For accept, we attempt to create a new socket, set up the link
1041  *	with the client, wake up the client, then return the new
1042  *	connected fd. We collect the address of the connector in kernel
1043  *	space and move it to user at the very end. This is unclean because
1044  *	we open the socket then return an error.
1045  *
1046  *	1003.1g adds the ability to recvmsg() to query connection pending
1047  *	status to recvmsg. We need to add that support in a way thats
1048  *	clean when we restucture accept also.
1049  */
1050 
sys_accept(int fd,struct sockaddr * upeer_sockaddr,int * upeer_addrlen)1051 asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
1052 {
1053 	struct socket *sock, *newsock;
1054 	int err, len;
1055 	char address[MAX_SOCK_ADDR];
1056 
1057 	sock = sockfd_lookup(fd, &err);
1058 	if (!sock)
1059 		goto out;
1060 
1061 	err = -ENFILE;
1062 	if (!(newsock = sock_alloc()))
1063 		goto out_put;
1064 
1065 	newsock->type = sock->type;
1066 	newsock->ops = sock->ops;
1067 
1068 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1069 	if (err < 0)
1070 		goto out_release;
1071 
1072 	if (upeer_sockaddr) {
1073 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1074 			err = -ECONNABORTED;
1075 			goto out_release;
1076 		}
1077 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1078 		if (err < 0)
1079 			goto out_release;
1080 	}
1081 
1082 	/* File flags are not inherited via accept() unlike another OSes. */
1083 
1084 	if ((err = sock_map_fd(newsock)) < 0)
1085 		goto out_release;
1086 
1087 out_put:
1088 	sockfd_put(sock);
1089 out:
1090 	return err;
1091 
1092 out_release:
1093 	sock_release(newsock);
1094 	goto out_put;
1095 }
1096 
1097 
1098 /*
1099  *	Attempt to connect to a socket with the server address.  The address
1100  *	is in user space so we verify it is OK and move it to kernel space.
1101  *
1102  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1103  *	break bindings
1104  *
1105  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1106  *	other SEQPACKET protocols that take time to connect() as it doesn't
1107  *	include the -EINPROGRESS status for such sockets.
1108  */
1109 
sys_connect(int fd,struct sockaddr * uservaddr,int addrlen)1110 asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)
1111 {
1112 	struct socket *sock;
1113 	char address[MAX_SOCK_ADDR];
1114 	int err;
1115 
1116 	sock = sockfd_lookup(fd, &err);
1117 	if (!sock)
1118 		goto out;
1119 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1120 	if (err < 0)
1121 		goto out_put;
1122 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1123 				 sock->file->f_flags);
1124 out_put:
1125 	sockfd_put(sock);
1126 out:
1127 	return err;
1128 }
1129 
1130 /*
1131  *	Get the local address ('name') of a socket object. Move the obtained
1132  *	name to user space.
1133  */
1134 
sys_getsockname(int fd,struct sockaddr * usockaddr,int * usockaddr_len)1135 asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
1136 {
1137 	struct socket *sock;
1138 	char address[MAX_SOCK_ADDR];
1139 	int len, err;
1140 
1141 	sock = sockfd_lookup(fd, &err);
1142 	if (!sock)
1143 		goto out;
1144 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1145 	if (err)
1146 		goto out_put;
1147 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1148 
1149 out_put:
1150 	sockfd_put(sock);
1151 out:
1152 	return err;
1153 }
1154 
1155 /*
1156  *	Get the remote address ('name') of a socket object. Move the obtained
1157  *	name to user space.
1158  */
1159 
sys_getpeername(int fd,struct sockaddr * usockaddr,int * usockaddr_len)1160 asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
1161 {
1162 	struct socket *sock;
1163 	char address[MAX_SOCK_ADDR];
1164 	int len, err;
1165 
1166 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1167 	{
1168 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1169 		if (!err)
1170 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1171 		sockfd_put(sock);
1172 	}
1173 	return err;
1174 }
1175 
1176 /*
1177  *	Send a datagram to a given address. We move the address into kernel
1178  *	space and check the user space data area is readable before invoking
1179  *	the protocol.
1180  */
1181 
sys_sendto(int fd,void * buff,size_t len,unsigned flags,struct sockaddr * addr,int addr_len)1182 asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags,
1183 			   struct sockaddr *addr, int addr_len)
1184 {
1185 	struct socket *sock;
1186 	char address[MAX_SOCK_ADDR];
1187 	int err;
1188 	struct msghdr msg;
1189 	struct iovec iov;
1190 
1191 	sock = sockfd_lookup(fd, &err);
1192 	if (!sock)
1193 		goto out;
1194 	iov.iov_base=buff;
1195 	iov.iov_len=len;
1196 	msg.msg_name=NULL;
1197 	msg.msg_iov=&iov;
1198 	msg.msg_iovlen=1;
1199 	msg.msg_control=NULL;
1200 	msg.msg_controllen=0;
1201 	msg.msg_namelen=0;
1202 	if(addr)
1203 	{
1204 		err = move_addr_to_kernel(addr, addr_len, address);
1205 		if (err < 0)
1206 			goto out_put;
1207 		msg.msg_name=address;
1208 		msg.msg_namelen=addr_len;
1209 	}
1210 	if (sock->file->f_flags & O_NONBLOCK)
1211 		flags |= MSG_DONTWAIT;
1212 	msg.msg_flags = flags;
1213 	err = sock_sendmsg(sock, &msg, len);
1214 
1215 out_put:
1216 	sockfd_put(sock);
1217 out:
1218 	return err;
1219 }
1220 
1221 /*
1222  *	Send a datagram down a socket.
1223  */
1224 
sys_send(int fd,void * buff,size_t len,unsigned flags)1225 asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags)
1226 {
1227 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1228 }
1229 
1230 /*
1231  *	Receive a frame from the socket and optionally record the address of the
1232  *	sender. We verify the buffers are writable and if needed move the
1233  *	sender address from kernel to user space.
1234  */
1235 
sys_recvfrom(int fd,void * ubuf,size_t size,unsigned flags,struct sockaddr * addr,int * addr_len)1236 asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,
1237 			     struct sockaddr *addr, int *addr_len)
1238 {
1239 	struct socket *sock;
1240 	struct iovec iov;
1241 	struct msghdr msg;
1242 	char address[MAX_SOCK_ADDR];
1243 	int err,err2;
1244 
1245 	sock = sockfd_lookup(fd, &err);
1246 	if (!sock)
1247 		goto out;
1248 
1249 	msg.msg_control=NULL;
1250 	msg.msg_controllen=0;
1251 	msg.msg_iovlen=1;
1252 	msg.msg_iov=&iov;
1253 	iov.iov_len=size;
1254 	iov.iov_base=ubuf;
1255 	msg.msg_name=address;
1256 	msg.msg_namelen=MAX_SOCK_ADDR;
1257 	if (sock->file->f_flags & O_NONBLOCK)
1258 		flags |= MSG_DONTWAIT;
1259 	err=sock_recvmsg(sock, &msg, size, flags);
1260 
1261 	if(err >= 0 && addr != NULL)
1262 	{
1263 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1264 		if(err2<0)
1265 			err=err2;
1266 	}
1267 	sockfd_put(sock);
1268 out:
1269 	return err;
1270 }
1271 
1272 /*
1273  *	Receive a datagram from a socket.
1274  */
1275 
sys_recv(int fd,void * ubuf,size_t size,unsigned flags)1276 asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags)
1277 {
1278 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1279 }
1280 
1281 /*
1282  *	Set a socket option. Because we don't know the option lengths we have
1283  *	to pass the user mode parameter for the protocols to sort out.
1284  */
1285 
sys_setsockopt(int fd,int level,int optname,char * optval,int optlen)1286 asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen)
1287 {
1288 	int err;
1289 	struct socket *sock;
1290 
1291 	if (optlen < 0)
1292 		return -EINVAL;
1293 
1294 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1295 	{
1296 		if (level == SOL_SOCKET)
1297 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1298 		else
1299 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1300 		sockfd_put(sock);
1301 	}
1302 	return err;
1303 }
1304 
1305 /*
1306  *	Get a socket option. Because we don't know the option lengths we have
1307  *	to pass a user mode parameter for the protocols to sort out.
1308  */
1309 
sys_getsockopt(int fd,int level,int optname,char * optval,int * optlen)1310 asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen)
1311 {
1312 	int err;
1313 	struct socket *sock;
1314 
1315 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1316 	{
1317 		if (level == SOL_SOCKET)
1318 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1319 		else
1320 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1321 		sockfd_put(sock);
1322 	}
1323 	return err;
1324 }
1325 
1326 
1327 /*
1328  *	Shutdown a socket.
1329  */
1330 
sys_shutdown(int fd,int how)1331 asmlinkage long sys_shutdown(int fd, int how)
1332 {
1333 	int err;
1334 	struct socket *sock;
1335 
1336 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1337 	{
1338 		err=sock->ops->shutdown(sock, how);
1339 		sockfd_put(sock);
1340 	}
1341 	return err;
1342 }
1343 
1344 /*
1345  *	BSD sendmsg interface
1346  */
1347 
sys_sendmsg(int fd,struct msghdr * msg,unsigned flags)1348 asmlinkage long sys_sendmsg(int fd, struct msghdr *msg, unsigned flags)
1349 {
1350 	struct socket *sock;
1351 	char address[MAX_SOCK_ADDR];
1352 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1353 	unsigned char ctl[sizeof(struct cmsghdr) + 20];	/* 20 is size of ipv6_pktinfo */
1354 	unsigned char *ctl_buf = ctl;
1355 	struct msghdr msg_sys;
1356 	int err, ctl_len, iov_size, total_len;
1357 
1358 	err = -EFAULT;
1359 	if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1360 		goto out;
1361 
1362 	sock = sockfd_lookup(fd, &err);
1363 	if (!sock)
1364 		goto out;
1365 
1366 	/* do not move before msg_sys is valid */
1367 	err = -EMSGSIZE;
1368 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1369 		goto out_put;
1370 
1371 	/* Check whether to allocate the iovec area*/
1372 	err = -ENOMEM;
1373 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1374 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1375 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1376 		if (!iov)
1377 			goto out_put;
1378 	}
1379 
1380 	/* This will also move the address data into kernel space */
1381 	err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1382 	if (err < 0)
1383 		goto out_freeiov;
1384 	total_len = err;
1385 
1386 	err = -ENOBUFS;
1387 
1388 	if (msg_sys.msg_controllen > INT_MAX)
1389 		goto out_freeiov;
1390 	ctl_len = msg_sys.msg_controllen;
1391 	if (ctl_len)
1392 	{
1393 		if (ctl_len > sizeof(ctl))
1394 		{
1395 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1396 			if (ctl_buf == NULL)
1397 				goto out_freeiov;
1398 		}
1399 		err = -EFAULT;
1400 		if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len))
1401 			goto out_freectl;
1402 		msg_sys.msg_control = ctl_buf;
1403 	}
1404 	msg_sys.msg_flags = flags;
1405 
1406 	if (sock->file->f_flags & O_NONBLOCK)
1407 		msg_sys.msg_flags |= MSG_DONTWAIT;
1408 	err = sock_sendmsg(sock, &msg_sys, total_len);
1409 
1410 out_freectl:
1411 	if (ctl_buf != ctl)
1412 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1413 out_freeiov:
1414 	if (iov != iovstack)
1415 		sock_kfree_s(sock->sk, iov, iov_size);
1416 out_put:
1417 	sockfd_put(sock);
1418 out:
1419 	return err;
1420 }
1421 
1422 /*
1423  *	BSD recvmsg interface
1424  */
1425 
sys_recvmsg(int fd,struct msghdr * msg,unsigned int flags)1426 asmlinkage long sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags)
1427 {
1428 	struct socket *sock;
1429 	struct iovec iovstack[UIO_FASTIOV];
1430 	struct iovec *iov=iovstack;
1431 	struct msghdr msg_sys;
1432 	unsigned long cmsg_ptr;
1433 	int err, iov_size, total_len, len;
1434 
1435 	/* kernel mode address */
1436 	char addr[MAX_SOCK_ADDR];
1437 
1438 	/* user mode address pointers */
1439 	struct sockaddr *uaddr;
1440 	int *uaddr_len;
1441 
1442 	err=-EFAULT;
1443 	if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1444 		goto out;
1445 
1446 	sock = sockfd_lookup(fd, &err);
1447 	if (!sock)
1448 		goto out;
1449 
1450 	err = -EMSGSIZE;
1451 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1452 		goto out_put;
1453 
1454 	/* Check whether to allocate the iovec area*/
1455 	err = -ENOMEM;
1456 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1457 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1458 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1459 		if (!iov)
1460 			goto out_put;
1461 	}
1462 
1463 	/*
1464 	 *	Save the user-mode address (verify_iovec will change the
1465 	 *	kernel msghdr to use the kernel address space)
1466 	 */
1467 
1468 	uaddr = msg_sys.msg_name;
1469 	uaddr_len = &msg->msg_namelen;
1470 	err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1471 	if (err < 0)
1472 		goto out_freeiov;
1473 	total_len=err;
1474 
1475 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1476 	msg_sys.msg_flags = 0;
1477 
1478 	if (sock->file->f_flags & O_NONBLOCK)
1479 		flags |= MSG_DONTWAIT;
1480 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1481 	if (err < 0)
1482 		goto out_freeiov;
1483 	len = err;
1484 
1485 	if (uaddr != NULL) {
1486 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1487 		if (err < 0)
1488 			goto out_freeiov;
1489 	}
1490 	err = __put_user(msg_sys.msg_flags, &msg->msg_flags);
1491 	if (err)
1492 		goto out_freeiov;
1493 	err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1494 							 &msg->msg_controllen);
1495 	if (err)
1496 		goto out_freeiov;
1497 	err = len;
1498 
1499 out_freeiov:
1500 	if (iov != iovstack)
1501 		sock_kfree_s(sock->sk, iov, iov_size);
1502 out_put:
1503 	sockfd_put(sock);
1504 out:
1505 	return err;
1506 }
1507 
1508 
1509 /*
1510  *	Perform a file control on a socket file descriptor.
1511  *
1512  *	Doesn't acquire a fd lock, because no network fcntl
1513  *	function sleeps currently.
1514  */
1515 
sock_fcntl(struct file * filp,unsigned int cmd,unsigned long arg)1516 int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg)
1517 {
1518 	struct socket *sock;
1519 
1520 	sock = socki_lookup (filp->f_dentry->d_inode);
1521 	if (sock && sock->ops)
1522 		return sock_no_fcntl(sock, cmd, arg);
1523 	return(-EINVAL);
1524 }
1525 
1526 /* Argument list sizes for sys_socketcall */
1527 #define AL(x) ((x) * sizeof(unsigned long))
1528 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1529 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1530 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1531 #undef AL
1532 
1533 /*
1534  *	System call vectors.
1535  *
1536  *	Argument checking cleaned up. Saved 20% in size.
1537  *  This function doesn't need to set the kernel lock because
1538  *  it is set by the callees.
1539  */
1540 
sys_socketcall(int call,unsigned long * args)1541 asmlinkage long sys_socketcall(int call, unsigned long *args)
1542 {
1543 	unsigned long a[6];
1544 	unsigned long a0,a1;
1545 	int err;
1546 
1547 	if(call<1||call>SYS_RECVMSG)
1548 		return -EINVAL;
1549 
1550 	/* copy_from_user should be SMP safe. */
1551 	if (copy_from_user(a, args, nargs[call]))
1552 		return -EFAULT;
1553 
1554 	a0=a[0];
1555 	a1=a[1];
1556 
1557 	switch(call)
1558 	{
1559 		case SYS_SOCKET:
1560 			err = sys_socket(a0,a1,a[2]);
1561 			break;
1562 		case SYS_BIND:
1563 			err = sys_bind(a0,(struct sockaddr *)a1, a[2]);
1564 			break;
1565 		case SYS_CONNECT:
1566 			err = sys_connect(a0, (struct sockaddr *)a1, a[2]);
1567 			break;
1568 		case SYS_LISTEN:
1569 			err = sys_listen(a0,a1);
1570 			break;
1571 		case SYS_ACCEPT:
1572 			err = sys_accept(a0,(struct sockaddr *)a1, (int *)a[2]);
1573 			break;
1574 		case SYS_GETSOCKNAME:
1575 			err = sys_getsockname(a0,(struct sockaddr *)a1, (int *)a[2]);
1576 			break;
1577 		case SYS_GETPEERNAME:
1578 			err = sys_getpeername(a0, (struct sockaddr *)a1, (int *)a[2]);
1579 			break;
1580 		case SYS_SOCKETPAIR:
1581 			err = sys_socketpair(a0,a1, a[2], (int *)a[3]);
1582 			break;
1583 		case SYS_SEND:
1584 			err = sys_send(a0, (void *)a1, a[2], a[3]);
1585 			break;
1586 		case SYS_SENDTO:
1587 			err = sys_sendto(a0,(void *)a1, a[2], a[3],
1588 					 (struct sockaddr *)a[4], a[5]);
1589 			break;
1590 		case SYS_RECV:
1591 			err = sys_recv(a0, (void *)a1, a[2], a[3]);
1592 			break;
1593 		case SYS_RECVFROM:
1594 			err = sys_recvfrom(a0, (void *)a1, a[2], a[3],
1595 					   (struct sockaddr *)a[4], (int *)a[5]);
1596 			break;
1597 		case SYS_SHUTDOWN:
1598 			err = sys_shutdown(a0,a1);
1599 			break;
1600 		case SYS_SETSOCKOPT:
1601 			err = sys_setsockopt(a0, a1, a[2], (char *)a[3], a[4]);
1602 			break;
1603 		case SYS_GETSOCKOPT:
1604 			err = sys_getsockopt(a0, a1, a[2], (char *)a[3], (int *)a[4]);
1605 			break;
1606 		case SYS_SENDMSG:
1607 			err = sys_sendmsg(a0, (struct msghdr *) a1, a[2]);
1608 			break;
1609 		case SYS_RECVMSG:
1610 			err = sys_recvmsg(a0, (struct msghdr *) a1, a[2]);
1611 			break;
1612 		default:
1613 			err = -EINVAL;
1614 			break;
1615 	}
1616 	return err;
1617 }
1618 
1619 /*
1620  *	This function is called by a protocol handler that wants to
1621  *	advertise its address family, and have it linked into the
1622  *	SOCKET module.
1623  */
1624 
sock_register(struct net_proto_family * ops)1625 int sock_register(struct net_proto_family *ops)
1626 {
1627 	int err;
1628 
1629 	if (ops->family >= NPROTO) {
1630 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1631 		return -ENOBUFS;
1632 	}
1633 	net_family_write_lock();
1634 	err = -EEXIST;
1635 	if (net_families[ops->family] == NULL) {
1636 		net_families[ops->family]=ops;
1637 		err = 0;
1638 	}
1639 	net_family_write_unlock();
1640 	return err;
1641 }
1642 
1643 /*
1644  *	This function is called by a protocol handler that wants to
1645  *	remove its address family, and have it unlinked from the
1646  *	SOCKET module.
1647  */
1648 
sock_unregister(int family)1649 int sock_unregister(int family)
1650 {
1651 	if (family < 0 || family >= NPROTO)
1652 		return -1;
1653 
1654 	net_family_write_lock();
1655 	net_families[family]=NULL;
1656 	net_family_write_unlock();
1657 	return 0;
1658 }
1659 
1660 
1661 extern void sk_init(void);
1662 
1663 #ifdef CONFIG_WAN_ROUTER
1664 extern void wanrouter_init(void);
1665 #endif
1666 
1667 #ifdef CONFIG_BLUEZ
1668 extern void bluez_init(void);
1669 #endif
1670 
sock_init(void)1671 void __init sock_init(void)
1672 {
1673 	int i;
1674 
1675 	printk(KERN_INFO "Linux NET4.0 for Linux 2.4\n");
1676 	printk(KERN_INFO "Based upon Swansea University Computer Society NET3.039\n");
1677 
1678 	/*
1679 	 *	Initialize all address (protocol) families.
1680 	 */
1681 
1682 	for (i = 0; i < NPROTO; i++)
1683 		net_families[i] = NULL;
1684 
1685 	/*
1686 	 *	Initialize sock SLAB cache.
1687 	 */
1688 
1689 	sk_init();
1690 
1691 #ifdef SLAB_SKB
1692 	/*
1693 	 *	Initialize skbuff SLAB cache
1694 	 */
1695 	skb_init();
1696 #endif
1697 
1698 	/*
1699 	 *	Wan router layer.
1700 	 */
1701 
1702 #ifdef CONFIG_WAN_ROUTER
1703 	wanrouter_init();
1704 #endif
1705 
1706 	/*
1707 	 *	Initialize the protocols module.
1708 	 */
1709 
1710 	register_filesystem(&sock_fs_type);
1711 	sock_mnt = kern_mount(&sock_fs_type);
1712 	/* The real protocol initialization is performed when
1713 	 *  do_initcalls is run.
1714 	 */
1715 
1716 
1717 	/*
1718 	 * The netlink device handler may be needed early.
1719 	 */
1720 
1721 #ifdef CONFIG_NET
1722 	netlink_proto_init();
1723 	rtnetlink_init();
1724 #endif
1725 #ifdef CONFIG_NETLINK_DEV
1726 	init_netlink();
1727 #endif
1728 #ifdef CONFIG_NETFILTER
1729 	netfilter_init();
1730 #endif
1731 
1732 #ifdef CONFIG_BLUEZ
1733 	bluez_init();
1734 #endif
1735 }
1736 
socket_get_info(char * buffer,char ** start,off_t offset,int length)1737 int socket_get_info(char *buffer, char **start, off_t offset, int length)
1738 {
1739 	int len, cpu;
1740 	int counter = 0;
1741 
1742 	for (cpu=0; cpu<smp_num_cpus; cpu++)
1743 		counter += sockets_in_use[cpu_logical_map(cpu)].counter;
1744 
1745 	/* It can be negative, by the way. 8) */
1746 	if (counter < 0)
1747 		counter = 0;
1748 
1749 	len = sprintf(buffer, "sockets: used %d\n", counter);
1750 	if (offset >= len)
1751 	{
1752 		*start = buffer;
1753 		return 0;
1754 	}
1755 	*start = buffer + offset;
1756 	len -= offset;
1757 	if (len > length)
1758 		len = length;
1759 	if (len < 0)
1760 		len = 0;
1761 	return len;
1762 }
1763