1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from kswapd()
10  *  in linux/mm/vmscan.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/mm.h>
19 #include <linux/sched.h>
20 #include <linux/swap.h>
21 #include <linux/swapctl.h>
22 #include <linux/timex.h>
23 
24 /* #define DEBUG */
25 
26 /**
27  * int_sqrt - oom_kill.c internal function, rough approximation to sqrt
28  * @x: integer of which to calculate the sqrt
29  *
30  * A very rough approximation to the sqrt() function.
31  */
int_sqrt(unsigned int x)32 static unsigned int int_sqrt(unsigned int x)
33 {
34 	unsigned int out = x;
35 	while (x & ~(unsigned int)1) x >>=2, out >>=1;
36 	if (x) out -= out >> 2;
37 	return (out ? out : 1);
38 }
39 
40 /**
41  * oom_badness - calculate a numeric value for how bad this task has been
42  * @p: task struct of which task we should calculate
43  *
44  * The formula used is relatively simple and documented inline in the
45  * function. The main rationale is that we want to select a good task
46  * to kill when we run out of memory.
47  *
48  * Good in this context means that:
49  * 1) we lose the minimum amount of work done
50  * 2) we recover a large amount of memory
51  * 3) we don't kill anything innocent of eating tons of memory
52  * 4) we want to kill the minimum amount of processes (one)
53  * 5) we try to kill the process the user expects us to kill, this
54  *    algorithm has been meticulously tuned to meet the priniciple
55  *    of least surprise ... (be careful when you change it)
56  */
57 
badness(struct task_struct * p)58 static int badness(struct task_struct *p)
59 {
60 	int points, cpu_time, run_time;
61 
62 	if (!p->mm)
63 		return 0;
64 
65 	if (p->flags & PF_MEMDIE)
66 		return 0;
67 
68 	/*
69 	 * The memory size of the process is the basis for the badness.
70 	 */
71 	points = p->mm->total_vm;
72 
73 	/*
74 	 * CPU time is in seconds and run time is in minutes. There is no
75 	 * particular reason for this other than that it turned out to work
76 	 * very well in practice. This is not safe against jiffie wraps
77 	 * but we don't care _that_ much...
78 	 */
79 	cpu_time = (p->times.tms_utime + p->times.tms_stime) >> (SHIFT_HZ + 3);
80 	run_time = (jiffies - p->start_time) >> (SHIFT_HZ + 10);
81 
82 	points /= int_sqrt(cpu_time);
83 	points /= int_sqrt(int_sqrt(run_time));
84 
85 	/*
86 	 * Niced processes are most likely less important, so double
87 	 * their badness points.
88 	 */
89 	if (p->nice > 0)
90 		points *= 2;
91 
92 	/*
93 	 * Superuser processes are usually more important, so we make it
94 	 * less likely that we kill those.
95 	 */
96 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
97 				p->uid == 0 || p->euid == 0)
98 		points /= 4;
99 
100 	/*
101 	 * We don't want to kill a process with direct hardware access.
102 	 * Not only could that mess up the hardware, but usually users
103 	 * tend to only have this flag set on applications they think
104 	 * of as important.
105 	 */
106 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
107 		points /= 4;
108 #ifdef DEBUG
109 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
110 	p->pid, p->comm, points);
111 #endif
112 	return points;
113 }
114 
115 /*
116  * Simple selection loop. We chose the process with the highest
117  * number of 'points'. We expect the caller will lock the tasklist.
118  *
119  * (not docbooked, we don't want this one cluttering up the manual)
120  */
select_bad_process(void)121 static struct task_struct * select_bad_process(void)
122 {
123 	int maxpoints = 0;
124 	struct task_struct *p = NULL;
125 	struct task_struct *chosen = NULL;
126 
127 	for_each_task(p) {
128 		if (p->pid) {
129 			int points = badness(p);
130 			if (points > maxpoints) {
131 				chosen = p;
132 				maxpoints = points;
133 			}
134 		}
135 	}
136 	return chosen;
137 }
138 
139 /**
140  * We must be careful though to never send SIGKILL a process with
141  * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
142  * we select a process with CAP_SYS_RAW_IO set).
143  */
__oom_kill_task(struct task_struct * p)144 static void __oom_kill_task(struct task_struct *p)
145 {
146 	printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n", p->pid, p->comm);
147 
148 	/*
149 	 * We give our sacrificial lamb high priority and access to
150 	 * all the memory it needs. That way it should be able to
151 	 * exit() and clear out its resources quickly...
152 	 */
153 	p->counter = 5 * HZ;
154 	p->flags |= PF_MEMALLOC | PF_MEMDIE;
155 
156 	/* This process has hardware access, be more careful. */
157 	if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) {
158 		force_sig(SIGTERM, p);
159 	} else {
160 		force_sig(SIGKILL, p);
161 	}
162 }
163 
oom_kill_task(struct task_struct * p)164 static struct mm_struct *oom_kill_task(struct task_struct *p)
165 {
166 	struct mm_struct *mm;
167 
168 	task_lock(p);
169 	mm = p->mm;
170 	if (mm) {
171 		spin_lock(&mmlist_lock);
172 		if (atomic_read(&mm->mm_users))
173 			atomic_inc(&mm->mm_users);
174 		else
175 			mm = NULL;
176 		spin_unlock(&mmlist_lock);
177 	}
178 	task_unlock(p);
179 	if (mm)
180 		__oom_kill_task(p);
181 	return mm;
182 }
183 
184 /**
185  * oom_kill - kill the "best" process when we run out of memory
186  *
187  * If we run out of memory, we have the choice between either
188  * killing a random task (bad), letting the system crash (worse)
189  * OR try to be smart about which process to kill. Note that we
190  * don't have to be perfect here, we just have to be good.
191  */
oom_kill(void)192 static void oom_kill(void)
193 {
194 	struct task_struct *p, *q;
195 	struct mm_struct *mm;
196 
197 retry:
198 	read_lock(&tasklist_lock);
199 	p = select_bad_process();
200 
201 	/* Found nothing?!?! Either we hang forever, or we panic. */
202 	if (p == NULL)
203 		panic("Out of memory and no killable processes...\n");
204 	mm = oom_kill_task(p);
205 	if (!mm) {
206 		read_unlock(&tasklist_lock);
207 		goto retry;
208 	}
209 	/* kill all processes that share the ->mm (i.e. all threads) */
210 	for_each_task(q) {
211 		if (q->mm == mm)
212 			__oom_kill_task(q);
213 	}
214 	read_unlock(&tasklist_lock);
215 	mmput(mm);
216 	/*
217 	 * Make kswapd go out of the way, so "p" has a good chance of
218 	 * killing itself before someone else gets the chance to ask
219 	 * for more memory.
220 	 */
221 	yield();
222 	return;
223 }
224 
225 /**
226  * out_of_memory - is the system out of memory?
227  */
out_of_memory(void)228 void out_of_memory(void)
229 {
230 	/*
231 	 * oom_lock protects out_of_memory()'s static variables.
232 	 * It's a global lock; this is not performance-critical.
233 	 */
234 	static spinlock_t oom_lock = SPIN_LOCK_UNLOCKED;
235 	static unsigned long first, last, count, lastkill;
236 	unsigned long now, since;
237 
238 	/*
239 	 * Enough swap space left?  Not OOM.
240 	 */
241 	if (nr_swap_pages > 0)
242 		return;
243 
244 	spin_lock(&oom_lock);
245 	now = jiffies;
246 	since = now - last;
247 	last = now;
248 
249 	/*
250 	 * If it's been a long time since last failure,
251 	 * we're not oom.
252 	 */
253 	last = now;
254 	if (since > 5*HZ)
255 		goto reset;
256 
257 	/*
258 	 * If we haven't tried for at least one second,
259 	 * we're not really oom.
260 	 */
261 	since = now - first;
262 	if (since < HZ)
263 		goto out_unlock;
264 
265 	/*
266 	 * If we have gotten only a few failures,
267 	 * we're not really oom.
268 	 */
269 	if (++count < 10)
270 		goto out_unlock;
271 
272 	/*
273 	 * If we just killed a process, wait a while
274 	 * to give that task a chance to exit. This
275 	 * avoids killing multiple processes needlessly.
276 	 */
277 	since = now - lastkill;
278 	if (since < HZ*5)
279 		goto out_unlock;
280 
281 	/*
282 	 * Ok, really out of memory. Kill something.
283 	 */
284 	lastkill = now;
285 
286 	/* oom_kill() can sleep */
287 	spin_unlock(&oom_lock);
288 	oom_kill();
289 	spin_lock(&oom_lock);
290 
291 reset:
292 	if ((long)first - (long)now < 0)
293 		first = now;
294 	count = 0;
295 
296 out_unlock:
297 	spin_unlock(&oom_lock);
298 }
299