1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  *	jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  *	case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  *  entries which folds to the same key makes up a equivalent class
63  *  whose members are stored as contiguous cluster (may cross page boundary)
64  *  but whose order is arbitrary and acts as duplicate, e.g.,
65  *  abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  * 	fold search key;
82  *
83  *	case-insensitive search of B-tree:
84  *	for internal entry, router key is already folded;
85  *	for leaf entry, fold the entry key before comparison.
86  *
87  *	if (leaf entry case-insensitive match found)
88  *		if (next entry satisfies case-insensitive match)
89  *			return EDUPLICATE;
90  *		if (prev entry satisfies case-insensitive match)
91  *			return EDUPLICATE;
92  *		return match;
93  *	else
94  *		return no match;
95  *
96  * 	serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  *	log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include "jfs_incore.h"
105 #include "jfs_superblock.h"
106 #include "jfs_filsys.h"
107 #include "jfs_metapage.h"
108 #include "jfs_dmap.h"
109 #include "jfs_unicode.h"
110 #include "jfs_debug.h"
111 
112 /* dtree split parameter */
113 struct dtsplit {
114 	struct metapage *mp;
115 	s16 index;
116 	s16 nslot;
117 	struct component_name *key;
118 	ddata_t *data;
119 	struct pxdlist *pxdlist;
120 };
121 
122 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
123 
124 /* get page buffer for specified block address */
125 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
126 {\
127 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
128 	if (!(RC))\
129 	{\
130 		if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
131 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
132 		{\
133 			BT_PUTPAGE(MP);\
134 			jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
135 			MP = NULL;\
136 			RC = -EIO;\
137 		}\
138 	}\
139 }
140 
141 /* for consistency */
142 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
143 
144 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
145 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
146 
147 /*
148  * forward references
149  */
150 static int dtSplitUp(tid_t tid, struct inode *ip,
151 		     struct dtsplit * split, struct btstack * btstack);
152 
153 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
154 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
155 
156 static int dtExtendPage(tid_t tid, struct inode *ip,
157 			struct dtsplit * split, struct btstack * btstack);
158 
159 static int dtSplitRoot(tid_t tid, struct inode *ip,
160 		       struct dtsplit * split, struct metapage ** rmpp);
161 
162 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
163 		      dtpage_t * fp, struct btstack * btstack);
164 
165 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
166 
167 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
168 
169 static int dtReadNext(struct inode *ip,
170 		      loff_t * offset, struct btstack * btstack);
171 
172 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
173 
174 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
175 		     int flag);
176 
177 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
178 		     int flag);
179 
180 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
181 			      int ri, struct component_name * key, int flag);
182 
183 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
184 			  ddata_t * data, struct dt_lock **);
185 
186 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
187 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
188 			int do_index);
189 
190 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
191 
192 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
193 
194 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
195 
196 #define ciToUpper(c)	UniStrupr((c)->name)
197 
198 /*
199  *	read_index_page()
200  *
201  *	Reads a page of a directory's index table.
202  *	Having metadata mapped into the directory inode's address space
203  *	presents a multitude of problems.  We avoid this by mapping to
204  *	the absolute address space outside of the *_metapage routines
205  */
read_index_page(struct inode * inode,s64 blkno)206 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
207 {
208 	int rc;
209 	s64 xaddr;
210 	int xflag;
211 	s32 xlen;
212 
213 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
214 	if (rc || (xlen == 0))
215 		return NULL;
216 
217 	return read_metapage(inode, xaddr, PSIZE, 1);
218 }
219 
220 /*
221  *	get_index_page()
222  *
223  *	Same as get_index_page(), but get's a new page without reading
224  */
get_index_page(struct inode * inode,s64 blkno)225 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
226 {
227 	int rc;
228 	s64 xaddr;
229 	int xflag;
230 	s32 xlen;
231 
232 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
233 	if (rc || (xlen == 0))
234 		return NULL;
235 
236 	return get_metapage(inode, xaddr, PSIZE, 1);
237 }
238 
239 /*
240  *	find_index()
241  *
242  *	Returns dtree page containing directory table entry for specified
243  *	index and pointer to its entry.
244  *
245  *	mp must be released by caller.
246  */
find_index(struct inode * ip,u32 index,struct metapage ** mp,s64 * lblock)247 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
248 					 struct metapage ** mp, s64 *lblock)
249 {
250 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
251 	s64 blkno;
252 	s64 offset;
253 	int page_offset;
254 	struct dir_table_slot *slot;
255 	static int maxWarnings = 10;
256 
257 	if (index < 2) {
258 		if (maxWarnings) {
259 			jfs_warn("find_entry called with index = %d", index);
260 			maxWarnings--;
261 		}
262 		return 0;
263 	}
264 
265 	if (index >= jfs_ip->next_index) {
266 		jfs_warn("find_entry called with index >= next_index");
267 		return 0;
268 	}
269 
270 	if (jfs_ip->next_index <= (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
271 		/*
272 		 * Inline directory table
273 		 */
274 		*mp = 0;
275 		slot = &jfs_ip->i_dirtable[index - 2];
276 	} else {
277 		offset = (index - 2) * sizeof(struct dir_table_slot);
278 		page_offset = offset & (PSIZE - 1);
279 		blkno = ((offset + 1) >> L2PSIZE) <<
280 		    JFS_SBI(ip->i_sb)->l2nbperpage;
281 
282 		if (*mp && (*lblock != blkno)) {
283 			release_metapage(*mp);
284 			*mp = 0;
285 		}
286 		if (*mp == 0) {
287 			*lblock = blkno;
288 			*mp = read_index_page(ip, blkno);
289 		}
290 		if (*mp == 0) {
291 			jfs_err("free_index: error reading directory table");
292 			return 0;
293 		}
294 
295 		slot =
296 		    (struct dir_table_slot *) ((char *) (*mp)->data +
297 					       page_offset);
298 	}
299 	return slot;
300 }
301 
lock_index(tid_t tid,struct inode * ip,struct metapage * mp,u32 index)302 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
303 			      u32 index)
304 {
305 	struct tlock *tlck;
306 	struct linelock *llck;
307 	struct lv *lv;
308 
309 	tlck = txLock(tid, ip, mp, tlckDATA);
310 	llck = (struct linelock *) tlck->lock;
311 
312 	if (llck->index >= llck->maxcnt)
313 		llck = txLinelock(llck);
314 	lv = &llck->lv[llck->index];
315 
316 	/*
317 	 *      Linelock slot size is twice the size of directory table
318 	 *      slot size.  512 entries per page.
319 	 */
320 	lv->offset = ((index - 2) & 511) >> 1;
321 	lv->length = 1;
322 	llck->index++;
323 }
324 
325 /*
326  *	add_index()
327  *
328  *	Adds an entry to the directory index table.  This is used to provide
329  *	each directory entry with a persistent index in which to resume
330  *	directory traversals
331  */
add_index(tid_t tid,struct inode * ip,s64 bn,int slot)332 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
333 {
334 	struct super_block *sb = ip->i_sb;
335 	struct jfs_sb_info *sbi = JFS_SBI(sb);
336 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
337 	u64 blkno;
338 	struct dir_table_slot *dirtab_slot;
339 	u32 index;
340 	struct linelock *llck;
341 	struct lv *lv;
342 	struct metapage *mp;
343 	s64 offset;
344 	uint page_offset;
345 	struct tlock *tlck;
346 	s64 xaddr;
347 
348 	ASSERT(DO_INDEX(ip));
349 
350 	if (jfs_ip->next_index < 2) {
351 		jfs_warn("add_index: next_index = %d.  Resetting!",
352 			   jfs_ip->next_index);
353 		jfs_ip->next_index = 2;
354 	}
355 
356 	index = jfs_ip->next_index++;
357 
358 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
359 		/*
360 		 * i_size reflects size of index table, or 8 bytes per entry.
361 		 */
362 		ip->i_size = (loff_t) (index - 1) << 3;
363 
364 		/*
365 		 * dir table fits inline within inode
366 		 */
367 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
368 		dirtab_slot->flag = DIR_INDEX_VALID;
369 		dirtab_slot->slot = slot;
370 		DTSaddress(dirtab_slot, bn);
371 
372 		set_cflag(COMMIT_Dirtable, ip);
373 
374 		return index;
375 	}
376 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
377 		struct dir_table_slot temp_table[12];
378 
379 		/*
380 		 * It's time to move the inline table to an external
381 		 * page and begin to build the xtree
382 		 */
383 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr))
384 			goto clean_up;	/* No space */
385 
386 		/*
387 		 * Save the table, we're going to overwrite it with the
388 		 * xtree root
389 		 */
390 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
391 
392 		/*
393 		 * Initialize empty x-tree
394 		 */
395 		xtInitRoot(tid, ip);
396 
397 		/*
398 		 * Allocate the first block & add it to the xtree
399 		 */
400 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
401 			/* This really shouldn't fail */
402 			jfs_warn("add_index: xtInsert failed!");
403 			memcpy(&jfs_ip->i_dirtable, temp_table,
404 			       sizeof (temp_table));
405 			goto clean_up;
406 		}
407 		ip->i_size = PSIZE;
408 		ip->i_blocks += LBLK2PBLK(sb, sbi->nbperpage);
409 
410 		if ((mp = get_index_page(ip, 0)) == 0) {
411 			jfs_err("add_index: get_metapage failed!");
412 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
413 			memcpy(&jfs_ip->i_dirtable, temp_table,
414 			       sizeof (temp_table));
415 			goto clean_up;
416 		}
417 		tlck = txLock(tid, ip, mp, tlckDATA);
418 		llck = (struct linelock *) & tlck->lock;
419 		ASSERT(llck->index == 0);
420 		lv = &llck->lv[0];
421 
422 		lv->offset = 0;
423 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
424 		llck->index++;
425 
426 		memcpy(mp->data, temp_table, sizeof(temp_table));
427 
428 		mark_metapage_dirty(mp);
429 		release_metapage(mp);
430 
431 		/*
432 		 * Logging is now directed by xtree tlocks
433 		 */
434 		clear_cflag(COMMIT_Dirtable, ip);
435 	}
436 
437 	offset = (index - 2) * sizeof(struct dir_table_slot);
438 	page_offset = offset & (PSIZE - 1);
439 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
440 	if (page_offset == 0) {
441 		/*
442 		 * This will be the beginning of a new page
443 		 */
444 		xaddr = 0;
445 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
446 			jfs_warn("add_index: xtInsert failed!");
447 			goto clean_up;
448 		}
449 		ip->i_size += PSIZE;
450 		ip->i_blocks += LBLK2PBLK(sb, sbi->nbperpage);
451 
452 		if ((mp = get_index_page(ip, blkno)))
453 			memset(mp->data, 0, PSIZE);	/* Just looks better */
454 		else
455 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
456 	} else
457 		mp = read_index_page(ip, blkno);
458 
459 	if (mp == 0) {
460 		jfs_err("add_index: get/read_metapage failed!");
461 		goto clean_up;
462 	}
463 
464 	lock_index(tid, ip, mp, index);
465 
466 	dirtab_slot =
467 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
468 	dirtab_slot->flag = DIR_INDEX_VALID;
469 	dirtab_slot->slot = slot;
470 	DTSaddress(dirtab_slot, bn);
471 
472 	mark_metapage_dirty(mp);
473 	release_metapage(mp);
474 
475 	return index;
476 
477       clean_up:
478 
479 	jfs_ip->next_index--;
480 
481 	return 0;
482 }
483 
484 /*
485  *	free_index()
486  *
487  *	Marks an entry to the directory index table as free.
488  */
free_index(tid_t tid,struct inode * ip,u32 index,u32 next)489 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
490 {
491 	struct dir_table_slot *dirtab_slot;
492 	s64 lblock;
493 	struct metapage *mp = 0;
494 
495 	dirtab_slot = find_index(ip, index, &mp, &lblock);
496 
497 	if (dirtab_slot == 0)
498 		return;
499 
500 	dirtab_slot->flag = DIR_INDEX_FREE;
501 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
502 	dirtab_slot->addr2 = cpu_to_le32(next);
503 
504 	if (mp) {
505 		lock_index(tid, ip, mp, index);
506 		mark_metapage_dirty(mp);
507 		release_metapage(mp);
508 	} else
509 		set_cflag(COMMIT_Dirtable, ip);
510 }
511 
512 /*
513  *	modify_index()
514  *
515  *	Changes an entry in the directory index table
516  */
modify_index(tid_t tid,struct inode * ip,u32 index,s64 bn,int slot,struct metapage ** mp,u64 * lblock)517 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
518 			 int slot, struct metapage ** mp, u64 *lblock)
519 {
520 	struct dir_table_slot *dirtab_slot;
521 
522 	dirtab_slot = find_index(ip, index, mp, lblock);
523 
524 	if (dirtab_slot == 0)
525 		return;
526 
527 	DTSaddress(dirtab_slot, bn);
528 	dirtab_slot->slot = slot;
529 
530 	if (*mp) {
531 		lock_index(tid, ip, *mp, index);
532 		mark_metapage_dirty(*mp);
533 	} else
534 		set_cflag(COMMIT_Dirtable, ip);
535 }
536 
537 /*
538  *	read_index()
539  *
540  *	reads a directory table slot
541  */
read_index(struct inode * ip,u32 index,struct dir_table_slot * dirtab_slot)542 static int read_index(struct inode *ip, u32 index,
543 		     struct dir_table_slot * dirtab_slot)
544 {
545 	s64 lblock;
546 	struct metapage *mp = 0;
547 	struct dir_table_slot *slot;
548 
549 	slot = find_index(ip, index, &mp, &lblock);
550 	if (slot == 0) {
551 		return -EIO;
552 	}
553 
554 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
555 
556 	if (mp)
557 		release_metapage(mp);
558 
559 	return 0;
560 }
561 
562 /*
563  *	dtSearch()
564  *
565  * function:
566  *	Search for the entry with specified key
567  *
568  * parameter:
569  *
570  * return: 0 - search result on stack, leaf page pinned;
571  *	   errno - I/O error
572  */
dtSearch(struct inode * ip,struct component_name * key,ino_t * data,struct btstack * btstack,int flag)573 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
574 	     struct btstack * btstack, int flag)
575 {
576 	int rc = 0;
577 	int cmp = 1;		/* init for empty page */
578 	s64 bn;
579 	struct metapage *mp;
580 	dtpage_t *p;
581 	s8 *stbl;
582 	int base, index, lim;
583 	struct btframe *btsp;
584 	pxd_t *pxd;
585 	int psize = 288;	/* initial in-line directory */
586 	ino_t inumber;
587 	struct component_name ciKey;
588 	struct super_block *sb = ip->i_sb;
589 
590 	ciKey.name =
591 	    (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
592 				GFP_NOFS);
593 	if (ciKey.name == 0) {
594 		rc = -ENOMEM;
595 		goto dtSearch_Exit2;
596 	}
597 
598 
599 	/* uppercase search key for c-i directory */
600 	UniStrcpy(ciKey.name, key->name);
601 	ciKey.namlen = key->namlen;
602 
603 	/* only uppercase if case-insensitive support is on */
604 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
605 		ciToUpper(&ciKey);
606 	}
607 	BT_CLR(btstack);	/* reset stack */
608 
609 	/* init level count for max pages to split */
610 	btstack->nsplit = 1;
611 
612 	/*
613 	 *      search down tree from root:
614 	 *
615 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
616 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
617 	 *
618 	 * if entry with search key K is not found
619 	 * internal page search find the entry with largest key Ki
620 	 * less than K which point to the child page to search;
621 	 * leaf page search find the entry with smallest key Kj
622 	 * greater than K so that the returned index is the position of
623 	 * the entry to be shifted right for insertion of new entry.
624 	 * for empty tree, search key is greater than any key of the tree.
625 	 *
626 	 * by convention, root bn = 0.
627 	 */
628 	for (bn = 0;;) {
629 		/* get/pin the page to search */
630 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
631 		if (rc)
632 			goto dtSearch_Exit1;
633 
634 		/* get sorted entry table of the page */
635 		stbl = DT_GETSTBL(p);
636 
637 		/*
638 		 * binary search with search key K on the current page.
639 		 */
640 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
641 			index = base + (lim >> 1);
642 
643 			if (p->header.flag & BT_LEAF) {
644 				/* uppercase leaf name to compare */
645 				cmp =
646 				    ciCompare(&ciKey, p, stbl[index],
647 					      JFS_SBI(sb)->mntflag);
648 			} else {
649 				/* router key is in uppercase */
650 
651 				cmp = dtCompare(&ciKey, p, stbl[index]);
652 
653 
654 			}
655 			if (cmp == 0) {
656 				/*
657 				 *      search hit
658 				 */
659 				/* search hit - leaf page:
660 				 * return the entry found
661 				 */
662 				if (p->header.flag & BT_LEAF) {
663 					inumber = le32_to_cpu(
664 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
665 
666 					/*
667 					 * search for JFS_LOOKUP
668 					 */
669 					if (flag == JFS_LOOKUP) {
670 						*data = inumber;
671 						rc = 0;
672 						goto out;
673 					}
674 
675 					/*
676 					 * search for JFS_CREATE
677 					 */
678 					if (flag == JFS_CREATE) {
679 						*data = inumber;
680 						rc = -EEXIST;
681 						goto out;
682 					}
683 
684 					/*
685 					 * search for JFS_REMOVE or JFS_RENAME
686 					 */
687 					if ((flag == JFS_REMOVE ||
688 					     flag == JFS_RENAME) &&
689 					    *data != inumber) {
690 						rc = -ESTALE;
691 						goto out;
692 					}
693 
694 					/*
695 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
696 					 */
697 					/* save search result */
698 					*data = inumber;
699 					btsp = btstack->top;
700 					btsp->bn = bn;
701 					btsp->index = index;
702 					btsp->mp = mp;
703 
704 					rc = 0;
705 					goto dtSearch_Exit1;
706 				}
707 
708 				/* search hit - internal page:
709 				 * descend/search its child page
710 				 */
711 				goto getChild;
712 			}
713 
714 			if (cmp > 0) {
715 				base = index + 1;
716 				--lim;
717 			}
718 		}
719 
720 		/*
721 		 *      search miss
722 		 *
723 		 * base is the smallest index with key (Kj) greater than
724 		 * search key (K) and may be zero or (maxindex + 1) index.
725 		 */
726 		/*
727 		 * search miss - leaf page
728 		 *
729 		 * return location of entry (base) where new entry with
730 		 * search key K is to be inserted.
731 		 */
732 		if (p->header.flag & BT_LEAF) {
733 			/*
734 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
735 			 */
736 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
737 			    flag == JFS_RENAME) {
738 				rc = -ENOENT;
739 				goto out;
740 			}
741 
742 			/*
743 			 * search for JFS_CREATE|JFS_FINDDIR:
744 			 *
745 			 * save search result
746 			 */
747 			*data = 0;
748 			btsp = btstack->top;
749 			btsp->bn = bn;
750 			btsp->index = base;
751 			btsp->mp = mp;
752 
753 			rc = 0;
754 			goto dtSearch_Exit1;
755 		}
756 
757 		/*
758 		 * search miss - internal page
759 		 *
760 		 * if base is non-zero, decrement base by one to get the parent
761 		 * entry of the child page to search.
762 		 */
763 		index = base ? base - 1 : base;
764 
765 		/*
766 		 * go down to child page
767 		 */
768 	      getChild:
769 		/* update max. number of pages to split */
770 		if (BT_STACK_FULL(btstack)) {
771 			/* Something's corrupted, mark filesytem dirty so
772 			 * chkdsk will fix it.
773 			 */
774 			jfs_error(sb, "stack overrun in dtSearch!");
775 			BT_STACK_DUMP(btstack);
776 			rc = -EIO;
777 			goto out;
778 		}
779 		btstack->nsplit++;
780 
781 		/* push (bn, index) of the parent page/entry */
782 		BT_PUSH(btstack, bn, index);
783 
784 		/* get the child page block number */
785 		pxd = (pxd_t *) & p->slot[stbl[index]];
786 		bn = addressPXD(pxd);
787 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
788 
789 		/* unpin the parent page */
790 		DT_PUTPAGE(mp);
791 	}
792 
793       out:
794 	DT_PUTPAGE(mp);
795 
796       dtSearch_Exit1:
797 
798 	kfree(ciKey.name);
799 
800       dtSearch_Exit2:
801 
802 	return rc;
803 }
804 
805 
806 /*
807  *	dtInsert()
808  *
809  * function: insert an entry to directory tree
810  *
811  * parameter:
812  *
813  * return: 0 - success;
814  *	   errno - failure;
815  */
dtInsert(tid_t tid,struct inode * ip,struct component_name * name,ino_t * fsn,struct btstack * btstack)816 int dtInsert(tid_t tid, struct inode *ip,
817 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
818 {
819 	int rc = 0;
820 	struct metapage *mp;	/* meta-page buffer */
821 	dtpage_t *p;		/* base B+-tree index page */
822 	s64 bn;
823 	int index;
824 	struct dtsplit split;	/* split information */
825 	ddata_t data;
826 	struct dt_lock *dtlck;
827 	int n;
828 	struct tlock *tlck;
829 	struct lv *lv;
830 
831 	/*
832 	 *      retrieve search result
833 	 *
834 	 * dtSearch() returns (leaf page pinned, index at which to insert).
835 	 * n.b. dtSearch() may return index of (maxindex + 1) of
836 	 * the full page.
837 	 */
838 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
839 
840 	/*
841 	 *      insert entry for new key
842 	 */
843 	if (DO_INDEX(ip)) {
844 		if (JFS_IP(ip)->next_index == DIREND) {
845 			DT_PUTPAGE(mp);
846 			return -EMLINK;
847 		}
848 		n = NDTLEAF(name->namlen);
849 		data.leaf.tid = tid;
850 		data.leaf.ip = ip;
851 	} else {
852 		n = NDTLEAF_LEGACY(name->namlen);
853 		data.leaf.ip = 0;	/* signifies legacy directory format */
854 	}
855 	data.leaf.ino = cpu_to_le32(*fsn);
856 
857 	/*
858 	 *      leaf page does not have enough room for new entry:
859 	 *
860 	 *      extend/split the leaf page;
861 	 *
862 	 * dtSplitUp() will insert the entry and unpin the leaf page.
863 	 */
864 	if (n > p->header.freecnt) {
865 		split.mp = mp;
866 		split.index = index;
867 		split.nslot = n;
868 		split.key = name;
869 		split.data = &data;
870 		rc = dtSplitUp(tid, ip, &split, btstack);
871 		return rc;
872 	}
873 
874 	/*
875 	 *      leaf page does have enough room for new entry:
876 	 *
877 	 *      insert the new data entry into the leaf page;
878 	 */
879 	BT_MARK_DIRTY(mp, ip);
880 	/*
881 	 * acquire a transaction lock on the leaf page
882 	 */
883 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
884 	dtlck = (struct dt_lock *) & tlck->lock;
885 	ASSERT(dtlck->index == 0);
886 	lv = & dtlck->lv[0];
887 
888 	/* linelock header */
889 	lv->offset = 0;
890 	lv->length = 1;
891 	dtlck->index++;
892 
893 	dtInsertEntry(p, index, name, &data, &dtlck);
894 
895 	/* linelock stbl of non-root leaf page */
896 	if (!(p->header.flag & BT_ROOT)) {
897 		if (dtlck->index >= dtlck->maxcnt)
898 			dtlck = (struct dt_lock *) txLinelock(dtlck);
899 		lv = & dtlck->lv[dtlck->index];
900 		n = index >> L2DTSLOTSIZE;
901 		lv->offset = p->header.stblindex + n;
902 		lv->length =
903 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
904 		dtlck->index++;
905 	}
906 
907 	/* unpin the leaf page */
908 	DT_PUTPAGE(mp);
909 
910 	return 0;
911 }
912 
913 
914 /*
915  *	dtSplitUp()
916  *
917  * function: propagate insertion bottom up;
918  *
919  * parameter:
920  *
921  * return: 0 - success;
922  *	   errno - failure;
923  * 	leaf page unpinned;
924  */
dtSplitUp(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)925 static int dtSplitUp(tid_t tid,
926 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
927 {
928 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
929 	int rc = 0;
930 	struct metapage *smp;
931 	dtpage_t *sp;		/* split page */
932 	struct metapage *rmp;
933 	dtpage_t *rp;		/* new right page split from sp */
934 	pxd_t rpxd;		/* new right page extent descriptor */
935 	struct metapage *lmp;
936 	dtpage_t *lp;		/* left child page */
937 	int skip;		/* index of entry of insertion */
938 	struct btframe *parent;	/* parent page entry on traverse stack */
939 	s64 xaddr, nxaddr;
940 	int xlen, xsize;
941 	struct pxdlist pxdlist;
942 	pxd_t *pxd;
943 	struct component_name key = { 0, 0 };
944 	ddata_t *data = split->data;
945 	int n;
946 	struct dt_lock *dtlck;
947 	struct tlock *tlck;
948 	struct lv *lv;
949 
950 	/* get split page */
951 	smp = split->mp;
952 	sp = DT_PAGE(ip, smp);
953 
954 	key.name =
955 	    (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t),
956 				GFP_NOFS);
957 	if (key.name == 0) {
958 		DT_PUTPAGE(smp);
959 		rc = -ENOMEM;
960 		goto dtSplitUp_Exit;
961 	}
962 
963 	/*
964 	 *      split leaf page
965 	 *
966 	 * The split routines insert the new entry, and
967 	 * acquire txLock as appropriate.
968 	 */
969 	/*
970 	 *      split root leaf page:
971 	 */
972 	if (sp->header.flag & BT_ROOT) {
973 		/*
974 		 * allocate a single extent child page
975 		 */
976 		xlen = 1;
977 		n = sbi->bsize >> L2DTSLOTSIZE;
978 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
979 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
980 		if (n <= split->nslot)
981 			xlen++;
982 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
983 			DT_PUTPAGE(smp);
984 			goto freeKeyName;
985 		}
986 
987 		pxdlist.maxnpxd = 1;
988 		pxdlist.npxd = 0;
989 		pxd = &pxdlist.pxd[0];
990 		PXDaddress(pxd, xaddr);
991 		PXDlength(pxd, xlen);
992 		split->pxdlist = &pxdlist;
993 		rc = dtSplitRoot(tid, ip, split, &rmp);
994 
995 		if (!rc)
996 			DT_PUTPAGE(rmp);
997 
998 		DT_PUTPAGE(smp);
999 
1000 		goto freeKeyName;
1001 	}
1002 
1003 	/*
1004 	 *      extend first leaf page
1005 	 *
1006 	 * extend the 1st extent if less than buffer page size
1007 	 * (dtExtendPage() reurns leaf page unpinned)
1008 	 */
1009 	pxd = &sp->header.self;
1010 	xlen = lengthPXD(pxd);
1011 	xsize = xlen << sbi->l2bsize;
1012 	if (xsize < PSIZE) {
1013 		xaddr = addressPXD(pxd);
1014 		n = xsize >> L2DTSLOTSIZE;
1015 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1016 		if ((n + sp->header.freecnt) <= split->nslot)
1017 			n = xlen + (xlen << 1);
1018 		else
1019 			n = xlen;
1020 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1021 				    (s64) n, &nxaddr)))
1022 			goto extendOut;
1023 
1024 		pxdlist.maxnpxd = 1;
1025 		pxdlist.npxd = 0;
1026 		pxd = &pxdlist.pxd[0];
1027 		PXDaddress(pxd, nxaddr)
1028 		    PXDlength(pxd, xlen + n);
1029 		split->pxdlist = &pxdlist;
1030 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1031 			nxaddr = addressPXD(pxd);
1032 			if (xaddr != nxaddr) {
1033 				/* free relocated extent */
1034 				xlen = lengthPXD(pxd);
1035 				dbFree(ip, nxaddr, (s64) xlen);
1036 			} else {
1037 				/* free extended delta */
1038 				xlen = lengthPXD(pxd) - n;
1039 				xaddr = addressPXD(pxd) + xlen;
1040 				dbFree(ip, xaddr, (s64) n);
1041 			}
1042 		}
1043 
1044 	      extendOut:
1045 		DT_PUTPAGE(smp);
1046 		goto freeKeyName;
1047 	}
1048 
1049 	/*
1050 	 *      split leaf page <sp> into <sp> and a new right page <rp>.
1051 	 *
1052 	 * return <rp> pinned and its extent descriptor <rpxd>
1053 	 */
1054 	/*
1055 	 * allocate new directory page extent and
1056 	 * new index page(s) to cover page split(s)
1057 	 *
1058 	 * allocation hint: ?
1059 	 */
1060 	n = btstack->nsplit;
1061 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1062 	xlen = sbi->nbperpage;
1063 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1064 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1065 			PXDaddress(pxd, xaddr);
1066 			PXDlength(pxd, xlen);
1067 			pxdlist.maxnpxd++;
1068 			continue;
1069 		}
1070 
1071 		DT_PUTPAGE(smp);
1072 
1073 		/* undo allocation */
1074 		goto splitOut;
1075 	}
1076 
1077 	split->pxdlist = &pxdlist;
1078 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1079 		DT_PUTPAGE(smp);
1080 
1081 		/* undo allocation */
1082 		goto splitOut;
1083 	}
1084 
1085 	/*
1086 	 * propagate up the router entry for the leaf page just split
1087 	 *
1088 	 * insert a router entry for the new page into the parent page,
1089 	 * propagate the insert/split up the tree by walking back the stack
1090 	 * of (bn of parent page, index of child page entry in parent page)
1091 	 * that were traversed during the search for the page that split.
1092 	 *
1093 	 * the propagation of insert/split up the tree stops if the root
1094 	 * splits or the page inserted into doesn't have to split to hold
1095 	 * the new entry.
1096 	 *
1097 	 * the parent entry for the split page remains the same, and
1098 	 * a new entry is inserted at its right with the first key and
1099 	 * block number of the new right page.
1100 	 *
1101 	 * There are a maximum of 4 pages pinned at any time:
1102 	 * two children, left parent and right parent (when the parent splits).
1103 	 * keep the child pages pinned while working on the parent.
1104 	 * make sure that all pins are released at exit.
1105 	 */
1106 	while ((parent = BT_POP(btstack)) != NULL) {
1107 		/* parent page specified by stack frame <parent> */
1108 
1109 		/* keep current child pages (<lp>, <rp>) pinned */
1110 		lmp = smp;
1111 		lp = sp;
1112 
1113 		/*
1114 		 * insert router entry in parent for new right child page <rp>
1115 		 */
1116 		/* get the parent page <sp> */
1117 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1118 		if (rc) {
1119 			DT_PUTPAGE(lmp);
1120 			DT_PUTPAGE(rmp);
1121 			goto splitOut;
1122 		}
1123 
1124 		/*
1125 		 * The new key entry goes ONE AFTER the index of parent entry,
1126 		 * because the split was to the right.
1127 		 */
1128 		skip = parent->index + 1;
1129 
1130 		/*
1131 		 * compute the key for the router entry
1132 		 *
1133 		 * key suffix compression:
1134 		 * for internal pages that have leaf pages as children,
1135 		 * retain only what's needed to distinguish between
1136 		 * the new entry and the entry on the page to its left.
1137 		 * If the keys compare equal, retain the entire key.
1138 		 *
1139 		 * note that compression is performed only at computing
1140 		 * router key at the lowest internal level.
1141 		 * further compression of the key between pairs of higher
1142 		 * level internal pages loses too much information and
1143 		 * the search may fail.
1144 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1145 		 * results in two adjacent parent entries (a)(xx).
1146 		 * if split occurs between these two entries, and
1147 		 * if compression is applied, the router key of parent entry
1148 		 * of right page (x) will divert search for x into right
1149 		 * subtree and miss x in the left subtree.)
1150 		 *
1151 		 * the entire key must be retained for the next-to-leftmost
1152 		 * internal key at any level of the tree, or search may fail
1153 		 * (e.g., ?)
1154 		 */
1155 		switch (rp->header.flag & BT_TYPE) {
1156 		case BT_LEAF:
1157 			/*
1158 			 * compute the length of prefix for suffix compression
1159 			 * between last entry of left page and first entry
1160 			 * of right page
1161 			 */
1162 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1163 			    sp->header.prev != 0 || skip > 1) {
1164 				/* compute uppercase router prefix key */
1165 				rc = ciGetLeafPrefixKey(lp,
1166 							lp->header.nextindex-1,
1167 							rp, 0, &key,
1168 							sbi->mntflag);
1169 				if (rc) {
1170 					DT_PUTPAGE(lmp);
1171 					DT_PUTPAGE(rmp);
1172 					DT_PUTPAGE(smp);
1173 					goto splitOut;
1174 				}
1175 			} else {
1176 				/* next to leftmost entry of
1177 				   lowest internal level */
1178 
1179 				/* compute uppercase router key */
1180 				dtGetKey(rp, 0, &key, sbi->mntflag);
1181 				key.name[key.namlen] = 0;
1182 
1183 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1184 					ciToUpper(&key);
1185 			}
1186 
1187 			n = NDTINTERNAL(key.namlen);
1188 			break;
1189 
1190 		case BT_INTERNAL:
1191 			dtGetKey(rp, 0, &key, sbi->mntflag);
1192 			n = NDTINTERNAL(key.namlen);
1193 			break;
1194 
1195 		default:
1196 			jfs_err("dtSplitUp(): UFO!");
1197 			break;
1198 		}
1199 
1200 		/* unpin left child page */
1201 		DT_PUTPAGE(lmp);
1202 
1203 		/*
1204 		 * compute the data for the router entry
1205 		 */
1206 		data->xd = rpxd;	/* child page xd */
1207 
1208 		/*
1209 		 * parent page is full - split the parent page
1210 		 */
1211 		if (n > sp->header.freecnt) {
1212 			/* init for parent page split */
1213 			split->mp = smp;
1214 			split->index = skip;	/* index at insert */
1215 			split->nslot = n;
1216 			split->key = &key;
1217 			/* split->data = data; */
1218 
1219 			/* unpin right child page */
1220 			DT_PUTPAGE(rmp);
1221 
1222 			/* The split routines insert the new entry,
1223 			 * acquire txLock as appropriate.
1224 			 * return <rp> pinned and its block number <rbn>.
1225 			 */
1226 			rc = (sp->header.flag & BT_ROOT) ?
1227 			    dtSplitRoot(tid, ip, split, &rmp) :
1228 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1229 			if (rc) {
1230 				DT_PUTPAGE(smp);
1231 				goto splitOut;
1232 			}
1233 
1234 			/* smp and rmp are pinned */
1235 		}
1236 		/*
1237 		 * parent page is not full - insert router entry in parent page
1238 		 */
1239 		else {
1240 			BT_MARK_DIRTY(smp, ip);
1241 			/*
1242 			 * acquire a transaction lock on the parent page
1243 			 */
1244 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1245 			dtlck = (struct dt_lock *) & tlck->lock;
1246 			ASSERT(dtlck->index == 0);
1247 			lv = & dtlck->lv[0];
1248 
1249 			/* linelock header */
1250 			lv->offset = 0;
1251 			lv->length = 1;
1252 			dtlck->index++;
1253 
1254 			/* linelock stbl of non-root parent page */
1255 			if (!(sp->header.flag & BT_ROOT)) {
1256 				lv++;
1257 				n = skip >> L2DTSLOTSIZE;
1258 				lv->offset = sp->header.stblindex + n;
1259 				lv->length =
1260 				    ((sp->header.nextindex -
1261 				      1) >> L2DTSLOTSIZE) - n + 1;
1262 				dtlck->index++;
1263 			}
1264 
1265 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1266 
1267 			/* exit propagate up */
1268 			break;
1269 		}
1270 	}
1271 
1272 	/* unpin current split and its right page */
1273 	DT_PUTPAGE(smp);
1274 	DT_PUTPAGE(rmp);
1275 
1276 	/*
1277 	 * free remaining extents allocated for split
1278 	 */
1279       splitOut:
1280 	n = pxdlist.npxd;
1281 	pxd = &pxdlist.pxd[n];
1282 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1283 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1284 
1285       freeKeyName:
1286 	kfree(key.name);
1287 
1288       dtSplitUp_Exit:
1289 
1290 	return rc;
1291 }
1292 
1293 
1294 /*
1295  *	dtSplitPage()
1296  *
1297  * function: Split a non-root page of a btree.
1298  *
1299  * parameter:
1300  *
1301  * return: 0 - success;
1302  *	   errno - failure;
1303  *	return split and new page pinned;
1304  */
dtSplitPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp,dtpage_t ** rpp,pxd_t * rpxdp)1305 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1306 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1307 {
1308 	struct super_block *sb = ip->i_sb;
1309 	int rc = 0;
1310 	struct metapage *smp;
1311 	dtpage_t *sp;
1312 	struct metapage *rmp;
1313 	dtpage_t *rp;		/* new right page allocated */
1314 	s64 rbn;		/* new right page block number */
1315 	struct metapage *mp;
1316 	dtpage_t *p;
1317 	s64 nextbn;
1318 	struct pxdlist *pxdlist;
1319 	pxd_t *pxd;
1320 	int skip, nextindex, half, left, nxt, off, si;
1321 	struct ldtentry *ldtentry;
1322 	struct idtentry *idtentry;
1323 	u8 *stbl;
1324 	struct dtslot *f;
1325 	int fsi, stblsize;
1326 	int n;
1327 	struct dt_lock *sdtlck, *rdtlck;
1328 	struct tlock *tlck;
1329 	struct dt_lock *dtlck;
1330 	struct lv *slv, *rlv, *lv;
1331 
1332 	/* get split page */
1333 	smp = split->mp;
1334 	sp = DT_PAGE(ip, smp);
1335 
1336 	/*
1337 	 * allocate the new right page for the split
1338 	 */
1339 	pxdlist = split->pxdlist;
1340 	pxd = &pxdlist->pxd[pxdlist->npxd];
1341 	pxdlist->npxd++;
1342 	rbn = addressPXD(pxd);
1343 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1344 	if (rmp == NULL)
1345 		return -EIO;
1346 
1347 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1348 
1349 	BT_MARK_DIRTY(rmp, ip);
1350 	/*
1351 	 * acquire a transaction lock on the new right page
1352 	 */
1353 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1354 	rdtlck = (struct dt_lock *) & tlck->lock;
1355 
1356 	rp = (dtpage_t *) rmp->data;
1357 	*rpp = rp;
1358 	rp->header.self = *pxd;
1359 
1360 	BT_MARK_DIRTY(smp, ip);
1361 	/*
1362 	 * acquire a transaction lock on the split page
1363 	 *
1364 	 * action:
1365 	 */
1366 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1367 	sdtlck = (struct dt_lock *) & tlck->lock;
1368 
1369 	/* linelock header of split page */
1370 	ASSERT(sdtlck->index == 0);
1371 	slv = & sdtlck->lv[0];
1372 	slv->offset = 0;
1373 	slv->length = 1;
1374 	sdtlck->index++;
1375 
1376 	/*
1377 	 * initialize/update sibling pointers between sp and rp
1378 	 */
1379 	nextbn = le64_to_cpu(sp->header.next);
1380 	rp->header.next = cpu_to_le64(nextbn);
1381 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1382 	sp->header.next = cpu_to_le64(rbn);
1383 
1384 	/*
1385 	 * initialize new right page
1386 	 */
1387 	rp->header.flag = sp->header.flag;
1388 
1389 	/* compute sorted entry table at start of extent data area */
1390 	rp->header.nextindex = 0;
1391 	rp->header.stblindex = 1;
1392 
1393 	n = PSIZE >> L2DTSLOTSIZE;
1394 	rp->header.maxslot = n;
1395 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1396 
1397 	/* init freelist */
1398 	fsi = rp->header.stblindex + stblsize;
1399 	rp->header.freelist = fsi;
1400 	rp->header.freecnt = rp->header.maxslot - fsi;
1401 
1402 	/*
1403 	 *      sequential append at tail: append without split
1404 	 *
1405 	 * If splitting the last page on a level because of appending
1406 	 * a entry to it (skip is maxentry), it's likely that the access is
1407 	 * sequential. Adding an empty page on the side of the level is less
1408 	 * work and can push the fill factor much higher than normal.
1409 	 * If we're wrong it's no big deal, we'll just do the split the right
1410 	 * way next time.
1411 	 * (It may look like it's equally easy to do a similar hack for
1412 	 * reverse sorted data, that is, split the tree left,
1413 	 * but it's not. Be my guest.)
1414 	 */
1415 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1416 		/* linelock header + stbl (first slot) of new page */
1417 		rlv = & rdtlck->lv[rdtlck->index];
1418 		rlv->offset = 0;
1419 		rlv->length = 2;
1420 		rdtlck->index++;
1421 
1422 		/*
1423 		 * initialize freelist of new right page
1424 		 */
1425 		f = &rp->slot[fsi];
1426 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1427 			f->next = fsi;
1428 		f->next = -1;
1429 
1430 		/* insert entry at the first entry of the new right page */
1431 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1432 
1433 		goto out;
1434 	}
1435 
1436 	/*
1437 	 *      non-sequential insert (at possibly middle page)
1438 	 */
1439 
1440 	/*
1441 	 * update prev pointer of previous right sibling page;
1442 	 */
1443 	if (nextbn != 0) {
1444 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1445 		if (rc) {
1446 			discard_metapage(rmp);
1447 			return rc;
1448 		}
1449 
1450 		BT_MARK_DIRTY(mp, ip);
1451 		/*
1452 		 * acquire a transaction lock on the next page
1453 		 */
1454 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1455 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1456 			tlck, ip, mp);
1457 		dtlck = (struct dt_lock *) & tlck->lock;
1458 
1459 		/* linelock header of previous right sibling page */
1460 		lv = & dtlck->lv[dtlck->index];
1461 		lv->offset = 0;
1462 		lv->length = 1;
1463 		dtlck->index++;
1464 
1465 		p->header.prev = cpu_to_le64(rbn);
1466 
1467 		DT_PUTPAGE(mp);
1468 	}
1469 
1470 	/*
1471 	 * split the data between the split and right pages.
1472 	 */
1473 	skip = split->index;
1474 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1475 	left = 0;
1476 
1477 	/*
1478 	 *      compute fill factor for split pages
1479 	 *
1480 	 * <nxt> traces the next entry to move to rp
1481 	 * <off> traces the next entry to stay in sp
1482 	 */
1483 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1484 	nextindex = sp->header.nextindex;
1485 	for (nxt = off = 0; nxt < nextindex; ++off) {
1486 		if (off == skip)
1487 			/* check for fill factor with new entry size */
1488 			n = split->nslot;
1489 		else {
1490 			si = stbl[nxt];
1491 			switch (sp->header.flag & BT_TYPE) {
1492 			case BT_LEAF:
1493 				ldtentry = (struct ldtentry *) & sp->slot[si];
1494 				if (DO_INDEX(ip))
1495 					n = NDTLEAF(ldtentry->namlen);
1496 				else
1497 					n = NDTLEAF_LEGACY(ldtentry->
1498 							   namlen);
1499 				break;
1500 
1501 			case BT_INTERNAL:
1502 				idtentry = (struct idtentry *) & sp->slot[si];
1503 				n = NDTINTERNAL(idtentry->namlen);
1504 				break;
1505 
1506 			default:
1507 				break;
1508 			}
1509 
1510 			++nxt;	/* advance to next entry to move in sp */
1511 		}
1512 
1513 		left += n;
1514 		if (left >= half)
1515 			break;
1516 	}
1517 
1518 	/* <nxt> poins to the 1st entry to move */
1519 
1520 	/*
1521 	 *      move entries to right page
1522 	 *
1523 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1524 	 *
1525 	 * split page moved out entries are linelocked;
1526 	 * new/right page moved in entries are linelocked;
1527 	 */
1528 	/* linelock header + stbl of new right page */
1529 	rlv = & rdtlck->lv[rdtlck->index];
1530 	rlv->offset = 0;
1531 	rlv->length = 5;
1532 	rdtlck->index++;
1533 
1534 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1535 
1536 	sp->header.nextindex = nxt;
1537 
1538 	/*
1539 	 * finalize freelist of new right page
1540 	 */
1541 	fsi = rp->header.freelist;
1542 	f = &rp->slot[fsi];
1543 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1544 		f->next = fsi;
1545 	f->next = -1;
1546 
1547 	/*
1548 	 * Update directory index table for entries now in right page
1549 	 */
1550 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1551 		s64 lblock;
1552 
1553 		mp = 0;
1554 		stbl = DT_GETSTBL(rp);
1555 		for (n = 0; n < rp->header.nextindex; n++) {
1556 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1557 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1558 				     rbn, n, &mp, &lblock);
1559 		}
1560 		if (mp)
1561 			release_metapage(mp);
1562 	}
1563 
1564 	/*
1565 	 * the skipped index was on the left page,
1566 	 */
1567 	if (skip <= off) {
1568 		/* insert the new entry in the split page */
1569 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1570 
1571 		/* linelock stbl of split page */
1572 		if (sdtlck->index >= sdtlck->maxcnt)
1573 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1574 		slv = & sdtlck->lv[sdtlck->index];
1575 		n = skip >> L2DTSLOTSIZE;
1576 		slv->offset = sp->header.stblindex + n;
1577 		slv->length =
1578 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1579 		sdtlck->index++;
1580 	}
1581 	/*
1582 	 * the skipped index was on the right page,
1583 	 */
1584 	else {
1585 		/* adjust the skip index to reflect the new position */
1586 		skip -= nxt;
1587 
1588 		/* insert the new entry in the right page */
1589 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1590 	}
1591 
1592       out:
1593 	*rmpp = rmp;
1594 	*rpxdp = *pxd;
1595 
1596 	ip->i_blocks += LBLK2PBLK(sb, lengthPXD(pxd));
1597 
1598 	return rc;
1599 }
1600 
1601 
1602 /*
1603  *	dtExtendPage()
1604  *
1605  * function: extend 1st/only directory leaf page
1606  *
1607  * parameter:
1608  *
1609  * return: 0 - success;
1610  *	   errno - failure;
1611  *	return extended page pinned;
1612  */
dtExtendPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)1613 static int dtExtendPage(tid_t tid,
1614 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1615 {
1616 	struct super_block *sb = ip->i_sb;
1617 	int rc;
1618 	struct metapage *smp, *pmp, *mp;
1619 	dtpage_t *sp, *pp;
1620 	struct pxdlist *pxdlist;
1621 	pxd_t *pxd, *tpxd;
1622 	int xlen, xsize;
1623 	int newstblindex, newstblsize;
1624 	int oldstblindex, oldstblsize;
1625 	int fsi, last;
1626 	struct dtslot *f;
1627 	struct btframe *parent;
1628 	int n;
1629 	struct dt_lock *dtlck;
1630 	s64 xaddr, txaddr;
1631 	struct tlock *tlck;
1632 	struct pxd_lock *pxdlock;
1633 	struct lv *lv;
1634 	uint type;
1635 	struct ldtentry *ldtentry;
1636 	u8 *stbl;
1637 
1638 	/* get page to extend */
1639 	smp = split->mp;
1640 	sp = DT_PAGE(ip, smp);
1641 
1642 	/* get parent/root page */
1643 	parent = BT_POP(btstack);
1644 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1645 	if (rc)
1646 		return (rc);
1647 
1648 	/*
1649 	 *      extend the extent
1650 	 */
1651 	pxdlist = split->pxdlist;
1652 	pxd = &pxdlist->pxd[pxdlist->npxd];
1653 	pxdlist->npxd++;
1654 
1655 	xaddr = addressPXD(pxd);
1656 	tpxd = &sp->header.self;
1657 	txaddr = addressPXD(tpxd);
1658 	/* in-place extension */
1659 	if (xaddr == txaddr) {
1660 		type = tlckEXTEND;
1661 	}
1662 	/* relocation */
1663 	else {
1664 		type = tlckNEW;
1665 
1666 		/* save moved extent descriptor for later free */
1667 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1668 		pxdlock = (struct pxd_lock *) & tlck->lock;
1669 		pxdlock->flag = mlckFREEPXD;
1670 		pxdlock->pxd = sp->header.self;
1671 		pxdlock->index = 1;
1672 
1673 		/*
1674 		 * Update directory index table to reflect new page address
1675 		 */
1676 		if (DO_INDEX(ip)) {
1677 			s64 lblock;
1678 
1679 			mp = 0;
1680 			stbl = DT_GETSTBL(sp);
1681 			for (n = 0; n < sp->header.nextindex; n++) {
1682 				ldtentry =
1683 				    (struct ldtentry *) & sp->slot[stbl[n]];
1684 				modify_index(tid, ip,
1685 					     le32_to_cpu(ldtentry->index),
1686 					     xaddr, n, &mp, &lblock);
1687 			}
1688 			if (mp)
1689 				release_metapage(mp);
1690 		}
1691 	}
1692 
1693 	/*
1694 	 *      extend the page
1695 	 */
1696 	sp->header.self = *pxd;
1697 
1698 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1699 
1700 	BT_MARK_DIRTY(smp, ip);
1701 	/*
1702 	 * acquire a transaction lock on the extended/leaf page
1703 	 */
1704 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1705 	dtlck = (struct dt_lock *) & tlck->lock;
1706 	lv = & dtlck->lv[0];
1707 
1708 	/* update buffer extent descriptor of extended page */
1709 	xlen = lengthPXD(pxd);
1710 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1711 #ifdef _STILL_TO_PORT
1712 	bmSetXD(smp, xaddr, xsize);
1713 #endif				/*  _STILL_TO_PORT */
1714 
1715 	/*
1716 	 * copy old stbl to new stbl at start of extended area
1717 	 */
1718 	oldstblindex = sp->header.stblindex;
1719 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1720 	newstblindex = sp->header.maxslot;
1721 	n = xsize >> L2DTSLOTSIZE;
1722 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1723 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1724 	       sp->header.nextindex);
1725 
1726 	/*
1727 	 * in-line extension: linelock old area of extended page
1728 	 */
1729 	if (type == tlckEXTEND) {
1730 		/* linelock header */
1731 		lv->offset = 0;
1732 		lv->length = 1;
1733 		dtlck->index++;
1734 		lv++;
1735 
1736 		/* linelock new stbl of extended page */
1737 		lv->offset = newstblindex;
1738 		lv->length = newstblsize;
1739 	}
1740 	/*
1741 	 * relocation: linelock whole relocated area
1742 	 */
1743 	else {
1744 		lv->offset = 0;
1745 		lv->length = sp->header.maxslot + newstblsize;
1746 	}
1747 
1748 	dtlck->index++;
1749 
1750 	sp->header.maxslot = n;
1751 	sp->header.stblindex = newstblindex;
1752 	/* sp->header.nextindex remains the same */
1753 
1754 	/*
1755 	 * add old stbl region at head of freelist
1756 	 */
1757 	fsi = oldstblindex;
1758 	f = &sp->slot[fsi];
1759 	last = sp->header.freelist;
1760 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1761 		f->next = last;
1762 		last = fsi;
1763 	}
1764 	sp->header.freelist = last;
1765 	sp->header.freecnt += oldstblsize;
1766 
1767 	/*
1768 	 * append free region of newly extended area at tail of freelist
1769 	 */
1770 	/* init free region of newly extended area */
1771 	fsi = n = newstblindex + newstblsize;
1772 	f = &sp->slot[fsi];
1773 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1774 		f->next = fsi;
1775 	f->next = -1;
1776 
1777 	/* append new free region at tail of old freelist */
1778 	fsi = sp->header.freelist;
1779 	if (fsi == -1)
1780 		sp->header.freelist = n;
1781 	else {
1782 		do {
1783 			f = &sp->slot[fsi];
1784 			fsi = f->next;
1785 		} while (fsi != -1);
1786 
1787 		f->next = n;
1788 	}
1789 
1790 	sp->header.freecnt += sp->header.maxslot - n;
1791 
1792 	/*
1793 	 * insert the new entry
1794 	 */
1795 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1796 
1797 	BT_MARK_DIRTY(pmp, ip);
1798 	/*
1799 	 * linelock any freeslots residing in old extent
1800 	 */
1801 	if (type == tlckEXTEND) {
1802 		n = sp->header.maxslot >> 2;
1803 		if (sp->header.freelist < n)
1804 			dtLinelockFreelist(sp, n, &dtlck);
1805 	}
1806 
1807 	/*
1808 	 *      update parent entry on the parent/root page
1809 	 */
1810 	/*
1811 	 * acquire a transaction lock on the parent/root page
1812 	 */
1813 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1814 	dtlck = (struct dt_lock *) & tlck->lock;
1815 	lv = & dtlck->lv[dtlck->index];
1816 
1817 	/* linelock parent entry - 1st slot */
1818 	lv->offset = 1;
1819 	lv->length = 1;
1820 	dtlck->index++;
1821 
1822 	/* update the parent pxd for page extension */
1823 	tpxd = (pxd_t *) & pp->slot[1];
1824 	*tpxd = *pxd;
1825 
1826 	/* Since the directory might have an EA and/or ACL associated with it
1827 	 * we need to make sure we take that into account when setting the
1828 	 * i_nblocks
1829 	 */
1830 	ip->i_blocks = LBLK2PBLK(ip->i_sb, xlen +
1831 				 ((JFS_IP(ip)->ea.flag & DXD_EXTENT) ?
1832 				  lengthDXD(&JFS_IP(ip)->ea) : 0) +
1833 				 ((JFS_IP(ip)->acl.flag & DXD_EXTENT) ?
1834 				  lengthDXD(&JFS_IP(ip)->acl) : 0));
1835 
1836 	DT_PUTPAGE(pmp);
1837 	return 0;
1838 }
1839 
1840 
1841 /*
1842  *	dtSplitRoot()
1843  *
1844  * function:
1845  *	split the full root page into
1846  *	original/root/split page and new right page
1847  *	i.e., root remains fixed in tree anchor (inode) and
1848  *	the root is copied to a single new right child page
1849  *	since root page << non-root page, and
1850  *	the split root page contains a single entry for the
1851  *	new right child page.
1852  *
1853  * parameter:
1854  *
1855  * return: 0 - success;
1856  *	   errno - failure;
1857  *	return new page pinned;
1858  */
dtSplitRoot(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp)1859 static int dtSplitRoot(tid_t tid,
1860 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1861 {
1862 	struct super_block *sb = ip->i_sb;
1863 	struct metapage *smp;
1864 	dtroot_t *sp;
1865 	struct metapage *rmp;
1866 	dtpage_t *rp;
1867 	s64 rbn;
1868 	int xlen;
1869 	int xsize;
1870 	struct dtslot *f;
1871 	s8 *stbl;
1872 	int fsi, stblsize, n;
1873 	struct idtentry *s;
1874 	pxd_t *ppxd;
1875 	struct pxdlist *pxdlist;
1876 	pxd_t *pxd;
1877 	struct dt_lock *dtlck;
1878 	struct tlock *tlck;
1879 	struct lv *lv;
1880 
1881 	/* get split root page */
1882 	smp = split->mp;
1883 	sp = &JFS_IP(ip)->i_dtroot;
1884 
1885 	/*
1886 	 *      allocate/initialize a single (right) child page
1887 	 *
1888 	 * N.B. at first split, a one (or two) block to fit new entry
1889 	 * is allocated; at subsequent split, a full page is allocated;
1890 	 */
1891 	pxdlist = split->pxdlist;
1892 	pxd = &pxdlist->pxd[pxdlist->npxd];
1893 	pxdlist->npxd++;
1894 	rbn = addressPXD(pxd);
1895 	xlen = lengthPXD(pxd);
1896 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1897 	rmp = get_metapage(ip, rbn, xsize, 1);
1898 	if (!rmp)
1899 		return -EIO;
1900 
1901 	rp = rmp->data;
1902 
1903 	BT_MARK_DIRTY(rmp, ip);
1904 	/*
1905 	 * acquire a transaction lock on the new right page
1906 	 */
1907 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1908 	dtlck = (struct dt_lock *) & tlck->lock;
1909 
1910 	rp->header.flag =
1911 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1912 	rp->header.self = *pxd;
1913 
1914 	/* initialize sibling pointers */
1915 	rp->header.next = 0;
1916 	rp->header.prev = 0;
1917 
1918 	/*
1919 	 *      move in-line root page into new right page extent
1920 	 */
1921 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1922 	ASSERT(dtlck->index == 0);
1923 	lv = & dtlck->lv[0];
1924 	lv->offset = 0;
1925 	lv->length = 10;	/* 1 + 8 + 1 */
1926 	dtlck->index++;
1927 
1928 	n = xsize >> L2DTSLOTSIZE;
1929 	rp->header.maxslot = n;
1930 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1931 
1932 	/* copy old stbl to new stbl at start of extended area */
1933 	rp->header.stblindex = DTROOTMAXSLOT;
1934 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1935 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1936 	rp->header.nextindex = sp->header.nextindex;
1937 
1938 	/* copy old data area to start of new data area */
1939 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1940 
1941 	/*
1942 	 * append free region of newly extended area at tail of freelist
1943 	 */
1944 	/* init free region of newly extended area */
1945 	fsi = n = DTROOTMAXSLOT + stblsize;
1946 	f = &rp->slot[fsi];
1947 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1948 		f->next = fsi;
1949 	f->next = -1;
1950 
1951 	/* append new free region at tail of old freelist */
1952 	fsi = sp->header.freelist;
1953 	if (fsi == -1)
1954 		rp->header.freelist = n;
1955 	else {
1956 		rp->header.freelist = fsi;
1957 
1958 		do {
1959 			f = &rp->slot[fsi];
1960 			fsi = f->next;
1961 		} while (fsi != -1);
1962 
1963 		f->next = n;
1964 	}
1965 
1966 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1967 
1968 	/*
1969 	 * Update directory index table for entries now in right page
1970 	 */
1971 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1972 		s64 lblock;
1973 		struct metapage *mp = 0;
1974 		struct ldtentry *ldtentry;
1975 
1976 		stbl = DT_GETSTBL(rp);
1977 		for (n = 0; n < rp->header.nextindex; n++) {
1978 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1979 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1980 				     rbn, n, &mp, &lblock);
1981 		}
1982 		if (mp)
1983 			release_metapage(mp);
1984 	}
1985 	/*
1986 	 * insert the new entry into the new right/child page
1987 	 * (skip index in the new right page will not change)
1988 	 */
1989 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
1990 
1991 	/*
1992 	 *      reset parent/root page
1993 	 *
1994 	 * set the 1st entry offset to 0, which force the left-most key
1995 	 * at any level of the tree to be less than any search key.
1996 	 *
1997 	 * The btree comparison code guarantees that the left-most key on any
1998 	 * level of the tree is never used, so it doesn't need to be filled in.
1999 	 */
2000 	BT_MARK_DIRTY(smp, ip);
2001 	/*
2002 	 * acquire a transaction lock on the root page (in-memory inode)
2003 	 */
2004 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2005 	dtlck = (struct dt_lock *) & tlck->lock;
2006 
2007 	/* linelock root */
2008 	ASSERT(dtlck->index == 0);
2009 	lv = & dtlck->lv[0];
2010 	lv->offset = 0;
2011 	lv->length = DTROOTMAXSLOT;
2012 	dtlck->index++;
2013 
2014 	/* update page header of root */
2015 	if (sp->header.flag & BT_LEAF) {
2016 		sp->header.flag &= ~BT_LEAF;
2017 		sp->header.flag |= BT_INTERNAL;
2018 	}
2019 
2020 	/* init the first entry */
2021 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2022 	ppxd = (pxd_t *) s;
2023 	*ppxd = *pxd;
2024 	s->next = -1;
2025 	s->namlen = 0;
2026 
2027 	stbl = sp->header.stbl;
2028 	stbl[0] = DTENTRYSTART;
2029 	sp->header.nextindex = 1;
2030 
2031 	/* init freelist */
2032 	fsi = DTENTRYSTART + 1;
2033 	f = &sp->slot[fsi];
2034 
2035 	/* init free region of remaining area */
2036 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2037 		f->next = fsi;
2038 	f->next = -1;
2039 
2040 	sp->header.freelist = DTENTRYSTART + 1;
2041 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2042 
2043 	*rmpp = rmp;
2044 
2045 	ip->i_blocks += LBLK2PBLK(ip->i_sb, lengthPXD(pxd));
2046 	return 0;
2047 }
2048 
2049 
2050 /*
2051  *	dtDelete()
2052  *
2053  * function: delete the entry(s) referenced by a key.
2054  *
2055  * parameter:
2056  *
2057  * return:
2058  */
dtDelete(tid_t tid,struct inode * ip,struct component_name * key,ino_t * ino,int flag)2059 int dtDelete(tid_t tid,
2060 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2061 {
2062 	int rc = 0;
2063 	s64 bn;
2064 	struct metapage *mp, *imp;
2065 	dtpage_t *p;
2066 	int index;
2067 	struct btstack btstack;
2068 	struct dt_lock *dtlck;
2069 	struct tlock *tlck;
2070 	struct lv *lv;
2071 	int i;
2072 	struct ldtentry *ldtentry;
2073 	u8 *stbl;
2074 	u32 table_index, next_index;
2075 	struct metapage *nmp;
2076 	dtpage_t *np;
2077 
2078 	/*
2079 	 *      search for the entry to delete:
2080 	 *
2081 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2082 	 */
2083 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2084 		return rc;
2085 
2086 	/* retrieve search result */
2087 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2088 
2089 	/*
2090 	 * We need to find put the index of the next entry into the
2091 	 * directory index table in order to resume a readdir from this
2092 	 * entry.
2093 	 */
2094 	if (DO_INDEX(ip)) {
2095 		stbl = DT_GETSTBL(p);
2096 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2097 		table_index = le32_to_cpu(ldtentry->index);
2098 		if (index == (p->header.nextindex - 1)) {
2099 			/*
2100 			 * Last entry in this leaf page
2101 			 */
2102 			if ((p->header.flag & BT_ROOT)
2103 			    || (p->header.next == 0))
2104 				next_index = -1;
2105 			else {
2106 				/* Read next leaf page */
2107 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2108 					   nmp, PSIZE, np, rc);
2109 				if (rc)
2110 					next_index = -1;
2111 				else {
2112 					stbl = DT_GETSTBL(np);
2113 					ldtentry =
2114 					    (struct ldtentry *) & np->
2115 					    slot[stbl[0]];
2116 					next_index =
2117 					    le32_to_cpu(ldtentry->index);
2118 					DT_PUTPAGE(nmp);
2119 				}
2120 			}
2121 		} else {
2122 			ldtentry =
2123 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2124 			next_index = le32_to_cpu(ldtentry->index);
2125 		}
2126 		free_index(tid, ip, table_index, next_index);
2127 	}
2128 	/*
2129 	 * the leaf page becomes empty, delete the page
2130 	 */
2131 	if (p->header.nextindex == 1) {
2132 		/* delete empty page */
2133 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2134 	}
2135 	/*
2136 	 * the leaf page has other entries remaining:
2137 	 *
2138 	 * delete the entry from the leaf page.
2139 	 */
2140 	else {
2141 		BT_MARK_DIRTY(mp, ip);
2142 		/*
2143 		 * acquire a transaction lock on the leaf page
2144 		 */
2145 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2146 		dtlck = (struct dt_lock *) & tlck->lock;
2147 
2148 		/*
2149 		 * Do not assume that dtlck->index will be zero.  During a
2150 		 * rename within a directory, this transaction may have
2151 		 * modified this page already when adding the new entry.
2152 		 */
2153 
2154 		/* linelock header */
2155 		if (dtlck->index >= dtlck->maxcnt)
2156 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2157 		lv = & dtlck->lv[dtlck->index];
2158 		lv->offset = 0;
2159 		lv->length = 1;
2160 		dtlck->index++;
2161 
2162 		/* linelock stbl of non-root leaf page */
2163 		if (!(p->header.flag & BT_ROOT)) {
2164 			if (dtlck->index >= dtlck->maxcnt)
2165 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2166 			lv = & dtlck->lv[dtlck->index];
2167 			i = index >> L2DTSLOTSIZE;
2168 			lv->offset = p->header.stblindex + i;
2169 			lv->length =
2170 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2171 			    i + 1;
2172 			dtlck->index++;
2173 		}
2174 
2175 		/* free the leaf entry */
2176 		dtDeleteEntry(p, index, &dtlck);
2177 
2178 		/*
2179 		 * Update directory index table for entries moved in stbl
2180 		 */
2181 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2182 			s64 lblock;
2183 
2184 			imp = 0;
2185 			stbl = DT_GETSTBL(p);
2186 			for (i = index; i < p->header.nextindex; i++) {
2187 				ldtentry =
2188 				    (struct ldtentry *) & p->slot[stbl[i]];
2189 				modify_index(tid, ip,
2190 					     le32_to_cpu(ldtentry->index),
2191 					     bn, i, &imp, &lblock);
2192 			}
2193 			if (imp)
2194 				release_metapage(imp);
2195 		}
2196 
2197 		DT_PUTPAGE(mp);
2198 	}
2199 
2200 	return rc;
2201 }
2202 
2203 
2204 /*
2205  *	dtDeleteUp()
2206  *
2207  * function:
2208  *	free empty pages as propagating deletion up the tree
2209  *
2210  * parameter:
2211  *
2212  * return:
2213  */
dtDeleteUp(tid_t tid,struct inode * ip,struct metapage * fmp,dtpage_t * fp,struct btstack * btstack)2214 static int dtDeleteUp(tid_t tid, struct inode *ip,
2215 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2216 {
2217 	int rc = 0;
2218 	struct metapage *mp;
2219 	dtpage_t *p;
2220 	int index, nextindex;
2221 	int xlen;
2222 	struct btframe *parent;
2223 	struct dt_lock *dtlck;
2224 	struct tlock *tlck;
2225 	struct lv *lv;
2226 	struct pxd_lock *pxdlock;
2227 	int i;
2228 
2229 	/*
2230 	 *      keep the root leaf page which has become empty
2231 	 */
2232 	if (BT_IS_ROOT(fmp)) {
2233 		/*
2234 		 * reset the root
2235 		 *
2236 		 * dtInitRoot() acquires txlock on the root
2237 		 */
2238 		dtInitRoot(tid, ip, PARENT(ip));
2239 
2240 		DT_PUTPAGE(fmp);
2241 
2242 		return 0;
2243 	}
2244 
2245 	/*
2246 	 *      free the non-root leaf page
2247 	 */
2248 	/*
2249 	 * acquire a transaction lock on the page
2250 	 *
2251 	 * write FREEXTENT|NOREDOPAGE log record
2252 	 * N.B. linelock is overlaid as freed extent descriptor, and
2253 	 * the buffer page is freed;
2254 	 */
2255 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2256 	pxdlock = (struct pxd_lock *) & tlck->lock;
2257 	pxdlock->flag = mlckFREEPXD;
2258 	pxdlock->pxd = fp->header.self;
2259 	pxdlock->index = 1;
2260 
2261 	/* update sibling pointers */
2262 	if ((rc = dtRelink(tid, ip, fp))) {
2263 		BT_PUTPAGE(fmp);
2264 		return rc;
2265 	}
2266 
2267 	xlen = lengthPXD(&fp->header.self);
2268 	ip->i_blocks -= LBLK2PBLK(ip->i_sb, xlen);
2269 
2270 	/* free/invalidate its buffer page */
2271 	discard_metapage(fmp);
2272 
2273 	/*
2274 	 *      propagate page deletion up the directory tree
2275 	 *
2276 	 * If the delete from the parent page makes it empty,
2277 	 * continue all the way up the tree.
2278 	 * stop if the root page is reached (which is never deleted) or
2279 	 * if the entry deletion does not empty the page.
2280 	 */
2281 	while ((parent = BT_POP(btstack)) != NULL) {
2282 		/* pin the parent page <sp> */
2283 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2284 		if (rc)
2285 			return rc;
2286 
2287 		/*
2288 		 * free the extent of the child page deleted
2289 		 */
2290 		index = parent->index;
2291 
2292 		/*
2293 		 * delete the entry for the child page from parent
2294 		 */
2295 		nextindex = p->header.nextindex;
2296 
2297 		/*
2298 		 * the parent has the single entry being deleted:
2299 		 *
2300 		 * free the parent page which has become empty.
2301 		 */
2302 		if (nextindex == 1) {
2303 			/*
2304 			 * keep the root internal page which has become empty
2305 			 */
2306 			if (p->header.flag & BT_ROOT) {
2307 				/*
2308 				 * reset the root
2309 				 *
2310 				 * dtInitRoot() acquires txlock on the root
2311 				 */
2312 				dtInitRoot(tid, ip, PARENT(ip));
2313 
2314 				DT_PUTPAGE(mp);
2315 
2316 				return 0;
2317 			}
2318 			/*
2319 			 * free the parent page
2320 			 */
2321 			else {
2322 				/*
2323 				 * acquire a transaction lock on the page
2324 				 *
2325 				 * write FREEXTENT|NOREDOPAGE log record
2326 				 */
2327 				tlck =
2328 				    txMaplock(tid, ip,
2329 					      tlckDTREE | tlckFREE);
2330 				pxdlock = (struct pxd_lock *) & tlck->lock;
2331 				pxdlock->flag = mlckFREEPXD;
2332 				pxdlock->pxd = p->header.self;
2333 				pxdlock->index = 1;
2334 
2335 				/* update sibling pointers */
2336 				if ((rc = dtRelink(tid, ip, p))) {
2337 					DT_PUTPAGE(mp);
2338 					return rc;
2339 				}
2340 
2341 				xlen = lengthPXD(&p->header.self);
2342 				ip->i_blocks -= LBLK2PBLK(ip->i_sb, xlen);
2343 
2344 				/* free/invalidate its buffer page */
2345 				discard_metapage(mp);
2346 
2347 				/* propagate up */
2348 				continue;
2349 			}
2350 		}
2351 
2352 		/*
2353 		 * the parent has other entries remaining:
2354 		 *
2355 		 * delete the router entry from the parent page.
2356 		 */
2357 		BT_MARK_DIRTY(mp, ip);
2358 		/*
2359 		 * acquire a transaction lock on the page
2360 		 *
2361 		 * action: router entry deletion
2362 		 */
2363 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2364 		dtlck = (struct dt_lock *) & tlck->lock;
2365 
2366 		/* linelock header */
2367 		if (dtlck->index >= dtlck->maxcnt)
2368 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2369 		lv = & dtlck->lv[dtlck->index];
2370 		lv->offset = 0;
2371 		lv->length = 1;
2372 		dtlck->index++;
2373 
2374 		/* linelock stbl of non-root leaf page */
2375 		if (!(p->header.flag & BT_ROOT)) {
2376 			if (dtlck->index < dtlck->maxcnt)
2377 				lv++;
2378 			else {
2379 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2380 				lv = & dtlck->lv[0];
2381 			}
2382 			i = index >> L2DTSLOTSIZE;
2383 			lv->offset = p->header.stblindex + i;
2384 			lv->length =
2385 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2386 			    i + 1;
2387 			dtlck->index++;
2388 		}
2389 
2390 		/* free the router entry */
2391 		dtDeleteEntry(p, index, &dtlck);
2392 
2393 		/* reset key of new leftmost entry of level (for consistency) */
2394 		if (index == 0 &&
2395 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2396 			dtTruncateEntry(p, 0, &dtlck);
2397 
2398 		/* unpin the parent page */
2399 		DT_PUTPAGE(mp);
2400 
2401 		/* exit propagation up */
2402 		break;
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 #ifdef _NOTYET
2409 /*
2410  * NAME:        dtRelocate()
2411  *
2412  * FUNCTION:    relocate dtpage (internal or leaf) of directory;
2413  *              This function is mainly used by defragfs utility.
2414  */
dtRelocate(tid_t tid,struct inode * ip,s64 lmxaddr,pxd_t * opxd,s64 nxaddr)2415 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2416 	       s64 nxaddr)
2417 {
2418 	int rc = 0;
2419 	struct metapage *mp, *pmp, *lmp, *rmp;
2420 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2421 	s64 bn;
2422 	int index;
2423 	struct btstack btstack;
2424 	pxd_t *pxd;
2425 	s64 oxaddr, nextbn, prevbn;
2426 	int xlen, xsize;
2427 	struct tlock *tlck;
2428 	struct dt_lock *dtlck;
2429 	struct pxd_lock *pxdlock;
2430 	s8 *stbl;
2431 	struct lv *lv;
2432 
2433 	oxaddr = addressPXD(opxd);
2434 	xlen = lengthPXD(opxd);
2435 
2436 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2437 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2438 		   xlen);
2439 
2440 	/*
2441 	 *      1. get the internal parent dtpage covering
2442 	 *      router entry for the tartget page to be relocated;
2443 	 */
2444 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2445 	if (rc)
2446 		return rc;
2447 
2448 	/* retrieve search result */
2449 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2450 	jfs_info("dtRelocate: parent router entry validated.");
2451 
2452 	/*
2453 	 *      2. relocate the target dtpage
2454 	 */
2455 	/* read in the target page from src extent */
2456 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2457 	if (rc) {
2458 		/* release the pinned parent page */
2459 		DT_PUTPAGE(pmp);
2460 		return rc;
2461 	}
2462 
2463 	/*
2464 	 * read in sibling pages if any to update sibling pointers;
2465 	 */
2466 	rmp = NULL;
2467 	if (p->header.next) {
2468 		nextbn = le64_to_cpu(p->header.next);
2469 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2470 		if (rc) {
2471 			DT_PUTPAGE(mp);
2472 			DT_PUTPAGE(pmp);
2473 			return (rc);
2474 		}
2475 	}
2476 
2477 	lmp = NULL;
2478 	if (p->header.prev) {
2479 		prevbn = le64_to_cpu(p->header.prev);
2480 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2481 		if (rc) {
2482 			DT_PUTPAGE(mp);
2483 			DT_PUTPAGE(pmp);
2484 			if (rmp)
2485 				DT_PUTPAGE(rmp);
2486 			return (rc);
2487 		}
2488 	}
2489 
2490 	/* at this point, all xtpages to be updated are in memory */
2491 
2492 	/*
2493 	 * update sibling pointers of sibling dtpages if any;
2494 	 */
2495 	if (lmp) {
2496 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2497 		dtlck = (struct dt_lock *) & tlck->lock;
2498 		/* linelock header */
2499 		ASSERT(dtlck->index == 0);
2500 		lv = & dtlck->lv[0];
2501 		lv->offset = 0;
2502 		lv->length = 1;
2503 		dtlck->index++;
2504 
2505 		lp->header.next = cpu_to_le64(nxaddr);
2506 		DT_PUTPAGE(lmp);
2507 	}
2508 
2509 	if (rmp) {
2510 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2511 		dtlck = (struct dt_lock *) & tlck->lock;
2512 		/* linelock header */
2513 		ASSERT(dtlck->index == 0);
2514 		lv = & dtlck->lv[0];
2515 		lv->offset = 0;
2516 		lv->length = 1;
2517 		dtlck->index++;
2518 
2519 		rp->header.prev = cpu_to_le64(nxaddr);
2520 		DT_PUTPAGE(rmp);
2521 	}
2522 
2523 	/*
2524 	 * update the target dtpage to be relocated
2525 	 *
2526 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2527 	 * for the whole target page (logredo() will apply
2528 	 * after image and update bmap for allocation of the
2529 	 * dst extent), and update bmap for allocation of
2530 	 * the dst extent;
2531 	 */
2532 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2533 	dtlck = (struct dt_lock *) & tlck->lock;
2534 	/* linelock header */
2535 	ASSERT(dtlck->index == 0);
2536 	lv = & dtlck->lv[0];
2537 
2538 	/* update the self address in the dtpage header */
2539 	pxd = &p->header.self;
2540 	PXDaddress(pxd, nxaddr);
2541 
2542 	/* the dst page is the same as the src page, i.e.,
2543 	 * linelock for afterimage of the whole page;
2544 	 */
2545 	lv->offset = 0;
2546 	lv->length = p->header.maxslot;
2547 	dtlck->index++;
2548 
2549 	/* update the buffer extent descriptor of the dtpage */
2550 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2551 #ifdef _STILL_TO_PORT
2552 	bmSetXD(mp, nxaddr, xsize);
2553 #endif /* _STILL_TO_PORT */
2554 	/* unpin the relocated page */
2555 	DT_PUTPAGE(mp);
2556 	jfs_info("dtRelocate: target dtpage relocated.");
2557 
2558 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2559 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2560 	 * will also force a bmap update ).
2561 	 */
2562 
2563 	/*
2564 	 *      3. acquire maplock for the source extent to be freed;
2565 	 */
2566 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2567 	 * for the source dtpage (logredo() will init NoRedoPage
2568 	 * filter and will also update bmap for free of the source
2569 	 * dtpage), and upadte bmap for free of the source dtpage;
2570 	 */
2571 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2572 	pxdlock = (struct pxd_lock *) & tlck->lock;
2573 	pxdlock->flag = mlckFREEPXD;
2574 	PXDaddress(&pxdlock->pxd, oxaddr);
2575 	PXDlength(&pxdlock->pxd, xlen);
2576 	pxdlock->index = 1;
2577 
2578 	/*
2579 	 *      4. update the parent router entry for relocation;
2580 	 *
2581 	 * acquire tlck for the parent entry covering the target dtpage;
2582 	 * write LOG_REDOPAGE to apply after image only;
2583 	 */
2584 	jfs_info("dtRelocate: update parent router entry.");
2585 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2586 	dtlck = (struct dt_lock *) & tlck->lock;
2587 	lv = & dtlck->lv[dtlck->index];
2588 
2589 	/* update the PXD with the new address */
2590 	stbl = DT_GETSTBL(pp);
2591 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2592 	PXDaddress(pxd, nxaddr);
2593 	lv->offset = stbl[index];
2594 	lv->length = 1;
2595 	dtlck->index++;
2596 
2597 	/* unpin the parent dtpage */
2598 	DT_PUTPAGE(pmp);
2599 
2600 	return rc;
2601 }
2602 
2603 /*
2604  * NAME:	dtSearchNode()
2605  *
2606  * FUNCTION:	Search for an dtpage containing a specified address
2607  *              This function is mainly used by defragfs utility.
2608  *
2609  * NOTE:	Search result on stack, the found page is pinned at exit.
2610  *		The result page must be an internal dtpage.
2611  *		lmxaddr give the address of the left most page of the
2612  *		dtree level, in which the required dtpage resides.
2613  */
dtSearchNode(struct inode * ip,s64 lmxaddr,pxd_t * kpxd,struct btstack * btstack)2614 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2615 			struct btstack * btstack)
2616 {
2617 	int rc = 0;
2618 	s64 bn;
2619 	struct metapage *mp;
2620 	dtpage_t *p;
2621 	int psize = 288;	/* initial in-line directory */
2622 	s8 *stbl;
2623 	int i;
2624 	pxd_t *pxd;
2625 	struct btframe *btsp;
2626 
2627 	BT_CLR(btstack);	/* reset stack */
2628 
2629 	/*
2630 	 *      descend tree to the level with specified leftmost page
2631 	 *
2632 	 *  by convention, root bn = 0.
2633 	 */
2634 	for (bn = 0;;) {
2635 		/* get/pin the page to search */
2636 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2637 		if (rc)
2638 			return rc;
2639 
2640 		/* does the xaddr of leftmost page of the levevl
2641 		 * matches levevl search key ?
2642 		 */
2643 		if (p->header.flag & BT_ROOT) {
2644 			if (lmxaddr == 0)
2645 				break;
2646 		} else if (addressPXD(&p->header.self) == lmxaddr)
2647 			break;
2648 
2649 		/*
2650 		 * descend down to leftmost child page
2651 		 */
2652 		if (p->header.flag & BT_LEAF) {
2653 			DT_PUTPAGE(mp);
2654 			return -ESTALE;
2655 		}
2656 
2657 		/* get the leftmost entry */
2658 		stbl = DT_GETSTBL(p);
2659 		pxd = (pxd_t *) & p->slot[stbl[0]];
2660 
2661 		/* get the child page block address */
2662 		bn = addressPXD(pxd);
2663 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2664 		/* unpin the parent page */
2665 		DT_PUTPAGE(mp);
2666 	}
2667 
2668 	/*
2669 	 *      search each page at the current levevl
2670 	 */
2671       loop:
2672 	stbl = DT_GETSTBL(p);
2673 	for (i = 0; i < p->header.nextindex; i++) {
2674 		pxd = (pxd_t *) & p->slot[stbl[i]];
2675 
2676 		/* found the specified router entry */
2677 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2678 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2679 			btsp = btstack->top;
2680 			btsp->bn = bn;
2681 			btsp->index = i;
2682 			btsp->mp = mp;
2683 
2684 			return 0;
2685 		}
2686 	}
2687 
2688 	/* get the right sibling page if any */
2689 	if (p->header.next)
2690 		bn = le64_to_cpu(p->header.next);
2691 	else {
2692 		DT_PUTPAGE(mp);
2693 		return -ESTALE;
2694 	}
2695 
2696 	/* unpin current page */
2697 	DT_PUTPAGE(mp);
2698 
2699 	/* get the right sibling page */
2700 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2701 	if (rc)
2702 		return rc;
2703 
2704 	goto loop;
2705 }
2706 #endif /* _NOTYET */
2707 
2708 /*
2709  *	dtRelink()
2710  *
2711  * function:
2712  *	link around a freed page.
2713  *
2714  * parameter:
2715  *	fp:	page to be freed
2716  *
2717  * return:
2718  */
dtRelink(tid_t tid,struct inode * ip,dtpage_t * p)2719 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2720 {
2721 	int rc;
2722 	struct metapage *mp;
2723 	s64 nextbn, prevbn;
2724 	struct tlock *tlck;
2725 	struct dt_lock *dtlck;
2726 	struct lv *lv;
2727 
2728 	nextbn = le64_to_cpu(p->header.next);
2729 	prevbn = le64_to_cpu(p->header.prev);
2730 
2731 	/* update prev pointer of the next page */
2732 	if (nextbn != 0) {
2733 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2734 		if (rc)
2735 			return rc;
2736 
2737 		BT_MARK_DIRTY(mp, ip);
2738 		/*
2739 		 * acquire a transaction lock on the next page
2740 		 *
2741 		 * action: update prev pointer;
2742 		 */
2743 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2744 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2745 			tlck, ip, mp);
2746 		dtlck = (struct dt_lock *) & tlck->lock;
2747 
2748 		/* linelock header */
2749 		if (dtlck->index >= dtlck->maxcnt)
2750 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2751 		lv = & dtlck->lv[dtlck->index];
2752 		lv->offset = 0;
2753 		lv->length = 1;
2754 		dtlck->index++;
2755 
2756 		p->header.prev = cpu_to_le64(prevbn);
2757 		DT_PUTPAGE(mp);
2758 	}
2759 
2760 	/* update next pointer of the previous page */
2761 	if (prevbn != 0) {
2762 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2763 		if (rc)
2764 			return rc;
2765 
2766 		BT_MARK_DIRTY(mp, ip);
2767 		/*
2768 		 * acquire a transaction lock on the prev page
2769 		 *
2770 		 * action: update next pointer;
2771 		 */
2772 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2773 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2774 			tlck, ip, mp);
2775 		dtlck = (struct dt_lock *) & tlck->lock;
2776 
2777 		/* linelock header */
2778 		if (dtlck->index >= dtlck->maxcnt)
2779 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2780 		lv = & dtlck->lv[dtlck->index];
2781 		lv->offset = 0;
2782 		lv->length = 1;
2783 		dtlck->index++;
2784 
2785 		p->header.next = cpu_to_le64(nextbn);
2786 		DT_PUTPAGE(mp);
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 
2793 /*
2794  *	dtInitRoot()
2795  *
2796  * initialize directory root (inline in inode)
2797  */
dtInitRoot(tid_t tid,struct inode * ip,u32 idotdot)2798 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2799 {
2800 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2801 	dtroot_t *p;
2802 	int fsi;
2803 	struct dtslot *f;
2804 	struct tlock *tlck;
2805 	struct dt_lock *dtlck;
2806 	struct lv *lv;
2807 	u16 xflag_save;
2808 
2809 	/*
2810 	 * If this was previously an non-empty directory, we need to remove
2811 	 * the old directory table.
2812 	 */
2813 	if (DO_INDEX(ip)) {
2814 		if (jfs_ip->next_index > (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
2815 			struct tblock *tblk = tid_to_tblock(tid);
2816 			/*
2817 			 * We're playing games with the tid's xflag.  If
2818 			 * we're removing a regular file, the file's xtree
2819 			 * is committed with COMMIT_PMAP, but we always
2820 			 * commit the directories xtree with COMMIT_PWMAP.
2821 			 */
2822 			xflag_save = tblk->xflag;
2823 			tblk->xflag = 0;
2824 			/*
2825 			 * xtTruncate isn't guaranteed to fully truncate
2826 			 * the xtree.  The caller needs to check i_size
2827 			 * after committing the transaction to see if
2828 			 * additional truncation is needed.  The
2829 			 * COMMIT_Stale flag tells caller that we
2830 			 * initiated the truncation.
2831 			 */
2832 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2833 			set_cflag(COMMIT_Stale, ip);
2834 
2835 			tblk->xflag = xflag_save;
2836 		} else
2837 			ip->i_size = 1;
2838 
2839 		jfs_ip->next_index = 2;
2840 	} else
2841 		ip->i_size = IDATASIZE;
2842 
2843 	/*
2844 	 * acquire a transaction lock on the root
2845 	 *
2846 	 * action: directory initialization;
2847 	 */
2848 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2849 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2850 	dtlck = (struct dt_lock *) & tlck->lock;
2851 
2852 	/* linelock root */
2853 	ASSERT(dtlck->index == 0);
2854 	lv = & dtlck->lv[0];
2855 	lv->offset = 0;
2856 	lv->length = DTROOTMAXSLOT;
2857 	dtlck->index++;
2858 
2859 	p = &jfs_ip->i_dtroot;
2860 
2861 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2862 
2863 	p->header.nextindex = 0;
2864 
2865 	/* init freelist */
2866 	fsi = 1;
2867 	f = &p->slot[fsi];
2868 
2869 	/* init data area of root */
2870 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2871 		f->next = fsi;
2872 	f->next = -1;
2873 
2874 	p->header.freelist = 1;
2875 	p->header.freecnt = 8;
2876 
2877 	/* init '..' entry */
2878 	p->header.idotdot = cpu_to_le32(idotdot);
2879 
2880 #if 0
2881 	ip->i_blocks = LBLK2PBLK(ip->i_sb,
2882 				 ((jfs_ip->ea.flag & DXD_EXTENT) ?
2883 				  lengthDXD(&jfs_ip->ea) : 0) +
2884 				 ((jfs_ip->acl.flag & DXD_EXTENT) ?
2885 				  lengthDXD(&jfs_ip->acl) : 0));
2886 #endif
2887 
2888 	return;
2889 }
2890 
2891 /*
2892  *	add_missing_indices()
2893  *
2894  * function: Fix dtree page in which one or more entries has an invalid index.
2895  *	     fsck.jfs should really fix this, but it currently does not.
2896  *	     Called from jfs_readdir when bad index is detected.
2897  */
add_missing_indices(struct inode * inode,s64 bn)2898 static void add_missing_indices(struct inode *inode, s64 bn)
2899 {
2900 	struct ldtentry *d;
2901 	struct dt_lock *dtlck;
2902 	int i;
2903 	uint index;
2904 	struct lv *lv;
2905 	struct metapage *mp;
2906 	dtpage_t *p;
2907 	int rc;
2908 	s8 *stbl;
2909 	tid_t tid;
2910 	struct tlock *tlck;
2911 
2912 	tid = txBegin(inode->i_sb, 0);
2913 
2914 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2915 
2916 	if (rc) {
2917 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2918 		goto end;
2919 	}
2920 	BT_MARK_DIRTY(mp, inode);
2921 
2922 	ASSERT(p->header.flag & BT_LEAF);
2923 
2924 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2925 	dtlck = (struct dt_lock *) &tlck->lock;
2926 
2927 	stbl = DT_GETSTBL(p);
2928 	for (i = 0; i < p->header.nextindex; i++) {
2929 		d = (struct ldtentry *) &p->slot[stbl[i]];
2930 		index = le32_to_cpu(d->index);
2931 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2932 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2933 			if (dtlck->index >= dtlck->maxcnt)
2934 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2935 			lv = &dtlck->lv[dtlck->index];
2936 			lv->offset = stbl[i];
2937 			lv->length = 1;
2938 			dtlck->index++;
2939 		}
2940 	}
2941 
2942 	DT_PUTPAGE(mp);
2943 	(void) txCommit(tid, 1, &inode, 0);
2944 end:
2945 	txEnd(tid);
2946 }
2947 
2948 /*
2949  * Buffer to hold directory entry info while traversing a dtree page
2950  * before being fed to the filldir function
2951  */
2952 struct jfs_dirent {
2953 	loff_t position;
2954 	int ino;
2955 	u16 name_len;
2956 	char name[0];
2957 };
2958 
2959 /*
2960  * function to determine next variable-sized jfs_dirent in buffer
2961  */
next_jfs_dirent(struct jfs_dirent * dirent)2962 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2963 {
2964 	return (struct jfs_dirent *)
2965 		((char *)dirent +
2966 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2967 		   sizeof (loff_t) - 1) &
2968 		  ~(sizeof (loff_t) - 1)));
2969 }
2970 
2971 /*
2972  *	jfs_readdir()
2973  *
2974  * function: read directory entries sequentially
2975  *	from the specified entry offset
2976  *
2977  * parameter:
2978  *
2979  * return: offset = (pn, index) of start entry
2980  *	of next jfs_readdir()/dtRead()
2981  */
jfs_readdir(struct file * filp,void * dirent,filldir_t filldir)2982 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
2983 {
2984 	struct inode *ip = filp->f_dentry->d_inode;
2985 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2986 	int rc = 0;
2987 	loff_t dtpos;	/* legacy OS/2 style position */
2988 	struct dtoffset {
2989 		s16 pn;
2990 		s16 index;
2991 		s32 unused;
2992 	} *dtoffset = (struct dtoffset *) &dtpos;
2993 	s64 bn;
2994 	struct metapage *mp;
2995 	dtpage_t *p;
2996 	int index;
2997 	s8 *stbl;
2998 	struct btstack btstack;
2999 	int i, next;
3000 	struct ldtentry *d;
3001 	struct dtslot *t;
3002 	int d_namleft, len, outlen;
3003 	unsigned long dirent_buf;
3004 	char *name_ptr;
3005 	u32 dir_index;
3006 	int do_index = 0;
3007 	uint loop_count = 0;
3008 	struct jfs_dirent *jfs_dirent;
3009 	int jfs_dirents;
3010 	int overflow, fix_page, page_fixed = 0;
3011 	static int unique_pos = 2;	/* If we can't fix broken index */
3012 
3013 	if (filp->f_pos == DIREND)
3014 		return 0;
3015 
3016 	if (DO_INDEX(ip)) {
3017 		/*
3018 		 * persistent index is stored in directory entries.
3019 		 * Special cases:        0 = .
3020 		 *                       1 = ..
3021 		 *                      -1 = End of directory
3022 		 */
3023 		do_index = 1;
3024 
3025 		dir_index = (u32) filp->f_pos;
3026 
3027 		if (dir_index > 1) {
3028 			struct dir_table_slot dirtab_slot;
3029 
3030 			if (dtEmpty(ip) ||
3031 			    (dir_index >= JFS_IP(ip)->next_index)) {
3032 				/* Stale position.  Directory has shrunk */
3033 				filp->f_pos = DIREND;
3034 				return 0;
3035 			}
3036 		      repeat:
3037 			rc = read_index(ip, dir_index, &dirtab_slot);
3038 			if (rc) {
3039 				filp->f_pos = DIREND;
3040 				return rc;
3041 			}
3042 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3043 				if (loop_count++ > JFS_IP(ip)->next_index) {
3044 					jfs_err("jfs_readdir detected "
3045 						   "infinite loop!");
3046 					filp->f_pos = DIREND;
3047 					return 0;
3048 				}
3049 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3050 				if (dir_index == -1) {
3051 					filp->f_pos = DIREND;
3052 					return 0;
3053 				}
3054 				goto repeat;
3055 			}
3056 			bn = addressDTS(&dirtab_slot);
3057 			index = dirtab_slot.slot;
3058 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3059 			if (rc) {
3060 				filp->f_pos = DIREND;
3061 				return 0;
3062 			}
3063 			if (p->header.flag & BT_INTERNAL) {
3064 				jfs_err("jfs_readdir: bad index table");
3065 				DT_PUTPAGE(mp);
3066 				filp->f_pos = -1;
3067 				return 0;
3068 			}
3069 		} else {
3070 			if (dir_index == 0) {
3071 				/*
3072 				 * self "."
3073 				 */
3074 				filp->f_pos = 0;
3075 				if (filldir(dirent, ".", 1, 0, ip->i_ino,
3076 					    DT_DIR))
3077 					return 0;
3078 			}
3079 			/*
3080 			 * parent ".."
3081 			 */
3082 			filp->f_pos = 1;
3083 			if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3084 				return 0;
3085 
3086 			/*
3087 			 * Find first entry of left-most leaf
3088 			 */
3089 			if (dtEmpty(ip)) {
3090 				filp->f_pos = DIREND;
3091 				return 0;
3092 			}
3093 
3094 			if ((rc = dtReadFirst(ip, &btstack)))
3095 				return rc;
3096 
3097 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3098 		}
3099 	} else {
3100 		/*
3101 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3102 		 *
3103 		 * pn = index = 0:      First entry "."
3104 		 * pn = 0; index = 1:   Second entry ".."
3105 		 * pn > 0:              Real entries, pn=1 -> leftmost page
3106 		 * pn = index = -1:     No more entries
3107 		 */
3108 		dtpos = filp->f_pos;
3109 		if (dtpos == 0) {
3110 			/* build "." entry */
3111 
3112 			if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3113 				    DT_DIR))
3114 				return 0;
3115 			dtoffset->index = 1;
3116 			filp->f_pos = dtpos;
3117 		}
3118 
3119 		if (dtoffset->pn == 0) {
3120 			if (dtoffset->index == 1) {
3121 				/* build ".." entry */
3122 
3123 				if (filldir(dirent, "..", 2, filp->f_pos,
3124 					    PARENT(ip), DT_DIR))
3125 					return 0;
3126 			} else {
3127 				jfs_err("jfs_readdir called with "
3128 					"invalid offset!");
3129 			}
3130 			dtoffset->pn = 1;
3131 			dtoffset->index = 0;
3132 			filp->f_pos = dtpos;
3133 		}
3134 
3135 		if (dtEmpty(ip)) {
3136 			filp->f_pos = DIREND;
3137 			return 0;
3138 		}
3139 
3140 		if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3141 			jfs_err("jfs_readdir: unexpected rc = %d "
3142 				"from dtReadNext", rc);
3143 			filp->f_pos = DIREND;
3144 			return 0;
3145 		}
3146 		/* get start leaf page and index */
3147 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3148 
3149 		/* offset beyond directory eof ? */
3150 		if (bn < 0) {
3151 			filp->f_pos = DIREND;
3152 			return 0;
3153 		}
3154 	}
3155 
3156 	dirent_buf = __get_free_page(GFP_KERNEL);
3157 	if (dirent_buf == 0) {
3158 		DT_PUTPAGE(mp);
3159 		jfs_warn("jfs_readdir: __get_free_page failed!");
3160 		filp->f_pos = DIREND;
3161 		return -ENOMEM;
3162 	}
3163 
3164 	while (1) {
3165 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3166 		jfs_dirents = 0;
3167 		overflow = fix_page = 0;
3168 
3169 		stbl = DT_GETSTBL(p);
3170 
3171 		for (i = index; i < p->header.nextindex; i++) {
3172 			d = (struct ldtentry *) & p->slot[stbl[i]];
3173 
3174 			if (((long) jfs_dirent + d->namlen + 1) >
3175 			    (dirent_buf + PSIZE)) {
3176 				/* DBCS codepages could overrun dirent_buf */
3177 				index = i;
3178 				overflow = 1;
3179 				break;
3180 			}
3181 
3182 			d_namleft = d->namlen;
3183 			name_ptr = jfs_dirent->name;
3184 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3185 
3186 			if (do_index) {
3187 				len = min(d_namleft, DTLHDRDATALEN);
3188 				jfs_dirent->position = le32_to_cpu(d->index);
3189 				/*
3190 				 * d->index should always be valid, but it
3191 				 * isn't.  fsck.jfs doesn't create the
3192 				 * directory index for the lost+found
3193 				 * directory.  Rather than let it go,
3194 				 * we can try to fix it.
3195 				 */
3196 				if ((jfs_dirent->position < 2) ||
3197 				    (jfs_dirent->position >=
3198 				     JFS_IP(ip)->next_index)) {
3199 					if (!page_fixed && !isReadOnly(ip)) {
3200 						fix_page = 1;
3201 						/*
3202 						 * setting overflow and setting
3203 						 * index to i will cause the
3204 						 * same page to be processed
3205 						 * again starting here
3206 						 */
3207 						overflow = 1;
3208 						index = i;
3209 						break;
3210 					}
3211 					jfs_dirent->position = unique_pos++;
3212 				}
3213 			} else {
3214 				jfs_dirent->position = dtpos;
3215 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3216 			}
3217 
3218 			/* copy the name of head/only segment */
3219 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3220 						   codepage);
3221 			jfs_dirent->name_len = outlen;
3222 
3223 			/* copy name in the additional segment(s) */
3224 			next = d->next;
3225 			while (next >= 0) {
3226 				t = (struct dtslot *) & p->slot[next];
3227 				name_ptr += outlen;
3228 				d_namleft -= len;
3229 				/* Sanity Check */
3230 				if (d_namleft == 0) {
3231 					jfs_error(ip->i_sb,
3232 						  "JFS:Dtree error: ino = "
3233 						  "%ld, bn=%Ld, index = %d",
3234 						  (long)ip->i_ino,
3235 						  (long long)bn,
3236 						  i);
3237 					goto skip_one;
3238 				}
3239 				len = min(d_namleft, DTSLOTDATALEN);
3240 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3241 							   len, codepage);
3242 				jfs_dirent->name_len += outlen;
3243 
3244 				next = t->next;
3245 			}
3246 
3247 			jfs_dirents++;
3248 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3249 skip_one:
3250 			if (!do_index)
3251 				dtoffset->index++;
3252 		}
3253 
3254 		if (!overflow) {
3255 			/* Point to next leaf page */
3256 			if (p->header.flag & BT_ROOT)
3257 				bn = 0;
3258 			else {
3259 				bn = le64_to_cpu(p->header.next);
3260 				index = 0;
3261 				/* update offset (pn:index) for new page */
3262 				if (!do_index) {
3263 					dtoffset->pn++;
3264 					dtoffset->index = 0;
3265 				}
3266 			}
3267 			page_fixed = 0;
3268 		}
3269 
3270 		/* unpin previous leaf page */
3271 		DT_PUTPAGE(mp);
3272 
3273 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3274 		while (jfs_dirents--) {
3275 			filp->f_pos = jfs_dirent->position;
3276 			if (filldir(dirent, jfs_dirent->name,
3277 				    jfs_dirent->name_len, filp->f_pos,
3278 				    jfs_dirent->ino, DT_UNKNOWN))
3279 				goto out;
3280 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3281 		}
3282 
3283 		if (fix_page) {
3284 			add_missing_indices(ip, bn);
3285 			page_fixed = 1;
3286 		}
3287 
3288 		if (!overflow && (bn == 0)) {
3289 			filp->f_pos = DIREND;
3290 			break;
3291 		}
3292 
3293 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3294 		if (rc) {
3295 			free_page(dirent_buf);
3296 			return rc;
3297 		}
3298 	}
3299 
3300       out:
3301 	free_page(dirent_buf);
3302 
3303 	return rc;
3304 }
3305 
3306 
3307 /*
3308  *	dtReadFirst()
3309  *
3310  * function: get the leftmost page of the directory
3311  */
dtReadFirst(struct inode * ip,struct btstack * btstack)3312 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3313 {
3314 	int rc = 0;
3315 	s64 bn;
3316 	int psize = 288;	/* initial in-line directory */
3317 	struct metapage *mp;
3318 	dtpage_t *p;
3319 	s8 *stbl;
3320 	struct btframe *btsp;
3321 	pxd_t *xd;
3322 
3323 	BT_CLR(btstack);	/* reset stack */
3324 
3325 	/*
3326 	 *      descend leftmost path of the tree
3327 	 *
3328 	 * by convention, root bn = 0.
3329 	 */
3330 	for (bn = 0;;) {
3331 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3332 		if (rc)
3333 			return rc;
3334 
3335 		/*
3336 		 * leftmost leaf page
3337 		 */
3338 		if (p->header.flag & BT_LEAF) {
3339 			/* return leftmost entry */
3340 			btsp = btstack->top;
3341 			btsp->bn = bn;
3342 			btsp->index = 0;
3343 			btsp->mp = mp;
3344 
3345 			return 0;
3346 		}
3347 
3348 		/*
3349 		 * descend down to leftmost child page
3350 		 */
3351 		if (BT_STACK_FULL(btstack)) {
3352 			DT_PUTPAGE(mp);
3353 			jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3354 			BT_STACK_DUMP(btstack);
3355 			return -EIO;
3356 		}
3357 		/* push (bn, index) of the parent page/entry */
3358 		BT_PUSH(btstack, bn, 0);
3359 
3360 		/* get the leftmost entry */
3361 		stbl = DT_GETSTBL(p);
3362 		xd = (pxd_t *) & p->slot[stbl[0]];
3363 
3364 		/* get the child page block address */
3365 		bn = addressPXD(xd);
3366 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3367 
3368 		/* unpin the parent page */
3369 		DT_PUTPAGE(mp);
3370 	}
3371 }
3372 
3373 
3374 /*
3375  *	dtReadNext()
3376  *
3377  * function: get the page of the specified offset (pn:index)
3378  *
3379  * return: if (offset > eof), bn = -1;
3380  *
3381  * note: if index > nextindex of the target leaf page,
3382  * start with 1st entry of next leaf page;
3383  */
dtReadNext(struct inode * ip,loff_t * offset,struct btstack * btstack)3384 static int dtReadNext(struct inode *ip, loff_t * offset,
3385 		      struct btstack * btstack)
3386 {
3387 	int rc = 0;
3388 	struct dtoffset {
3389 		s16 pn;
3390 		s16 index;
3391 		s32 unused;
3392 	} *dtoffset = (struct dtoffset *) offset;
3393 	s64 bn;
3394 	struct metapage *mp;
3395 	dtpage_t *p;
3396 	int index;
3397 	int pn;
3398 	s8 *stbl;
3399 	struct btframe *btsp, *parent;
3400 	pxd_t *xd;
3401 
3402 	/*
3403 	 * get leftmost leaf page pinned
3404 	 */
3405 	if ((rc = dtReadFirst(ip, btstack)))
3406 		return rc;
3407 
3408 	/* get leaf page */
3409 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3410 
3411 	/* get the start offset (pn:index) */
3412 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3413 	index = dtoffset->index;
3414 
3415 	/* start at leftmost page ? */
3416 	if (pn == 0) {
3417 		/* offset beyond eof ? */
3418 		if (index < p->header.nextindex)
3419 			goto out;
3420 
3421 		if (p->header.flag & BT_ROOT) {
3422 			bn = -1;
3423 			goto out;
3424 		}
3425 
3426 		/* start with 1st entry of next leaf page */
3427 		dtoffset->pn++;
3428 		dtoffset->index = index = 0;
3429 		goto a;
3430 	}
3431 
3432 	/* start at non-leftmost page: scan parent pages for large pn */
3433 	if (p->header.flag & BT_ROOT) {
3434 		bn = -1;
3435 		goto out;
3436 	}
3437 
3438 	/* start after next leaf page ? */
3439 	if (pn > 1)
3440 		goto b;
3441 
3442 	/* get leaf page pn = 1 */
3443       a:
3444 	bn = le64_to_cpu(p->header.next);
3445 
3446 	/* unpin leaf page */
3447 	DT_PUTPAGE(mp);
3448 
3449 	/* offset beyond eof ? */
3450 	if (bn == 0) {
3451 		bn = -1;
3452 		goto out;
3453 	}
3454 
3455 	goto c;
3456 
3457 	/*
3458 	 * scan last internal page level to get target leaf page
3459 	 */
3460       b:
3461 	/* unpin leftmost leaf page */
3462 	DT_PUTPAGE(mp);
3463 
3464 	/* get left most parent page */
3465 	btsp = btstack->top;
3466 	parent = btsp - 1;
3467 	bn = parent->bn;
3468 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3469 	if (rc)
3470 		return rc;
3471 
3472 	/* scan parent pages at last internal page level */
3473 	while (pn >= p->header.nextindex) {
3474 		pn -= p->header.nextindex;
3475 
3476 		/* get next parent page address */
3477 		bn = le64_to_cpu(p->header.next);
3478 
3479 		/* unpin current parent page */
3480 		DT_PUTPAGE(mp);
3481 
3482 		/* offset beyond eof ? */
3483 		if (bn == 0) {
3484 			bn = -1;
3485 			goto out;
3486 		}
3487 
3488 		/* get next parent page */
3489 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3490 		if (rc)
3491 			return rc;
3492 
3493 		/* update parent page stack frame */
3494 		parent->bn = bn;
3495 	}
3496 
3497 	/* get leaf page address */
3498 	stbl = DT_GETSTBL(p);
3499 	xd = (pxd_t *) & p->slot[stbl[pn]];
3500 	bn = addressPXD(xd);
3501 
3502 	/* unpin parent page */
3503 	DT_PUTPAGE(mp);
3504 
3505 	/*
3506 	 * get target leaf page
3507 	 */
3508       c:
3509 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3510 	if (rc)
3511 		return rc;
3512 
3513 	/*
3514 	 * leaf page has been completed:
3515 	 * start with 1st entry of next leaf page
3516 	 */
3517 	if (index >= p->header.nextindex) {
3518 		bn = le64_to_cpu(p->header.next);
3519 
3520 		/* unpin leaf page */
3521 		DT_PUTPAGE(mp);
3522 
3523 		/* offset beyond eof ? */
3524 		if (bn == 0) {
3525 			bn = -1;
3526 			goto out;
3527 		}
3528 
3529 		/* get next leaf page */
3530 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3531 		if (rc)
3532 			return rc;
3533 
3534 		/* start with 1st entry of next leaf page */
3535 		dtoffset->pn++;
3536 		dtoffset->index = 0;
3537 	}
3538 
3539       out:
3540 	/* return target leaf page pinned */
3541 	btsp = btstack->top;
3542 	btsp->bn = bn;
3543 	btsp->index = dtoffset->index;
3544 	btsp->mp = mp;
3545 
3546 	return 0;
3547 }
3548 
3549 
3550 /*
3551  *	dtCompare()
3552  *
3553  * function: compare search key with an internal entry
3554  *
3555  * return:
3556  *	< 0 if k is < record
3557  *	= 0 if k is = record
3558  *	> 0 if k is > record
3559  */
dtCompare(struct component_name * key,dtpage_t * p,int si)3560 static int dtCompare(struct component_name * key,	/* search key */
3561 		     dtpage_t * p,	/* directory page */
3562 		     int si)
3563 {				/* entry slot index */
3564 	wchar_t *kname, *name;
3565 	int klen, namlen, len, rc;
3566 	struct idtentry *ih;
3567 	struct dtslot *t;
3568 
3569 	/*
3570 	 * force the left-most key on internal pages, at any level of
3571 	 * the tree, to be less than any search key.
3572 	 * this obviates having to update the leftmost key on an internal
3573 	 * page when the user inserts a new key in the tree smaller than
3574 	 * anything that has been stored.
3575 	 *
3576 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3577 	 * at any internal page at any level of the tree,
3578 	 * it descends to child of the entry anyway -
3579 	 * ? make the entry as min size dummy entry)
3580 	 *
3581 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3582 	 * return (1);
3583 	 */
3584 
3585 	kname = key->name;
3586 	klen = key->namlen;
3587 
3588 	ih = (struct idtentry *) & p->slot[si];
3589 	si = ih->next;
3590 	name = ih->name;
3591 	namlen = ih->namlen;
3592 	len = min(namlen, DTIHDRDATALEN);
3593 
3594 	/* compare with head/only segment */
3595 	len = min(klen, len);
3596 	if ((rc = UniStrncmp_le(kname, name, len)))
3597 		return rc;
3598 
3599 	klen -= len;
3600 	namlen -= len;
3601 
3602 	/* compare with additional segment(s) */
3603 	kname += len;
3604 	while (klen > 0 && namlen > 0) {
3605 		/* compare with next name segment */
3606 		t = (struct dtslot *) & p->slot[si];
3607 		len = min(namlen, DTSLOTDATALEN);
3608 		len = min(klen, len);
3609 		name = t->name;
3610 		if ((rc = UniStrncmp_le(kname, name, len)))
3611 			return rc;
3612 
3613 		klen -= len;
3614 		namlen -= len;
3615 		kname += len;
3616 		si = t->next;
3617 	}
3618 
3619 	return (klen - namlen);
3620 }
3621 
3622 
3623 
3624 
3625 /*
3626  *	ciCompare()
3627  *
3628  * function: compare search key with an (leaf/internal) entry
3629  *
3630  * return:
3631  *	< 0 if k is < record
3632  *	= 0 if k is = record
3633  *	> 0 if k is > record
3634  */
ciCompare(struct component_name * key,dtpage_t * p,int si,int flag)3635 static int ciCompare(struct component_name * key,	/* search key */
3636 		     dtpage_t * p,	/* directory page */
3637 		     int si,	/* entry slot index */
3638 		     int flag)
3639 {
3640 	wchar_t *kname, *name, x;
3641 	int klen, namlen, len, rc;
3642 	struct ldtentry *lh;
3643 	struct idtentry *ih;
3644 	struct dtslot *t;
3645 	int i;
3646 
3647 	/*
3648 	 * force the left-most key on internal pages, at any level of
3649 	 * the tree, to be less than any search key.
3650 	 * this obviates having to update the leftmost key on an internal
3651 	 * page when the user inserts a new key in the tree smaller than
3652 	 * anything that has been stored.
3653 	 *
3654 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3655 	 * at any internal page at any level of the tree,
3656 	 * it descends to child of the entry anyway -
3657 	 * ? make the entry as min size dummy entry)
3658 	 *
3659 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3660 	 * return (1);
3661 	 */
3662 
3663 	kname = key->name;
3664 	klen = key->namlen;
3665 
3666 	/*
3667 	 * leaf page entry
3668 	 */
3669 	if (p->header.flag & BT_LEAF) {
3670 		lh = (struct ldtentry *) & p->slot[si];
3671 		si = lh->next;
3672 		name = lh->name;
3673 		namlen = lh->namlen;
3674 		if (flag & JFS_DIR_INDEX)
3675 			len = min(namlen, DTLHDRDATALEN);
3676 		else
3677 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3678 	}
3679 	/*
3680 	 * internal page entry
3681 	 */
3682 	else {
3683 		ih = (struct idtentry *) & p->slot[si];
3684 		si = ih->next;
3685 		name = ih->name;
3686 		namlen = ih->namlen;
3687 		len = min(namlen, DTIHDRDATALEN);
3688 	}
3689 
3690 	/* compare with head/only segment */
3691 	len = min(klen, len);
3692 	for (i = 0; i < len; i++, kname++, name++) {
3693 		/* only uppercase if case-insensitive support is on */
3694 		if ((flag & JFS_OS2) == JFS_OS2)
3695 			x = UniToupper(le16_to_cpu(*name));
3696 		else
3697 			x = le16_to_cpu(*name);
3698 		if ((rc = *kname - x))
3699 			return rc;
3700 	}
3701 
3702 	klen -= len;
3703 	namlen -= len;
3704 
3705 	/* compare with additional segment(s) */
3706 	while (klen > 0 && namlen > 0) {
3707 		/* compare with next name segment */
3708 		t = (struct dtslot *) & p->slot[si];
3709 		len = min(namlen, DTSLOTDATALEN);
3710 		len = min(klen, len);
3711 		name = t->name;
3712 		for (i = 0; i < len; i++, kname++, name++) {
3713 			/* only uppercase if case-insensitive support is on */
3714 			if ((flag & JFS_OS2) == JFS_OS2)
3715 				x = UniToupper(le16_to_cpu(*name));
3716 			else
3717 				x = le16_to_cpu(*name);
3718 
3719 			if ((rc = *kname - x))
3720 				return rc;
3721 		}
3722 
3723 		klen -= len;
3724 		namlen -= len;
3725 		si = t->next;
3726 	}
3727 
3728 	return (klen - namlen);
3729 }
3730 
3731 
3732 /*
3733  *	ciGetLeafPrefixKey()
3734  *
3735  * function: compute prefix of suffix compression
3736  *	     from two adjacent leaf entries
3737  *	     across page boundary
3738  *
3739  * return: non-zero on error
3740  *
3741  */
ciGetLeafPrefixKey(dtpage_t * lp,int li,dtpage_t * rp,int ri,struct component_name * key,int flag)3742 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3743 			       int ri, struct component_name * key, int flag)
3744 {
3745 	int klen, namlen;
3746 	wchar_t *pl, *pr, *kname;
3747 	struct component_name lkey;
3748 	struct component_name rkey;
3749 
3750 	lkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3751 					GFP_KERNEL);
3752 	if (lkey.name == NULL)
3753 		return -ENOSPC;
3754 
3755 	rkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3756 					GFP_KERNEL);
3757 	if (rkey.name == NULL) {
3758 		kfree(lkey.name);
3759 		return -ENOSPC;
3760 	}
3761 
3762 	/* get left and right key */
3763 	dtGetKey(lp, li, &lkey, flag);
3764 	lkey.name[lkey.namlen] = 0;
3765 
3766 	if ((flag & JFS_OS2) == JFS_OS2)
3767 		ciToUpper(&lkey);
3768 
3769 	dtGetKey(rp, ri, &rkey, flag);
3770 	rkey.name[rkey.namlen] = 0;
3771 
3772 
3773 	if ((flag & JFS_OS2) == JFS_OS2)
3774 		ciToUpper(&rkey);
3775 
3776 	/* compute prefix */
3777 	klen = 0;
3778 	kname = key->name;
3779 	namlen = min(lkey.namlen, rkey.namlen);
3780 	for (pl = lkey.name, pr = rkey.name;
3781 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3782 		*kname = *pr;
3783 		if (*pl != *pr) {
3784 			key->namlen = klen + 1;
3785 			goto free_names;
3786 		}
3787 	}
3788 
3789 	/* l->namlen <= r->namlen since l <= r */
3790 	if (lkey.namlen < rkey.namlen) {
3791 		*kname = *pr;
3792 		key->namlen = klen + 1;
3793 	} else			/* l->namelen == r->namelen */
3794 		key->namlen = klen;
3795 
3796 free_names:
3797 	kfree(lkey.name);
3798 	kfree(rkey.name);
3799 	return 0;
3800 }
3801 
3802 
3803 
3804 /*
3805  *	dtGetKey()
3806  *
3807  * function: get key of the entry
3808  */
dtGetKey(dtpage_t * p,int i,struct component_name * key,int flag)3809 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3810 		     struct component_name * key, int flag)
3811 {
3812 	int si;
3813 	s8 *stbl;
3814 	struct ldtentry *lh;
3815 	struct idtentry *ih;
3816 	struct dtslot *t;
3817 	int namlen, len;
3818 	wchar_t *name, *kname;
3819 
3820 	/* get entry */
3821 	stbl = DT_GETSTBL(p);
3822 	si = stbl[i];
3823 	if (p->header.flag & BT_LEAF) {
3824 		lh = (struct ldtentry *) & p->slot[si];
3825 		si = lh->next;
3826 		namlen = lh->namlen;
3827 		name = lh->name;
3828 		if (flag & JFS_DIR_INDEX)
3829 			len = min(namlen, DTLHDRDATALEN);
3830 		else
3831 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3832 	} else {
3833 		ih = (struct idtentry *) & p->slot[si];
3834 		si = ih->next;
3835 		namlen = ih->namlen;
3836 		name = ih->name;
3837 		len = min(namlen, DTIHDRDATALEN);
3838 	}
3839 
3840 	key->namlen = namlen;
3841 	kname = key->name;
3842 
3843 	/*
3844 	 * move head/only segment
3845 	 */
3846 	UniStrncpy_le(kname, name, len);
3847 
3848 	/*
3849 	 * move additional segment(s)
3850 	 */
3851 	while (si >= 0) {
3852 		/* get next segment */
3853 		t = &p->slot[si];
3854 		kname += len;
3855 		namlen -= len;
3856 		len = min(namlen, DTSLOTDATALEN);
3857 		UniStrncpy_le(kname, t->name, len);
3858 
3859 		si = t->next;
3860 	}
3861 }
3862 
3863 
3864 /*
3865  *	dtInsertEntry()
3866  *
3867  * function: allocate free slot(s) and
3868  *	     write a leaf/internal entry
3869  *
3870  * return: entry slot index
3871  */
dtInsertEntry(dtpage_t * p,int index,struct component_name * key,ddata_t * data,struct dt_lock ** dtlock)3872 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3873 			  ddata_t * data, struct dt_lock ** dtlock)
3874 {
3875 	struct dtslot *h, *t;
3876 	struct ldtentry *lh = 0;
3877 	struct idtentry *ih = 0;
3878 	int hsi, fsi, klen, len, nextindex;
3879 	wchar_t *kname, *name;
3880 	s8 *stbl;
3881 	pxd_t *xd;
3882 	struct dt_lock *dtlck = *dtlock;
3883 	struct lv *lv;
3884 	int xsi, n;
3885 	s64 bn = 0;
3886 	struct metapage *mp = 0;
3887 
3888 	klen = key->namlen;
3889 	kname = key->name;
3890 
3891 	/* allocate a free slot */
3892 	hsi = fsi = p->header.freelist;
3893 	h = &p->slot[fsi];
3894 	p->header.freelist = h->next;
3895 	--p->header.freecnt;
3896 
3897 	/* open new linelock */
3898 	if (dtlck->index >= dtlck->maxcnt)
3899 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3900 
3901 	lv = & dtlck->lv[dtlck->index];
3902 	lv->offset = hsi;
3903 
3904 	/* write head/only segment */
3905 	if (p->header.flag & BT_LEAF) {
3906 		lh = (struct ldtentry *) h;
3907 		lh->next = h->next;
3908 		lh->inumber = data->leaf.ino;	/* little-endian */
3909 		lh->namlen = klen;
3910 		name = lh->name;
3911 		if (data->leaf.ip) {
3912 			len = min(klen, DTLHDRDATALEN);
3913 			if (!(p->header.flag & BT_ROOT))
3914 				bn = addressPXD(&p->header.self);
3915 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3916 							  data->leaf.ip,
3917 							  bn, index));
3918 		} else
3919 			len = min(klen, DTLHDRDATALEN_LEGACY);
3920 	} else {
3921 		ih = (struct idtentry *) h;
3922 		ih->next = h->next;
3923 		xd = (pxd_t *) ih;
3924 		*xd = data->xd;
3925 		ih->namlen = klen;
3926 		name = ih->name;
3927 		len = min(klen, DTIHDRDATALEN);
3928 	}
3929 
3930 	UniStrncpy_le(name, kname, len);
3931 
3932 	n = 1;
3933 	xsi = hsi;
3934 
3935 	/* write additional segment(s) */
3936 	t = h;
3937 	klen -= len;
3938 	while (klen) {
3939 		/* get free slot */
3940 		fsi = p->header.freelist;
3941 		t = &p->slot[fsi];
3942 		p->header.freelist = t->next;
3943 		--p->header.freecnt;
3944 
3945 		/* is next slot contiguous ? */
3946 		if (fsi != xsi + 1) {
3947 			/* close current linelock */
3948 			lv->length = n;
3949 			dtlck->index++;
3950 
3951 			/* open new linelock */
3952 			if (dtlck->index < dtlck->maxcnt)
3953 				lv++;
3954 			else {
3955 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3956 				lv = & dtlck->lv[0];
3957 			}
3958 
3959 			lv->offset = fsi;
3960 			n = 0;
3961 		}
3962 
3963 		kname += len;
3964 		len = min(klen, DTSLOTDATALEN);
3965 		UniStrncpy_le(t->name, kname, len);
3966 
3967 		n++;
3968 		xsi = fsi;
3969 		klen -= len;
3970 	}
3971 
3972 	/* close current linelock */
3973 	lv->length = n;
3974 	dtlck->index++;
3975 
3976 	*dtlock = dtlck;
3977 
3978 	/* terminate last/only segment */
3979 	if (h == t) {
3980 		/* single segment entry */
3981 		if (p->header.flag & BT_LEAF)
3982 			lh->next = -1;
3983 		else
3984 			ih->next = -1;
3985 	} else
3986 		/* multi-segment entry */
3987 		t->next = -1;
3988 
3989 	/* if insert into middle, shift right succeeding entries in stbl */
3990 	stbl = DT_GETSTBL(p);
3991 	nextindex = p->header.nextindex;
3992 	if (index < nextindex) {
3993 		memmove(stbl + index + 1, stbl + index, nextindex - index);
3994 
3995 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
3996 			s64 lblock;
3997 
3998 			/*
3999 			 * Need to update slot number for entries that moved
4000 			 * in the stbl
4001 			 */
4002 			mp = 0;
4003 			for (n = index + 1; n <= nextindex; n++) {
4004 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4005 				modify_index(data->leaf.tid, data->leaf.ip,
4006 					     le32_to_cpu(lh->index), bn, n,
4007 					     &mp, &lblock);
4008 			}
4009 			if (mp)
4010 				release_metapage(mp);
4011 		}
4012 	}
4013 
4014 	stbl[index] = hsi;
4015 
4016 	/* advance next available entry index of stbl */
4017 	++p->header.nextindex;
4018 }
4019 
4020 
4021 /*
4022  *	dtMoveEntry()
4023  *
4024  * function: move entries from split/left page to new/right page
4025  *
4026  *	nextindex of dst page and freelist/freecnt of both pages
4027  *	are updated.
4028  */
dtMoveEntry(dtpage_t * sp,int si,dtpage_t * dp,struct dt_lock ** sdtlock,struct dt_lock ** ddtlock,int do_index)4029 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4030 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4031 			int do_index)
4032 {
4033 	int ssi, next;		/* src slot index */
4034 	int di;			/* dst entry index */
4035 	int dsi;		/* dst slot index */
4036 	s8 *sstbl, *dstbl;	/* sorted entry table */
4037 	int snamlen, len;
4038 	struct ldtentry *slh, *dlh = 0;
4039 	struct idtentry *sih, *dih = 0;
4040 	struct dtslot *h, *s, *d;
4041 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4042 	struct lv *slv, *dlv;
4043 	int xssi, ns, nd;
4044 	int sfsi;
4045 
4046 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4047 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4048 
4049 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4050 	sfsi = sp->header.freelist;
4051 
4052 	/* linelock destination entry slot */
4053 	dlv = & ddtlck->lv[ddtlck->index];
4054 	dlv->offset = dsi;
4055 
4056 	/* linelock source entry slot */
4057 	slv = & sdtlck->lv[sdtlck->index];
4058 	slv->offset = sstbl[si];
4059 	xssi = slv->offset - 1;
4060 
4061 	/*
4062 	 * move entries
4063 	 */
4064 	ns = nd = 0;
4065 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4066 		ssi = sstbl[si];
4067 		dstbl[di] = dsi;
4068 
4069 		/* is next slot contiguous ? */
4070 		if (ssi != xssi + 1) {
4071 			/* close current linelock */
4072 			slv->length = ns;
4073 			sdtlck->index++;
4074 
4075 			/* open new linelock */
4076 			if (sdtlck->index < sdtlck->maxcnt)
4077 				slv++;
4078 			else {
4079 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4080 				slv = & sdtlck->lv[0];
4081 			}
4082 
4083 			slv->offset = ssi;
4084 			ns = 0;
4085 		}
4086 
4087 		/*
4088 		 * move head/only segment of an entry
4089 		 */
4090 		/* get dst slot */
4091 		h = d = &dp->slot[dsi];
4092 
4093 		/* get src slot and move */
4094 		s = &sp->slot[ssi];
4095 		if (sp->header.flag & BT_LEAF) {
4096 			/* get source entry */
4097 			slh = (struct ldtentry *) s;
4098 			dlh = (struct ldtentry *) h;
4099 			snamlen = slh->namlen;
4100 
4101 			if (do_index) {
4102 				len = min(snamlen, DTLHDRDATALEN);
4103 				dlh->index = slh->index; /* little-endian */
4104 			} else
4105 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4106 
4107 			memcpy(dlh, slh, 6 + len * 2);
4108 
4109 			next = slh->next;
4110 
4111 			/* update dst head/only segment next field */
4112 			dsi++;
4113 			dlh->next = dsi;
4114 		} else {
4115 			sih = (struct idtentry *) s;
4116 			snamlen = sih->namlen;
4117 
4118 			len = min(snamlen, DTIHDRDATALEN);
4119 			dih = (struct idtentry *) h;
4120 			memcpy(dih, sih, 10 + len * 2);
4121 			next = sih->next;
4122 
4123 			dsi++;
4124 			dih->next = dsi;
4125 		}
4126 
4127 		/* free src head/only segment */
4128 		s->next = sfsi;
4129 		s->cnt = 1;
4130 		sfsi = ssi;
4131 
4132 		ns++;
4133 		nd++;
4134 		xssi = ssi;
4135 
4136 		/*
4137 		 * move additional segment(s) of the entry
4138 		 */
4139 		snamlen -= len;
4140 		while ((ssi = next) >= 0) {
4141 			/* is next slot contiguous ? */
4142 			if (ssi != xssi + 1) {
4143 				/* close current linelock */
4144 				slv->length = ns;
4145 				sdtlck->index++;
4146 
4147 				/* open new linelock */
4148 				if (sdtlck->index < sdtlck->maxcnt)
4149 					slv++;
4150 				else {
4151 					sdtlck =
4152 					    (struct dt_lock *)
4153 					    txLinelock(sdtlck);
4154 					slv = & sdtlck->lv[0];
4155 				}
4156 
4157 				slv->offset = ssi;
4158 				ns = 0;
4159 			}
4160 
4161 			/* get next source segment */
4162 			s = &sp->slot[ssi];
4163 
4164 			/* get next destination free slot */
4165 			d++;
4166 
4167 			len = min(snamlen, DTSLOTDATALEN);
4168 			UniStrncpy(d->name, s->name, len);
4169 
4170 			ns++;
4171 			nd++;
4172 			xssi = ssi;
4173 
4174 			dsi++;
4175 			d->next = dsi;
4176 
4177 			/* free source segment */
4178 			next = s->next;
4179 			s->next = sfsi;
4180 			s->cnt = 1;
4181 			sfsi = ssi;
4182 
4183 			snamlen -= len;
4184 		}		/* end while */
4185 
4186 		/* terminate dst last/only segment */
4187 		if (h == d) {
4188 			/* single segment entry */
4189 			if (dp->header.flag & BT_LEAF)
4190 				dlh->next = -1;
4191 			else
4192 				dih->next = -1;
4193 		} else
4194 			/* multi-segment entry */
4195 			d->next = -1;
4196 	}			/* end for */
4197 
4198 	/* close current linelock */
4199 	slv->length = ns;
4200 	sdtlck->index++;
4201 	*sdtlock = sdtlck;
4202 
4203 	dlv->length = nd;
4204 	ddtlck->index++;
4205 	*ddtlock = ddtlck;
4206 
4207 	/* update source header */
4208 	sp->header.freelist = sfsi;
4209 	sp->header.freecnt += nd;
4210 
4211 	/* update destination header */
4212 	dp->header.nextindex = di;
4213 
4214 	dp->header.freelist = dsi;
4215 	dp->header.freecnt -= nd;
4216 }
4217 
4218 
4219 /*
4220  *	dtDeleteEntry()
4221  *
4222  * function: free a (leaf/internal) entry
4223  *
4224  * log freelist header, stbl, and each segment slot of entry
4225  * (even though last/only segment next field is modified,
4226  * physical image logging requires all segment slots of
4227  * the entry logged to avoid applying previous updates
4228  * to the same slots)
4229  */
dtDeleteEntry(dtpage_t * p,int fi,struct dt_lock ** dtlock)4230 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4231 {
4232 	int fsi;		/* free entry slot index */
4233 	s8 *stbl;
4234 	struct dtslot *t;
4235 	int si, freecnt;
4236 	struct dt_lock *dtlck = *dtlock;
4237 	struct lv *lv;
4238 	int xsi, n;
4239 
4240 	/* get free entry slot index */
4241 	stbl = DT_GETSTBL(p);
4242 	fsi = stbl[fi];
4243 
4244 	/* open new linelock */
4245 	if (dtlck->index >= dtlck->maxcnt)
4246 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4247 	lv = & dtlck->lv[dtlck->index];
4248 
4249 	lv->offset = fsi;
4250 
4251 	/* get the head/only segment */
4252 	t = &p->slot[fsi];
4253 	if (p->header.flag & BT_LEAF)
4254 		si = ((struct ldtentry *) t)->next;
4255 	else
4256 		si = ((struct idtentry *) t)->next;
4257 	t->next = si;
4258 	t->cnt = 1;
4259 
4260 	n = freecnt = 1;
4261 	xsi = fsi;
4262 
4263 	/* find the last/only segment */
4264 	while (si >= 0) {
4265 		/* is next slot contiguous ? */
4266 		if (si != xsi + 1) {
4267 			/* close current linelock */
4268 			lv->length = n;
4269 			dtlck->index++;
4270 
4271 			/* open new linelock */
4272 			if (dtlck->index < dtlck->maxcnt)
4273 				lv++;
4274 			else {
4275 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4276 				lv = & dtlck->lv[0];
4277 			}
4278 
4279 			lv->offset = si;
4280 			n = 0;
4281 		}
4282 
4283 		n++;
4284 		xsi = si;
4285 		freecnt++;
4286 
4287 		t = &p->slot[si];
4288 		t->cnt = 1;
4289 		si = t->next;
4290 	}
4291 
4292 	/* close current linelock */
4293 	lv->length = n;
4294 	dtlck->index++;
4295 
4296 	*dtlock = dtlck;
4297 
4298 	/* update freelist */
4299 	t->next = p->header.freelist;
4300 	p->header.freelist = fsi;
4301 	p->header.freecnt += freecnt;
4302 
4303 	/* if delete from middle,
4304 	 * shift left the succedding entries in the stbl
4305 	 */
4306 	si = p->header.nextindex;
4307 	if (fi < si - 1)
4308 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4309 
4310 	p->header.nextindex--;
4311 }
4312 
4313 
4314 /*
4315  *	dtTruncateEntry()
4316  *
4317  * function: truncate a (leaf/internal) entry
4318  *
4319  * log freelist header, stbl, and each segment slot of entry
4320  * (even though last/only segment next field is modified,
4321  * physical image logging requires all segment slots of
4322  * the entry logged to avoid applying previous updates
4323  * to the same slots)
4324  */
dtTruncateEntry(dtpage_t * p,int ti,struct dt_lock ** dtlock)4325 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4326 {
4327 	int tsi;		/* truncate entry slot index */
4328 	s8 *stbl;
4329 	struct dtslot *t;
4330 	int si, freecnt;
4331 	struct dt_lock *dtlck = *dtlock;
4332 	struct lv *lv;
4333 	int fsi, xsi, n;
4334 
4335 	/* get free entry slot index */
4336 	stbl = DT_GETSTBL(p);
4337 	tsi = stbl[ti];
4338 
4339 	/* open new linelock */
4340 	if (dtlck->index >= dtlck->maxcnt)
4341 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4342 	lv = & dtlck->lv[dtlck->index];
4343 
4344 	lv->offset = tsi;
4345 
4346 	/* get the head/only segment */
4347 	t = &p->slot[tsi];
4348 	ASSERT(p->header.flag & BT_INTERNAL);
4349 	((struct idtentry *) t)->namlen = 0;
4350 	si = ((struct idtentry *) t)->next;
4351 	((struct idtentry *) t)->next = -1;
4352 
4353 	n = 1;
4354 	freecnt = 0;
4355 	fsi = si;
4356 	xsi = tsi;
4357 
4358 	/* find the last/only segment */
4359 	while (si >= 0) {
4360 		/* is next slot contiguous ? */
4361 		if (si != xsi + 1) {
4362 			/* close current linelock */
4363 			lv->length = n;
4364 			dtlck->index++;
4365 
4366 			/* open new linelock */
4367 			if (dtlck->index < dtlck->maxcnt)
4368 				lv++;
4369 			else {
4370 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4371 				lv = & dtlck->lv[0];
4372 			}
4373 
4374 			lv->offset = si;
4375 			n = 0;
4376 		}
4377 
4378 		n++;
4379 		xsi = si;
4380 		freecnt++;
4381 
4382 		t = &p->slot[si];
4383 		t->cnt = 1;
4384 		si = t->next;
4385 	}
4386 
4387 	/* close current linelock */
4388 	lv->length = n;
4389 	dtlck->index++;
4390 
4391 	*dtlock = dtlck;
4392 
4393 	/* update freelist */
4394 	if (freecnt == 0)
4395 		return;
4396 	t->next = p->header.freelist;
4397 	p->header.freelist = fsi;
4398 	p->header.freecnt += freecnt;
4399 }
4400 
4401 
4402 /*
4403  *	dtLinelockFreelist()
4404  */
dtLinelockFreelist(dtpage_t * p,int m,struct dt_lock ** dtlock)4405 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4406 			       int m,	/* max slot index */
4407 			       struct dt_lock ** dtlock)
4408 {
4409 	int fsi;		/* free entry slot index */
4410 	struct dtslot *t;
4411 	int si;
4412 	struct dt_lock *dtlck = *dtlock;
4413 	struct lv *lv;
4414 	int xsi, n;
4415 
4416 	/* get free entry slot index */
4417 	fsi = p->header.freelist;
4418 
4419 	/* open new linelock */
4420 	if (dtlck->index >= dtlck->maxcnt)
4421 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4422 	lv = & dtlck->lv[dtlck->index];
4423 
4424 	lv->offset = fsi;
4425 
4426 	n = 1;
4427 	xsi = fsi;
4428 
4429 	t = &p->slot[fsi];
4430 	si = t->next;
4431 
4432 	/* find the last/only segment */
4433 	while (si < m && si >= 0) {
4434 		/* is next slot contiguous ? */
4435 		if (si != xsi + 1) {
4436 			/* close current linelock */
4437 			lv->length = n;
4438 			dtlck->index++;
4439 
4440 			/* open new linelock */
4441 			if (dtlck->index < dtlck->maxcnt)
4442 				lv++;
4443 			else {
4444 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4445 				lv = & dtlck->lv[0];
4446 			}
4447 
4448 			lv->offset = si;
4449 			n = 0;
4450 		}
4451 
4452 		n++;
4453 		xsi = si;
4454 
4455 		t = &p->slot[si];
4456 		si = t->next;
4457 	}
4458 
4459 	/* close current linelock */
4460 	lv->length = n;
4461 	dtlck->index++;
4462 
4463 	*dtlock = dtlck;
4464 }
4465 
4466 
4467 /*
4468  * NAME: dtModify
4469  *
4470  * FUNCTION: Modify the inode number part of a directory entry
4471  *
4472  * PARAMETERS:
4473  *	tid	- Transaction id
4474  *	ip	- Inode of parent directory
4475  *	key	- Name of entry to be modified
4476  *	orig_ino	- Original inode number expected in entry
4477  *	new_ino	- New inode number to put into entry
4478  *	flag	- JFS_RENAME
4479  *
4480  * RETURNS:
4481  *	-ESTALE	- If entry found does not match orig_ino passed in
4482  *	-ENOENT	- If no entry can be found to match key
4483  *	0	- If successfully modified entry
4484  */
dtModify(tid_t tid,struct inode * ip,struct component_name * key,ino_t * orig_ino,ino_t new_ino,int flag)4485 int dtModify(tid_t tid, struct inode *ip,
4486 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4487 {
4488 	int rc;
4489 	s64 bn;
4490 	struct metapage *mp;
4491 	dtpage_t *p;
4492 	int index;
4493 	struct btstack btstack;
4494 	struct tlock *tlck;
4495 	struct dt_lock *dtlck;
4496 	struct lv *lv;
4497 	s8 *stbl;
4498 	int entry_si;		/* entry slot index */
4499 	struct ldtentry *entry;
4500 
4501 	/*
4502 	 *      search for the entry to modify:
4503 	 *
4504 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4505 	 */
4506 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4507 		return rc;
4508 
4509 	/* retrieve search result */
4510 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4511 
4512 	BT_MARK_DIRTY(mp, ip);
4513 	/*
4514 	 * acquire a transaction lock on the leaf page of named entry
4515 	 */
4516 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4517 	dtlck = (struct dt_lock *) & tlck->lock;
4518 
4519 	/* get slot index of the entry */
4520 	stbl = DT_GETSTBL(p);
4521 	entry_si = stbl[index];
4522 
4523 	/* linelock entry */
4524 	ASSERT(dtlck->index == 0);
4525 	lv = & dtlck->lv[0];
4526 	lv->offset = entry_si;
4527 	lv->length = 1;
4528 	dtlck->index++;
4529 
4530 	/* get the head/only segment */
4531 	entry = (struct ldtentry *) & p->slot[entry_si];
4532 
4533 	/* substitute the inode number of the entry */
4534 	entry->inumber = cpu_to_le32(new_ino);
4535 
4536 	/* unpin the leaf page */
4537 	DT_PUTPAGE(mp);
4538 
4539 	return 0;
4540 }
4541 
4542 #ifdef _JFS_DEBUG_DTREE
4543 /*
4544  *	dtDisplayTree()
4545  *
4546  * function: traverse forward
4547  */
dtDisplayTree(struct inode * ip)4548 int dtDisplayTree(struct inode *ip)
4549 {
4550 	int rc;
4551 	struct metapage *mp;
4552 	dtpage_t *p;
4553 	s64 bn, pbn;
4554 	int index, lastindex, v, h;
4555 	pxd_t *xd;
4556 	struct btstack btstack;
4557 	struct btframe *btsp;
4558 	struct btframe *parent;
4559 	u8 *stbl;
4560 	int psize = 256;
4561 
4562 	printk("display B+-tree.\n");
4563 
4564 	/* clear stack */
4565 	btsp = btstack.stack;
4566 
4567 	/*
4568 	 * start with root
4569 	 *
4570 	 * root resides in the inode
4571 	 */
4572 	bn = 0;
4573 	v = h = 0;
4574 
4575 	/*
4576 	 * first access of each page:
4577 	 */
4578       newPage:
4579 	DT_GETPAGE(ip, bn, mp, psize, p, rc);
4580 	if (rc)
4581 		return rc;
4582 
4583 	/* process entries forward from first index */
4584 	index = 0;
4585 	lastindex = p->header.nextindex - 1;
4586 
4587 	if (p->header.flag & BT_INTERNAL) {
4588 		/*
4589 		 * first access of each internal page
4590 		 */
4591 		printf("internal page ");
4592 		dtDisplayPage(ip, bn, p);
4593 
4594 		goto getChild;
4595 	} else {		/* (p->header.flag & BT_LEAF) */
4596 
4597 		/*
4598 		 * first access of each leaf page
4599 		 */
4600 		printf("leaf page ");
4601 		dtDisplayPage(ip, bn, p);
4602 
4603 		/*
4604 		 * process leaf page entries
4605 		 *
4606 		 for ( ; index <= lastindex; index++)
4607 		 {
4608 		 }
4609 		 */
4610 
4611 		/* unpin the leaf page */
4612 		DT_PUTPAGE(mp);
4613 	}
4614 
4615 	/*
4616 	 * go back up to the parent page
4617 	 */
4618       getParent:
4619 	/* pop/restore parent entry for the current child page */
4620 	if ((parent = (btsp == btstack.stack ? NULL : --btsp)) == NULL)
4621 		/* current page must have been root */
4622 		return;
4623 
4624 	/*
4625 	 * parent page scan completed
4626 	 */
4627 	if ((index = parent->index) == (lastindex = parent->lastindex)) {
4628 		/* go back up to the parent page */
4629 		goto getParent;
4630 	}
4631 
4632 	/*
4633 	 * parent page has entries remaining
4634 	 */
4635 	/* get back the parent page */
4636 	bn = parent->bn;
4637 	/* v = parent->level; */
4638 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
4639 	if (rc)
4640 		return rc;
4641 
4642 	/* get next parent entry */
4643 	index++;
4644 
4645 	/*
4646 	 * internal page: go down to child page of current entry
4647 	 */
4648       getChild:
4649 	/* push/save current parent entry for the child page */
4650 	btsp->bn = pbn = bn;
4651 	btsp->index = index;
4652 	btsp->lastindex = lastindex;
4653 	/* btsp->level = v; */
4654 	/* btsp->node = h; */
4655 	++btsp;
4656 
4657 	/* get current entry for the child page */
4658 	stbl = DT_GETSTBL(p);
4659 	xd = (pxd_t *) & p->slot[stbl[index]];
4660 
4661 	/*
4662 	 * first access of each internal entry:
4663 	 */
4664 
4665 	/* get child page */
4666 	bn = addressPXD(xd);
4667 	psize = lengthPXD(xd) << ip->i_ipmnt->i_l2bsize;
4668 
4669 	printk("traverse down 0x%Lx[%d]->0x%Lx\n", pbn, index, bn);
4670 	v++;
4671 	h = index;
4672 
4673 	/* release parent page */
4674 	DT_PUTPAGE(mp);
4675 
4676 	/* process the child page */
4677 	goto newPage;
4678 }
4679 
4680 
4681 /*
4682  *	dtDisplayPage()
4683  *
4684  * function: display page
4685  */
dtDisplayPage(struct inode * ip,s64 bn,dtpage_t * p)4686 int dtDisplayPage(struct inode *ip, s64 bn, dtpage_t * p)
4687 {
4688 	int rc;
4689 	struct metapage *mp;
4690 	struct ldtentry *lh;
4691 	struct idtentry *ih;
4692 	pxd_t *xd;
4693 	int i, j;
4694 	u8 *stbl;
4695 	wchar_t name[JFS_NAME_MAX + 1];
4696 	struct component_name key = { 0, name };
4697 	int freepage = 0;
4698 
4699 	if (p == NULL) {
4700 		freepage = 1;
4701 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
4702 		if (rc)
4703 			return rc;
4704 	}
4705 
4706 	/* display page control */
4707 	printk("bn:0x%Lx flag:0x%08x nextindex:%d\n",
4708 	       bn, p->header.flag, p->header.nextindex);
4709 
4710 	/* display entries */
4711 	stbl = DT_GETSTBL(p);
4712 	for (i = 0, j = 1; i < p->header.nextindex; i++, j++) {
4713 		dtGetKey(p, i, &key, JFS_SBI(ip->i_sb)->mntflag);
4714 		key.name[key.namlen] = '\0';
4715 		if (p->header.flag & BT_LEAF) {
4716 			lh = (struct ldtentry *) & p->slot[stbl[i]];
4717 			printf("\t[%d] %s:%d", i, key.name,
4718 			       le32_to_cpu(lh->inumber));
4719 		} else {
4720 			ih = (struct idtentry *) & p->slot[stbl[i]];
4721 			xd = (pxd_t *) ih;
4722 			bn = addressPXD(xd);
4723 			printf("\t[%d] %s:0x%Lx", i, key.name, bn);
4724 		}
4725 
4726 		if (j == 4) {
4727 			printf("\n");
4728 			j = 0;
4729 		}
4730 	}
4731 
4732 	printf("\n");
4733 
4734 	if (freepage)
4735 		DT_PUTPAGE(mp);
4736 
4737 	return 0;
4738 }
4739 #endif				/* _JFS_DEBUG_DTREE */
4740