1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001 Red Hat, Inc.
5 *
6 * Created by Arjan van de Ven <arjanv@redhat.com>
7 *
8 * The original JFFS, from which the design for JFFS2 was derived,
9 * was designed and implemented by Axis Communications AB.
10 *
11 * The contents of this file are subject to the Red Hat eCos Public
12 * License Version 1.1 (the "Licence"); you may not use this file
13 * except in compliance with the Licence. You may obtain a copy of
14 * the Licence at http://www.redhat.com/
15 *
16 * Software distributed under the Licence is distributed on an "AS IS"
17 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.
18 * See the Licence for the specific language governing rights and
19 * limitations under the Licence.
20 *
21 * The Original Code is JFFS2 - Journalling Flash File System, version 2
22 *
23 * Alternatively, the contents of this file may be used under the
24 * terms of the GNU General Public License version 2 (the "GPL"), in
25 * which case the provisions of the GPL are applicable instead of the
26 * above. If you wish to allow the use of your version of this file
27 * only under the terms of the GPL and not to allow others to use your
28 * version of this file under the RHEPL, indicate your decision by
29 * deleting the provisions above and replace them with the notice and
30 * other provisions required by the GPL. If you do not delete the
31 * provisions above, a recipient may use your version of this file
32 * under either the RHEPL or the GPL.
33 *
34 * $Id: compr_rubin.c,v 1.13 2001/09/23 10:06:05 rmk Exp $
35 *
36 */
37
38
39 #include <linux/string.h>
40 #include <linux/types.h>
41 #include "compr_rubin.h"
42 #include "histo_mips.h"
43
44
45
init_rubin(struct rubin_state * rs,int div,int * bits)46 void init_rubin(struct rubin_state *rs, int div, int *bits)
47 {
48 int c;
49
50 rs->q = 0;
51 rs->p = (long) (2 * UPPER_BIT_RUBIN);
52 rs->bit_number = (long) 0;
53 rs->bit_divider = div;
54 for (c=0; c<8; c++)
55 rs->bits[c] = bits[c];
56 }
57
58
encode(struct rubin_state * rs,long A,long B,int symbol)59 int encode(struct rubin_state *rs, long A, long B, int symbol)
60 {
61
62 long i0, i1;
63 int ret;
64
65 while ((rs->q >= UPPER_BIT_RUBIN) || ((rs->p + rs->q) <= UPPER_BIT_RUBIN)) {
66 rs->bit_number++;
67
68 ret = pushbit(&rs->pp, (rs->q & UPPER_BIT_RUBIN) ? 1 : 0, 0);
69 if (ret)
70 return ret;
71 rs->q &= LOWER_BITS_RUBIN;
72 rs->q <<= 1;
73 rs->p <<= 1;
74 }
75 i0 = A * rs->p / (A + B);
76 if (i0 <= 0) {
77 i0 = 1;
78 }
79 if (i0 >= rs->p) {
80 i0 = rs->p - 1;
81 }
82 i1 = rs->p - i0;
83
84 if (symbol == 0)
85 rs->p = i0;
86 else {
87 rs->p = i1;
88 rs->q += i0;
89 }
90 return 0;
91 }
92
93
end_rubin(struct rubin_state * rs)94 void end_rubin(struct rubin_state *rs)
95 {
96
97 int i;
98
99 for (i = 0; i < RUBIN_REG_SIZE; i++) {
100 pushbit(&rs->pp, (UPPER_BIT_RUBIN & rs->q) ? 1 : 0, 1);
101 rs->q &= LOWER_BITS_RUBIN;
102 rs->q <<= 1;
103 }
104 }
105
106
init_decode(struct rubin_state * rs,int div,int * bits)107 void init_decode(struct rubin_state *rs, int div, int *bits)
108 {
109 init_rubin(rs, div, bits);
110
111 /* behalve lower */
112 rs->rec_q = 0;
113
114 for (rs->bit_number = 0; rs->bit_number++ < RUBIN_REG_SIZE; rs->rec_q = rs->rec_q * 2 + (long) (pullbit(&rs->pp)))
115 ;
116 }
117
__do_decode(struct rubin_state * rs,unsigned long p,unsigned long q)118 static void __do_decode(struct rubin_state *rs, unsigned long p, unsigned long q)
119 {
120 register unsigned long lower_bits_rubin = LOWER_BITS_RUBIN;
121 unsigned long rec_q;
122 int c, bits = 0;
123
124 /*
125 * First, work out how many bits we need from the input stream.
126 * Note that we have already done the initial check on this
127 * loop prior to calling this function.
128 */
129 do {
130 bits++;
131 q &= lower_bits_rubin;
132 q <<= 1;
133 p <<= 1;
134 } while ((q >= UPPER_BIT_RUBIN) || ((p + q) <= UPPER_BIT_RUBIN));
135
136 rs->p = p;
137 rs->q = q;
138
139 rs->bit_number += bits;
140
141 /*
142 * Now get the bits. We really want this to be "get n bits".
143 */
144 rec_q = rs->rec_q;
145 do {
146 c = pullbit(&rs->pp);
147 rec_q &= lower_bits_rubin;
148 rec_q <<= 1;
149 rec_q += c;
150 } while (--bits);
151 rs->rec_q = rec_q;
152 }
153
decode(struct rubin_state * rs,long A,long B)154 int decode(struct rubin_state *rs, long A, long B)
155 {
156 unsigned long p = rs->p, q = rs->q;
157 long i0, threshold;
158 int symbol;
159
160 if (q >= UPPER_BIT_RUBIN || ((p + q) <= UPPER_BIT_RUBIN))
161 __do_decode(rs, p, q);
162
163 i0 = A * rs->p / (A + B);
164 if (i0 <= 0) {
165 i0 = 1;
166 }
167 if (i0 >= rs->p) {
168 i0 = rs->p - 1;
169 }
170
171 threshold = rs->q + i0;
172 symbol = rs->rec_q >= threshold;
173 if (rs->rec_q >= threshold) {
174 rs->q += i0;
175 i0 = rs->p - i0;
176 }
177
178 rs->p = i0;
179
180 return symbol;
181 }
182
183
184
out_byte(struct rubin_state * rs,unsigned char byte)185 static int out_byte(struct rubin_state *rs, unsigned char byte)
186 {
187 int i, ret;
188 struct rubin_state rs_copy;
189 rs_copy = *rs;
190
191 for (i=0;i<8;i++) {
192 ret = encode(rs, rs->bit_divider-rs->bits[i],rs->bits[i],byte&1);
193 if (ret) {
194 /* Failed. Restore old state */
195 *rs = rs_copy;
196 return ret;
197 }
198 byte=byte>>1;
199 }
200 return 0;
201 }
202
in_byte(struct rubin_state * rs)203 static int in_byte(struct rubin_state *rs)
204 {
205 int i, result = 0, bit_divider = rs->bit_divider;
206
207 for (i = 0; i < 8; i++)
208 result |= decode(rs, bit_divider - rs->bits[i], rs->bits[i]) << i;
209
210 return result;
211 }
212
213
214
rubin_do_compress(int bit_divider,int * bits,unsigned char * data_in,unsigned char * cpage_out,__u32 * sourcelen,__u32 * dstlen)215 int rubin_do_compress(int bit_divider, int *bits, unsigned char *data_in,
216 unsigned char *cpage_out, __u32 *sourcelen, __u32 *dstlen)
217 {
218 int outpos = 0;
219 int pos=0;
220 struct rubin_state rs;
221
222 init_pushpull(&rs.pp, cpage_out, *dstlen * 8, 0, 32);
223
224 init_rubin(&rs, bit_divider, bits);
225
226 while (pos < (*sourcelen) && !out_byte(&rs, data_in[pos]))
227 pos++;
228
229 end_rubin(&rs);
230
231 if (outpos > pos) {
232 /* We failed */
233 return -1;
234 }
235
236 /* Tell the caller how much we managed to compress,
237 * and how much space it took */
238
239 outpos = (pushedbits(&rs.pp)+7)/8;
240
241 if (outpos >= pos)
242 return -1; /* We didn't actually compress */
243 *sourcelen = pos;
244 *dstlen = outpos;
245 return 0;
246 }
247 #if 0
248 /* _compress returns the compressed size, -1 if bigger */
249 int rubinmips_compress(unsigned char *data_in, unsigned char *cpage_out,
250 __u32 *sourcelen, __u32 *dstlen)
251 {
252 return rubin_do_compress(BIT_DIVIDER_MIPS, bits_mips, data_in, cpage_out, sourcelen, dstlen);
253 }
254 #endif
dynrubin_compress(unsigned char * data_in,unsigned char * cpage_out,__u32 * sourcelen,__u32 * dstlen)255 int dynrubin_compress(unsigned char *data_in, unsigned char *cpage_out,
256 __u32 *sourcelen, __u32 *dstlen)
257 {
258 int bits[8];
259 unsigned char histo[256];
260 int i;
261 int ret;
262 __u32 mysrclen, mydstlen;
263
264 mysrclen = *sourcelen;
265 mydstlen = *dstlen - 8;
266
267 if (*dstlen <= 12)
268 return -1;
269
270 memset(histo, 0, 256);
271 for (i=0; i<mysrclen; i++) {
272 histo[data_in[i]]++;
273 }
274 memset(bits, 0, sizeof(int)*8);
275 for (i=0; i<256; i++) {
276 if (i&128)
277 bits[7] += histo[i];
278 if (i&64)
279 bits[6] += histo[i];
280 if (i&32)
281 bits[5] += histo[i];
282 if (i&16)
283 bits[4] += histo[i];
284 if (i&8)
285 bits[3] += histo[i];
286 if (i&4)
287 bits[2] += histo[i];
288 if (i&2)
289 bits[1] += histo[i];
290 if (i&1)
291 bits[0] += histo[i];
292 }
293
294 for (i=0; i<8; i++) {
295 bits[i] = (bits[i] * 256) / mysrclen;
296 if (!bits[i]) bits[i] = 1;
297 if (bits[i] > 255) bits[i] = 255;
298 cpage_out[i] = bits[i];
299 }
300
301 ret = rubin_do_compress(256, bits, data_in, cpage_out+8, &mysrclen, &mydstlen);
302 if (ret)
303 return ret;
304
305 /* Add back the 8 bytes we took for the probabilities */
306 mydstlen += 8;
307
308 if (mysrclen <= mydstlen) {
309 /* We compressed */
310 return -1;
311 }
312
313 *sourcelen = mysrclen;
314 *dstlen = mydstlen;
315 return 0;
316 }
317
rubin_do_decompress(int bit_divider,int * bits,unsigned char * cdata_in,unsigned char * page_out,__u32 srclen,__u32 destlen)318 void rubin_do_decompress(int bit_divider, int *bits, unsigned char *cdata_in,
319 unsigned char *page_out, __u32 srclen, __u32 destlen)
320 {
321 int outpos = 0;
322 struct rubin_state rs;
323
324 init_pushpull(&rs.pp, cdata_in, srclen, 0, 0);
325 init_decode(&rs, bit_divider, bits);
326
327 while (outpos < destlen) {
328 page_out[outpos++] = in_byte(&rs);
329 }
330 }
331
332
rubinmips_decompress(unsigned char * data_in,unsigned char * cpage_out,__u32 sourcelen,__u32 dstlen)333 void rubinmips_decompress(unsigned char *data_in, unsigned char *cpage_out,
334 __u32 sourcelen, __u32 dstlen)
335 {
336 rubin_do_decompress(BIT_DIVIDER_MIPS, bits_mips, data_in, cpage_out, sourcelen, dstlen);
337 }
338
dynrubin_decompress(unsigned char * data_in,unsigned char * cpage_out,__u32 sourcelen,__u32 dstlen)339 void dynrubin_decompress(unsigned char *data_in, unsigned char *cpage_out,
340 __u32 sourcelen, __u32 dstlen)
341 {
342 int bits[8];
343 int c;
344
345 for (c=0; c<8; c++)
346 bits[c] = data_in[c];
347
348 rubin_do_decompress(256, bits, data_in+8, cpage_out, sourcelen-8, dstlen);
349 }
350