1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/locks.h>
12 #include <linux/efs_fs.h>
13 #include <linux/efs_vh.h>
14 #include <linux/efs_fs_sb.h>
15 
16 static DECLARE_FSTYPE_DEV(efs_fs_type, "efs", efs_read_super);
17 
18 static struct super_operations efs_superblock_operations = {
19 	read_inode:	efs_read_inode,
20 	statfs:		efs_statfs,
21 };
22 
init_efs_fs(void)23 static int __init init_efs_fs(void) {
24 	printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
25 	return register_filesystem(&efs_fs_type);
26 }
27 
exit_efs_fs(void)28 static void __exit exit_efs_fs(void) {
29 	unregister_filesystem(&efs_fs_type);
30 }
31 
32 EXPORT_NO_SYMBOLS;
33 
34 module_init(init_efs_fs)
module_exit(exit_efs_fs)35 module_exit(exit_efs_fs)
36 
37 static efs_block_t efs_validate_vh(struct volume_header *vh) {
38 	int		i;
39 	unsigned int	cs, csum, *ui;
40 	efs_block_t	sblock = 0; /* shuts up gcc */
41 	struct pt_types	*pt_entry;
42 	int		pt_type, slice = -1;
43 
44 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
45 		/*
46 		 * assume that we're dealing with a partition and allow
47 		 * read_super() to try and detect a valid superblock
48 		 * on the next block.
49 		 */
50 		return 0;
51 	}
52 
53 	ui = ((unsigned int *) (vh + 1)) - 1;
54 	for(csum = 0; ui >= ((unsigned int *) vh);) {
55 		cs = *ui--;
56 		csum += be32_to_cpu(cs);
57 	}
58 	if (csum) {
59 		printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
60 		return 0;
61 	}
62 
63 #ifdef DEBUG
64 	printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
65 
66 	for(i = 0; i < NVDIR; i++) {
67 		int	j;
68 		char	name[VDNAMESIZE+1];
69 
70 		for(j = 0; j < VDNAMESIZE; j++) {
71 			name[j] = vh->vh_vd[i].vd_name[j];
72 		}
73 		name[j] = (char) 0;
74 
75 		if (name[0]) {
76 			printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
77 				name,
78 				(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
79 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
80 		}
81 	}
82 #endif
83 
84 	for(i = 0; i < NPARTAB; i++) {
85 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
86 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
87 			if (pt_type == pt_entry->pt_type) break;
88 		}
89 #ifdef DEBUG
90 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
91 			printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
92 				i,
93 				(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
94 				(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
95 				pt_type,
96 				(pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
97 		}
98 #endif
99 		if (IS_EFS(pt_type)) {
100 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
101 			slice = i;
102 		}
103 	}
104 
105 	if (slice == -1) {
106 		printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
107 #ifdef DEBUG
108 	} else {
109 		printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
110 			slice,
111 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
112 			sblock);
113 #endif
114 	}
115 	return(sblock);
116 }
117 
efs_validate_super(struct efs_sb_info * sb,struct efs_super * super)118 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
119 
120 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic))) return -1;
121 
122 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
123 	sb->total_blocks = be32_to_cpu(super->fs_size);
124 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
125 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
126 	sb->data_free    = be32_to_cpu(super->fs_tfree);
127 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
128 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
129 	sb->total_groups = be16_to_cpu(super->fs_ncg);
130 
131 	return 0;
132 }
133 
efs_read_super(struct super_block * s,void * d,int silent)134 struct super_block *efs_read_super(struct super_block *s, void *d, int silent) {
135 	kdev_t dev = s->s_dev;
136 	struct efs_sb_info *sb;
137 	struct buffer_head *bh;
138 
139  	sb = SUPER_INFO(s);
140 
141 	s->s_magic		= EFS_SUPER_MAGIC;
142 	s->s_blocksize		= EFS_BLOCKSIZE;
143 	s->s_blocksize_bits	= EFS_BLOCKSIZE_BITS;
144 
145 	if( set_blocksize(dev, EFS_BLOCKSIZE) < 0)
146 	{
147 		printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
148 			EFS_BLOCKSIZE);
149 		goto out_no_fs_ul;
150 	}
151 
152 	/* read the vh (volume header) block */
153 	bh = sb_bread(s, 0);
154 
155 	if (!bh) {
156 		printk(KERN_ERR "EFS: cannot read volume header\n");
157 		goto out_no_fs_ul;
158 	}
159 
160 	/*
161 	 * if this returns zero then we didn't find any partition table.
162 	 * this isn't (yet) an error - just assume for the moment that
163 	 * the device is valid and go on to search for a superblock.
164 	 */
165 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
166 	brelse(bh);
167 
168 	if (sb->fs_start == -1) {
169 		goto out_no_fs_ul;
170 	}
171 
172 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
173 	if (!bh) {
174 		printk(KERN_ERR "EFS: cannot read superblock\n");
175 		goto out_no_fs_ul;
176 	}
177 
178 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
179 #ifdef DEBUG
180 		printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
181 #endif
182 		brelse(bh);
183 		goto out_no_fs_ul;
184 	}
185 	brelse(bh);
186 
187 	if (!(s->s_flags & MS_RDONLY)) {
188 #ifdef DEBUG
189 		printk(KERN_INFO "EFS: forcing read-only mode\n");
190 #endif
191 		s->s_flags |= MS_RDONLY;
192 	}
193 	s->s_op   = &efs_superblock_operations;
194 	s->s_root = d_alloc_root(iget(s, EFS_ROOTINODE));
195 
196 	if (!(s->s_root)) {
197 		printk(KERN_ERR "EFS: get root inode failed\n");
198 		goto out_no_fs;
199 	}
200 
201 	return(s);
202 
203 out_no_fs_ul:
204 out_no_fs:
205 	return(NULL);
206 }
207 
efs_statfs(struct super_block * s,struct statfs * buf)208 int efs_statfs(struct super_block *s, struct statfs *buf) {
209 	struct efs_sb_info *sb = SUPER_INFO(s);
210 
211 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
212 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
213 	buf->f_blocks  = sb->total_groups *	/* total data blocks */
214 			(sb->group_size - sb->inode_blocks);
215 	buf->f_bfree   = sb->data_free;		/* free data blocks */
216 	buf->f_bavail  = sb->data_free;		/* free blocks for non-root */
217 	buf->f_files   = sb->total_groups *	/* total inodes */
218 			sb->inode_blocks *
219 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
220 	buf->f_ffree   = sb->inode_free;	/* free inodes */
221 	buf->f_fsid.val[0] = (sb->fs_magic >> 16) & 0xffff; /* fs ID */
222 	buf->f_fsid.val[1] =  sb->fs_magic        & 0xffff; /* fs ID */
223 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
224 
225 	return 0;
226 }
227 
228