1 /* Driver for SanDisk SDDR-09 SmartMedia reader
2  *
3  *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4  *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
5  *
6  * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
7  * This chip is a programmable USB controller. In the SDDR-09, it has
8  * been programmed to obey a certain limited set of SCSI commands.
9  * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
10  * commands.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License as published by the
14  * Free Software Foundation; either version 2, or (at your option) any
15  * later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License along
23  * with this program; if not, write to the Free Software Foundation, Inc.,
24  * 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 #include "transport.h"
28 #include "protocol.h"
29 #include "usb.h"
30 #include "debug.h"
31 #include "sddr09.h"
32 
33 #include <linux/sched.h>
34 #include <linux/errno.h>
35 #include <linux/slab.h>
36 
37 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
38 #define LSB_of(s) ((s)&0xFF)
39 #define MSB_of(s) ((s)>>8)
40 
41 /* #define US_DEBUGP printk */
42 
43 /*
44  * First some stuff that does not belong here:
45  * data on SmartMedia and other cards, completely
46  * unrelated to this driver.
47  * Similar stuff occurs in <linux/mtd/nand_ids.h>.
48  */
49 
50 struct nand_flash_dev {
51 	int model_id;
52 	int chipshift;		/* 1<<cs bytes total capacity */
53 	char pageshift;		/* 1<<ps bytes in a page */
54 	char blockshift;	/* 1<<bs pages in an erase block */
55 	char zoneshift;		/* 1<<zs blocks in a zone */
56 				/* # of logical blocks is 125/128 of this */
57 	char pageadrlen;	/* length of an address in bytes - 1 */
58 };
59 
60 /*
61  * NAND Flash Manufacturer ID Codes
62  */
63 #define NAND_MFR_AMD		0x01
64 #define NAND_MFR_TOSHIBA	0x98
65 #define NAND_MFR_SAMSUNG	0xec
66 
nand_flash_manufacturer(int manuf_id)67 static inline char *nand_flash_manufacturer(int manuf_id) {
68 	switch(manuf_id) {
69 	case NAND_MFR_AMD:
70 		return "AMD";
71 	case NAND_MFR_TOSHIBA:
72 		return "Toshiba";
73 	case NAND_MFR_SAMSUNG:
74 		return "Samsung";
75 	default:
76 		return "unknown";
77 	}
78 }
79 
80 /*
81  * It looks like it is unnecessary to attach manufacturer to the
82  * remaining data: SSFDC prescribes manufacturer-independent id codes.
83  */
84 
85 static struct nand_flash_dev nand_flash_ids[] = {
86 	/* NAND flash - these I verified */
87 	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
88 	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
89 	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
90 	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
91 	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
92 	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
93 	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
94 	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
95 	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
96 	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
97 	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
98 	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
99 	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
100 	/* MASK ROM - from unknown source */
101 	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
102 	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
103 	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
104 	{ 0,}
105 };
106 
107 #define SIZE(a)	(sizeof(a)/sizeof((a)[0]))
108 
109 static struct nand_flash_dev *
nand_find_id(unsigned char id)110 nand_find_id(unsigned char id) {
111 	int i;
112 
113 	for (i = 0; i < SIZE(nand_flash_ids); i++)
114 		if (nand_flash_ids[i].model_id == id)
115 			return &(nand_flash_ids[i]);
116 	return NULL;
117 }
118 
119 /*
120  * ECC computation.
121  */
122 static unsigned char parity[256];
123 static unsigned char ecc2[256];
124 
nand_init_ecc(void)125 static void nand_init_ecc(void) {
126 	int i, j, a;
127 
128 	parity[0] = 0;
129 	for (i = 1; i < 256; i++)
130 		parity[i] = (parity[i&(i-1)] ^ 1);
131 
132 	for (i = 0; i < 256; i++) {
133 		a = 0;
134 		for (j = 0; j < 8; j++) {
135 			if (i & (1<<j)) {
136 				if ((j & 1) == 0)
137 					a ^= 0x04;
138 				if ((j & 2) == 0)
139 					a ^= 0x10;
140 				if ((j & 4) == 0)
141 					a ^= 0x40;
142 			}
143 		}
144 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
145 	}
146 }
147 
148 /* compute 3-byte ecc on 256 bytes */
nand_compute_ecc(unsigned char * data,unsigned char * ecc)149 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
150 	int i, j, a;
151 	unsigned char par, bit, bits[8];
152 
153 	par = 0;
154 	for (j = 0; j < 8; j++)
155 		bits[j] = 0;
156 
157 	/* collect 16 checksum bits */
158 	for (i = 0; i < 256; i++) {
159 		par ^= data[i];
160 		bit = parity[data[i]];
161 		for (j = 0; j < 8; j++)
162 			if ((i & (1<<j)) == 0)
163 				bits[j] ^= bit;
164 	}
165 
166 	/* put 4+4+4 = 12 bits in the ecc */
167 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
168 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
169 
170 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
171 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
172 
173 	ecc[2] = ecc2[par];
174 }
175 
nand_compare_ecc(unsigned char * data,unsigned char * ecc)176 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
177 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
178 }
179 
nand_store_ecc(unsigned char * data,unsigned char * ecc)180 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
181 	memcpy(data, ecc, 3);
182 }
183 
184 /*
185  * The actual driver starts here.
186  */
187 
188 /*
189  * On my 16MB card, control blocks have size 64 (16 real control bytes,
190  * and 48 junk bytes). In reality of course the card uses 16 control bytes,
191  * so the reader makes up the remaining 48. Don't know whether these numbers
192  * depend on the card. For now a constant.
193  */
194 #define CONTROL_SHIFT 6
195 
196 /*
197  * LBA and PBA are unsigned ints. Special values.
198  */
199 #define UNDEF    0xffffffff
200 #define SPARE    0xfffffffe
201 #define UNUSABLE 0xfffffffd
202 
203 /*
204  * Send a control message and wait for the response.
205  *
206  * us - the pointer to the us_data structure for the device to use
207  *
208  * request - the URB Setup Packet's first 6 bytes. The first byte always
209  *  corresponds to the request type, and the second byte always corresponds
210  *  to the request.  The other 4 bytes do not correspond to value and index,
211  *  since they are used in a custom way by the SCM protocol.
212  *
213  * xfer_data - a buffer from which to get, or to which to store, any data
214  *  that gets send or received, respectively, with the URB. Even though
215  *  it looks like we allocate a buffer in this code for the data, xfer_data
216  *  must contain enough allocated space.
217  *
218  * xfer_len - the number of bytes to send or receive with the URB.
219  *
220  */
221 
222 static int
sddr09_send_control(struct us_data * us,int pipe,unsigned char request,unsigned char requesttype,unsigned int value,unsigned int index,unsigned char * xfer_data,unsigned int xfer_len)223 sddr09_send_control(struct us_data *us,
224 		    int pipe,
225 		    unsigned char request,
226 		    unsigned char requesttype,
227 		    unsigned int value,
228 		    unsigned int index,
229 		    unsigned char *xfer_data,
230 		    unsigned int xfer_len) {
231 
232 	int result;
233 
234 	// Send the URB to the device and wait for a response.
235 
236 	/* Why are request and request type reversed in this call? */
237 
238 	result = usb_stor_control_msg(us, pipe,
239 			request, requesttype, value, index,
240 			xfer_data, xfer_len);
241 
242 
243 	// Check the return code for the command.
244 
245 	if (result < 0) {
246 		/* if the command was aborted, indicate that */
247 		if (result == -ECONNRESET)
248 			return USB_STOR_TRANSPORT_ABORTED;
249 
250 		/* a stall is a fatal condition from the device */
251 		if (result == -EPIPE) {
252 			US_DEBUGP("-- Stall on control pipe. Clearing\n");
253 			result = usb_clear_halt(us->pusb_dev, pipe);
254 			US_DEBUGP("-- usb_clear_halt() returns %d\n", result);
255 			return USB_STOR_TRANSPORT_FAILED;
256 		}
257 
258 		return USB_STOR_TRANSPORT_ERROR;
259 	}
260 
261 	return USB_STOR_TRANSPORT_GOOD;
262 }
263 
264 /* send vendor interface command (0x41) */
265 /* called for requests 0, 1, 8 */
266 static int
sddr09_send_command(struct us_data * us,unsigned char request,unsigned char direction,unsigned char * xfer_data,unsigned int xfer_len)267 sddr09_send_command(struct us_data *us,
268 		    unsigned char request,
269 		    unsigned char direction,
270 		    unsigned char *xfer_data,
271 		    unsigned int xfer_len) {
272 	int pipe;
273 	unsigned char requesttype = (0x41 | direction);
274 
275 	// Get the receive or send control pipe number
276 
277 	if (direction == USB_DIR_IN)
278 		pipe = usb_rcvctrlpipe(us->pusb_dev,0);
279 	else
280 		pipe = usb_sndctrlpipe(us->pusb_dev,0);
281 
282 	return sddr09_send_control(us, pipe, request, requesttype,
283 				   0, 0, xfer_data, xfer_len);
284 }
285 
286 static int
sddr09_send_scsi_command(struct us_data * us,unsigned char * command,unsigned int command_len)287 sddr09_send_scsi_command(struct us_data *us,
288 			 unsigned char *command,
289 			 unsigned int command_len) {
290 	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
291 }
292 
293 static int
sddr09_raw_bulk(struct us_data * us,int direction,unsigned char * data,unsigned int len)294 sddr09_raw_bulk(struct us_data *us, int direction,
295 		unsigned char *data, unsigned int len) {
296 
297 	int result;
298 	int act_len;
299 	int pipe;
300 
301 	if (direction == SCSI_DATA_READ)
302 		pipe = usb_rcvbulkpipe(us->pusb_dev, us->ep_in);
303 	else
304 		pipe = usb_sndbulkpipe(us->pusb_dev, us->ep_out);
305 
306 	result = usb_stor_bulk_msg(us, data, pipe, len, &act_len);
307 
308         /* if we stall, we need to clear it before we go on */
309         if (result == -EPIPE) {
310        	        US_DEBUGP("EPIPE: clearing endpoint halt for"
311 			  " pipe 0x%x, stalled at %d bytes\n",
312 			  pipe, act_len);
313 		usb_clear_halt(us->pusb_dev, pipe);
314         }
315 
316 	if (result) {
317                 /* -ECONNRESET -- we canceled this transfer */
318                 if (result == -ECONNRESET) {
319                         US_DEBUGP("usbat_raw_bulk(): transfer aborted\n");
320                         return US_BULK_TRANSFER_ABORTED;
321                 }
322 
323                 /* NAK - that means we've retried a few times already */
324        	        if (result == -ETIMEDOUT)
325                         US_DEBUGP("usbat_raw_bulk(): device NAKed\n");
326 		else if (result == -EOVERFLOW)
327 			US_DEBUGP("us_transfer_partial(): babble/overflow\n");
328 		else if (result != -EPIPE)
329 			US_DEBUGP("us_transfer_partial(): unknown error %d\n",
330 				  result);
331 
332                 return US_BULK_TRANSFER_FAILED;
333         }
334 
335 	if (act_len != len) {
336 		US_DEBUGP("Warning: Transferred only %d of %d bytes\n",
337 			  act_len, len);
338 		return US_BULK_TRANSFER_SHORT;
339 	}
340 
341 	return US_BULK_TRANSFER_GOOD;
342 }
343 
344 static int
sddr09_bulk_transport(struct us_data * us,int direction,unsigned char * data,unsigned int len,int use_sg)345 sddr09_bulk_transport(struct us_data *us, int direction,
346 		      unsigned char *data, unsigned int len,
347 		      int use_sg) {
348 
349 	int result = USB_STOR_TRANSPORT_GOOD;
350 	int transferred = 0;
351 	int i;
352 	struct scatterlist *sg;
353 	char string[64];
354 
355 #define DEBUG_PRCT 12
356 
357 	if (len == 0)
358 		return USB_STOR_TRANSPORT_GOOD;
359 
360 	if (direction == SCSI_DATA_WRITE && !use_sg) {
361 
362 		/* Debug-print the first N bytes of the write transfer */
363 
364 		strcpy(string, "wr: ");
365 		for (i=0; i<len && i<DEBUG_PRCT; i++) {
366 			sprintf(string+strlen(string), "%02X ",
367 				data[i]);
368 			if ((i%16) == 15) {
369 				US_DEBUGP("%s\n", string);
370 				strcpy(string, "wr: ");
371 			}
372 		}
373 		if ((i%16)!=0)
374 			US_DEBUGP("%s\n", string);
375 	}
376 
377 	US_DEBUGP("SCM data %s transfer %d sg buffers %d\n",
378 		  (direction == SCSI_DATA_READ) ? "in" : "out",
379 		  len, use_sg);
380 
381 	if (!use_sg)
382 		result = sddr09_raw_bulk(us, direction, data, len);
383 	else {
384 		sg = (struct scatterlist *)data;
385 
386 		for (i=0; i<use_sg && transferred<len; i++) {
387 			unsigned char *buf;
388 			unsigned int length;
389 
390 			buf = sg[i].address;
391 			length = len-transferred;
392 			if (length > sg[i].length)
393 				length = sg[i].length;
394 
395 			result = sddr09_raw_bulk(us, direction, buf, length);
396 			if (result != US_BULK_TRANSFER_GOOD)
397 				break;
398 			transferred += sg[i].length;
399 		}
400 	}
401 
402 	if (direction == SCSI_DATA_READ && !use_sg) {
403 
404 		/* Debug-print the first N bytes of the read transfer */
405 
406 		strcpy(string, "rd: ");
407 		for (i=0; i<len && i<DEBUG_PRCT; i++) {
408 			sprintf(string+strlen(string), "%02X ",
409 				data[i]);
410 			if ((i%16) == 15) {
411 				US_DEBUGP("%s\n", string);
412 				strcpy(string, "rd: ");
413 			}
414 		}
415 		if ((i%16)!=0)
416 			US_DEBUGP("%s\n", string);
417 	}
418 
419 	return result;
420 }
421 
422 #if 0
423 /*
424  * Test Unit Ready Command: 12 bytes.
425  * byte 0: opcode: 00
426  */
427 static int
428 sddr09_test_unit_ready(struct us_data *us) {
429 	unsigned char command[6] = {
430 		0, 0x20, 0, 0, 0, 0
431 	};
432 	int result;
433 
434 	result = sddr09_send_scsi_command(us, command, sizeof(command));
435 
436 	US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
437 
438 	return result;
439 }
440 #endif
441 
442 /*
443  * Request Sense Command: 12 bytes.
444  * byte 0: opcode: 03
445  * byte 4: data length
446  */
447 #if 0
448 static int
449 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
450 	unsigned char command[12] = {
451 		0x03, 0x20, 0, 0, buflen, 0, 0, 0, 0, 0, 0, 0
452 	};
453 	int result;
454 
455 	result = sddr09_send_scsi_command(us, command, sizeof(command));
456 	if (result != USB_STOR_TRANSPORT_GOOD) {
457 		US_DEBUGP("request sense failed\n");
458 		return result;
459 	}
460 
461 	result = sddr09_raw_bulk(us, SCSI_DATA_READ, sensebuf, buflen);
462 	if (result != USB_STOR_TRANSPORT_GOOD)
463 		US_DEBUGP("request sense bulk in failed\n");
464 	else
465 		US_DEBUGP("request sense worked\n");
466 
467 	return result;
468 }
469 #endif
470 /*
471  * Read Command: 12 bytes.
472  * byte 0: opcode: E8
473  * byte 1: last two bits: 00: read data, 01: read blockwise control,
474  *                        10: read both, 11: read pagewise control.
475  *         It turns out we need values 20, 21, 22, 23 here (LUN 1).
476  * bytes 2-5: address (interpretation depends on byte 1, see below)
477  * bytes 10-11: count (idem)
478  *
479  * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
480  * A read data command gets data in 512-byte pages.
481  * A read control command gets control in 64-byte chunks.
482  * A read both command gets data+control in 576-byte chunks.
483  *
484  * Blocks are groups of 32 pages, and read blockwise control jumps to the
485  * next block, while read pagewise control jumps to the next page after
486  * reading a group of 64 control bytes.
487  * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
488  *
489  * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
490  */
491 
492 static int
sddr09_readX(struct us_data * us,int x,unsigned long fromaddress,int nr_of_pages,int bulklen,unsigned char * buf,int use_sg)493 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
494 	     int nr_of_pages, int bulklen, unsigned char *buf,
495 	     int use_sg) {
496 
497 	unsigned char command[12] = {
498 		0xe8, 0x20 | x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
499 	};
500 	int result;
501 
502 	command[2] = MSB_of(fromaddress>>16);
503 	command[3] = LSB_of(fromaddress>>16);
504 	command[4] = MSB_of(fromaddress & 0xFFFF);
505 	command[5] = LSB_of(fromaddress & 0xFFFF);
506 
507 	command[10] = MSB_of(nr_of_pages);
508 	command[11] = LSB_of(nr_of_pages);
509 
510 	result = sddr09_send_scsi_command(us, command, sizeof(command));
511 
512 	if (result != USB_STOR_TRANSPORT_GOOD) {
513 		US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
514 			  x, result);
515 		return result;
516 	}
517 
518 	result = sddr09_bulk_transport(us, SCSI_DATA_READ,
519 				       buf, bulklen, use_sg);
520 
521 	if (result != USB_STOR_TRANSPORT_GOOD)
522 		US_DEBUGP("Result for bulk_transport in sddr09_read2%d %d\n",
523 			  x, result);
524 
525 	return result;
526 }
527 
528 /*
529  * Read Data
530  *
531  * fromaddress counts data shorts:
532  * increasing it by 256 shifts the bytestream by 512 bytes;
533  * the last 8 bits are ignored.
534  *
535  * nr_of_pages counts pages of size (1 << pageshift).
536  */
537 static int
sddr09_read20(struct us_data * us,unsigned long fromaddress,int nr_of_pages,int pageshift,unsigned char * buf,int use_sg)538 sddr09_read20(struct us_data *us, unsigned long fromaddress,
539 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
540 	int bulklen = nr_of_pages << pageshift;
541 
542 	/* The last 8 bits of fromaddress are ignored. */
543 	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
544 			    buf, use_sg);
545 }
546 
547 /*
548  * Read Blockwise Control
549  *
550  * fromaddress gives the starting position (as in read data;
551  * the last 8 bits are ignored); increasing it by 32*256 shifts
552  * the output stream by 64 bytes.
553  *
554  * count counts control groups of size (1 << controlshift).
555  * For me, controlshift = 6. Is this constant?
556  *
557  * After getting one control group, jump to the next block
558  * (fromaddress += 8192).
559  */
560 static int
sddr09_read21(struct us_data * us,unsigned long fromaddress,int count,int controlshift,unsigned char * buf,int use_sg)561 sddr09_read21(struct us_data *us, unsigned long fromaddress,
562 	      int count, int controlshift, unsigned char *buf, int use_sg) {
563 
564 	int bulklen = (count << controlshift);
565 	return sddr09_readX(us, 1, fromaddress, count, bulklen,
566 			    buf, use_sg);
567 }
568 
569 /*
570  * Read both Data and Control
571  *
572  * fromaddress counts data shorts, ignoring control:
573  * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
574  * the last 8 bits are ignored.
575  *
576  * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
577  */
578 static int
sddr09_read22(struct us_data * us,unsigned long fromaddress,int nr_of_pages,int pageshift,unsigned char * buf,int use_sg)579 sddr09_read22(struct us_data *us, unsigned long fromaddress,
580 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
581 
582 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
583 	US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
584 		  nr_of_pages, bulklen);
585 	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
586 			    buf, use_sg);
587 }
588 
589 #if 0
590 /*
591  * Read Pagewise Control
592  *
593  * fromaddress gives the starting position (as in read data;
594  * the last 8 bits are ignored); increasing it by 256 shifts
595  * the output stream by 64 bytes.
596  *
597  * count counts control groups of size (1 << controlshift).
598  * For me, controlshift = 6. Is this constant?
599  *
600  * After getting one control group, jump to the next page
601  * (fromaddress += 256).
602  */
603 static int
604 sddr09_read23(struct us_data *us, unsigned long fromaddress,
605 	      int count, int controlshift, unsigned char *buf, int use_sg) {
606 
607 	int bulklen = (count << controlshift);
608 	return sddr09_readX(us, 3, fromaddress, count, bulklen,
609 			    buf, use_sg);
610 }
611 #endif
612 
613 #if 0
614 /*
615  * Erase Command: 12 bytes.
616  * byte 0: opcode: EA
617  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
618  *
619  * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
620  * The byte address being erased is 2*Eaddress.
621  */
622 static int
623 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
624 	unsigned char command[12] = {
625 		0xea, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
626 	};
627 	int result;
628 
629 	command[6] = MSB_of(Eaddress>>16);
630 	command[7] = LSB_of(Eaddress>>16);
631 	command[8] = MSB_of(Eaddress & 0xFFFF);
632 	command[9] = LSB_of(Eaddress & 0xFFFF);
633 
634 	result = sddr09_send_scsi_command(us, command, sizeof(command));
635 
636 	if (result != USB_STOR_TRANSPORT_GOOD)
637 		US_DEBUGP("Result for send_control in sddr09_erase %d\n",
638 			  result);
639 
640 	return result;
641 }
642 #endif
643 
644 /*
645  * Write Command: 12 bytes.
646  * byte 0: opcode: E9
647  * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
648  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
649  * bytes 10-11: sector count (big-endian, in 512-byte sectors).
650  *
651  * If write address equals erase address, the erase is done first,
652  * otherwise the write is done first. When erase address equals zero
653  * no erase is done?
654  */
655 static int
sddr09_writeX(struct us_data * us,unsigned long Waddress,unsigned long Eaddress,int nr_of_pages,int bulklen,unsigned char * buf,int use_sg)656 sddr09_writeX(struct us_data *us,
657 	      unsigned long Waddress, unsigned long Eaddress,
658 	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
659 
660 	unsigned char command[12] = {
661 		0xe9, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
662 	};
663 	int result;
664 
665 	command[2] = MSB_of(Waddress>>16);
666 	command[3] = LSB_of(Waddress>>16);
667 	command[4] = MSB_of(Waddress & 0xFFFF);
668 	command[5] = LSB_of(Waddress & 0xFFFF);
669 
670 	command[6] = MSB_of(Eaddress>>16);
671 	command[7] = LSB_of(Eaddress>>16);
672 	command[8] = MSB_of(Eaddress & 0xFFFF);
673 	command[9] = LSB_of(Eaddress & 0xFFFF);
674 
675 	command[10] = MSB_of(nr_of_pages);
676 	command[11] = LSB_of(nr_of_pages);
677 
678 	result = sddr09_send_scsi_command(us, command, sizeof(command));
679 
680 	if (result != USB_STOR_TRANSPORT_GOOD) {
681 		US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
682 			  result);
683 		return result;
684 	}
685 
686 	result = sddr09_bulk_transport(us, SCSI_DATA_WRITE,
687 				       buf, bulklen, use_sg);
688 
689 	if (result != USB_STOR_TRANSPORT_GOOD)
690 		US_DEBUGP("Result for bulk_transport in sddr09_writeX %d\n",
691 			  result);
692 
693 	return result;
694 }
695 
696 /* erase address, write same address */
697 static int
sddr09_write_inplace(struct us_data * us,unsigned long address,int nr_of_pages,int pageshift,unsigned char * buf,int use_sg)698 sddr09_write_inplace(struct us_data *us, unsigned long address,
699 		     int nr_of_pages, int pageshift, unsigned char *buf,
700 		     int use_sg) {
701 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
702 	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
703 			     buf, use_sg);
704 }
705 
706 #if 0
707 /*
708  * Read Scatter Gather Command: 3+4n bytes.
709  * byte 0: opcode E7
710  * byte 2: n
711  * bytes 4i-1,4i,4i+1: page address
712  * byte 4i+2: page count
713  * (i=1..n)
714  *
715  * This reads several pages from the card to a single memory buffer.
716  */
717 static int
718 sddr09_read_sg_test_only(struct us_data *us) {
719 	unsigned char command[15] = {
720 		0xe7, 0x20, 0
721 	};
722 	int result, bulklen, nsg, ct;
723 	unsigned char *buf;
724 	unsigned long address;
725 
726 	nsg = bulklen = 0;
727 
728 	address = 040000; ct = 1;
729 	nsg++;
730 	bulklen += (ct << 9);
731 	command[4*nsg+2] = ct;
732 	command[4*nsg+1] = ((address >> 9) & 0xFF);
733 	command[4*nsg+0] = ((address >> 17) & 0xFF);
734 	command[4*nsg-1] = ((address >> 25) & 0xFF);
735 
736 	address = 0340000; ct = 1;
737 	nsg++;
738 	bulklen += (ct << 9);
739 	command[4*nsg+2] = ct;
740 	command[4*nsg+1] = ((address >> 9) & 0xFF);
741 	command[4*nsg+0] = ((address >> 17) & 0xFF);
742 	command[4*nsg-1] = ((address >> 25) & 0xFF);
743 
744 	address = 01000000; ct = 2;
745 	nsg++;
746 	bulklen += (ct << 9);
747 	command[4*nsg+2] = ct;
748 	command[4*nsg+1] = ((address >> 9) & 0xFF);
749 	command[4*nsg+0] = ((address >> 17) & 0xFF);
750 	command[4*nsg-1] = ((address >> 25) & 0xFF);
751 
752 	command[2] = nsg;
753 
754 	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
755 
756 	if (result != USB_STOR_TRANSPORT_GOOD) {
757 		US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
758 			  result);
759 		return result;
760 	}
761 
762 	buf = (unsigned char *) kmalloc(bulklen, GFP_NOIO);
763 	if (!buf)
764 		return USB_STOR_TRANSPORT_ERROR;
765 
766 	result = sddr09_bulk_transport(us, SCSI_DATA_READ,
767 				       buf, bulklen, 0);
768 	if (result != USB_STOR_TRANSPORT_GOOD)
769 		US_DEBUGP("Result for bulk_transport in sddr09_read_sg %d\n",
770 			  result);
771 
772 	kfree(buf);
773 
774 	return result;
775 }
776 #endif
777 
778 /*
779  * Read Status Command: 12 bytes.
780  * byte 0: opcode: EC
781  *
782  * Returns 64 bytes, all zero except for the first.
783  * bit 0: 1: Error
784  * bit 5: 1: Suspended
785  * bit 6: 1: Ready
786  * bit 7: 1: Not write-protected
787  */
788 
789 static int
sddr09_read_status(struct us_data * us,unsigned char * status)790 sddr09_read_status(struct us_data *us, unsigned char *status) {
791 
792 	unsigned char command[12] = {
793 		0xec, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
794 	};
795 	unsigned char data[64];
796 	int result;
797 
798 	US_DEBUGP("Reading status...\n");
799 
800 	result = sddr09_send_scsi_command(us, command, sizeof(command));
801 	if (result != USB_STOR_TRANSPORT_GOOD)
802 		return result;
803 
804 	result = sddr09_bulk_transport(us, SCSI_DATA_READ,
805 				       data, sizeof(data), 0);
806 	*status = data[0];
807 	return result;
808 }
809 
810 static int
sddr09_read_data(struct us_data * us,unsigned long address,unsigned int sectors,unsigned char * content,int use_sg)811 sddr09_read_data(struct us_data *us,
812 		 unsigned long address,
813 		 unsigned int sectors,
814 		 unsigned char *content,
815 		 int use_sg) {
816 
817 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
818 	unsigned int lba, maxlba, pba;
819 	unsigned int page, pages;
820 	unsigned char *buffer = NULL;
821 	unsigned char *ptr;
822 	struct scatterlist *sg = NULL;
823 	int result, i, len;
824 
825 	// If we're using scatter-gather, we have to create a new
826 	// buffer to read all of the data in first, since a
827 	// scatter-gather buffer could in theory start in the middle
828 	// of a page, which would be bad. A developer who wants a
829 	// challenge might want to write a limited-buffer
830 	// version of this code.
831 
832 	len = sectors*info->pagesize;
833 
834 	if (use_sg) {
835 		sg = (struct scatterlist *)content;
836 		buffer = kmalloc(len, GFP_NOIO);
837 		if (buffer == NULL)
838 			return USB_STOR_TRANSPORT_ERROR;
839 		ptr = buffer;
840 	} else
841 		ptr = content;
842 
843 	// Figure out the initial LBA and page
844 	lba = address >> info->blockshift;
845 	page = (address & info->blockmask);
846 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
847 
848 	// This could be made much more efficient by checking for
849 	// contiguous LBA's. Another exercise left to the student.
850 
851 	result = USB_STOR_TRANSPORT_GOOD;
852 
853 	while (sectors > 0) {
854 
855 		/* Find number of pages we can read in this block */
856 		pages = info->blocksize - page;
857 		if (pages > sectors)
858 			pages = sectors;
859 
860 		/* Not overflowing capacity? */
861 		if (lba >= maxlba) {
862 			US_DEBUGP("Error: Requested lba %u exceeds "
863 				  "maximum %u\n", lba, maxlba);
864 			result = USB_STOR_TRANSPORT_ERROR;
865 			break;
866 		}
867 
868 		/* Find where this lba lives on disk */
869 		pba = info->lba_to_pba[lba];
870 
871 		if (pba == UNDEF) {	/* this lba was never written */
872 
873 			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
874 				  pages, lba, page);
875 
876 			/* This is not really an error. It just means
877 			   that the block has never been written.
878 			   Instead of returning USB_STOR_TRANSPORT_ERROR
879 			   it is better to return all zero data. */
880 
881 			memset(ptr, 0, pages << info->pageshift);
882 
883 		} else {
884 			US_DEBUGP("Read %d pages, from PBA %d"
885 				  " (LBA %d) page %d\n",
886 				  pages, pba, lba, page);
887 
888 			address = ((pba << info->blockshift) + page) <<
889 				info->pageshift;
890 
891 			result = sddr09_read20(us, address>>1,
892 					       pages, info->pageshift, ptr, 0);
893 			if (result != USB_STOR_TRANSPORT_GOOD)
894 				break;
895 		}
896 
897 		page = 0;
898 		lba++;
899 		sectors -= pages;
900 		ptr += (pages << info->pageshift);
901 	}
902 
903 	if (use_sg && result == USB_STOR_TRANSPORT_GOOD) {
904 		int transferred = 0;
905 
906 		for (i=0; i<use_sg && transferred<len; i++) {
907 			unsigned char *buf = sg[i].address;
908 			unsigned int length;
909 
910 			length = len-transferred;
911 			if (length > sg[i].length)
912 				length = sg[i].length;
913 
914 			memcpy(buf, buffer+transferred, length);
915 			transferred += sg[i].length;
916 		}
917 	}
918 
919 	if (use_sg)
920 		kfree(buffer);
921 
922 	return result;
923 }
924 
925 /* we never free blocks, so lastpba can only increase */
926 static unsigned int
sddr09_find_unused_pba(struct sddr09_card_info * info)927 sddr09_find_unused_pba(struct sddr09_card_info *info) {
928 	static unsigned int lastpba = 1;
929 	int numblocks = info->capacity >> (info->blockshift + info->pageshift);
930 	int i;
931 
932 	for (i = lastpba+1; i < numblocks; i++) {
933 		if (info->pba_to_lba[i] == UNDEF) {
934 			lastpba = i;
935 			return i;
936 		}
937 	}
938 	return 0;
939 }
940 
941 static int
sddr09_write_lba(struct us_data * us,unsigned int lba,unsigned int page,unsigned int pages,unsigned char * ptr)942 sddr09_write_lba(struct us_data *us, unsigned int lba,
943 		 unsigned int page, unsigned int pages,
944 		 unsigned char *ptr) {
945 
946 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
947 	unsigned long address;
948 	unsigned int pba, lbap;
949 	unsigned int pagelen, blocklen;
950 	unsigned char *blockbuffer, *bptr, *cptr, *xptr;
951 	unsigned char ecc[3];
952 	int i, result;
953 
954 	lbap = ((lba & 0x3ff) << 1) | 0x1000;
955 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
956 		lbap ^= 1;
957 	pba = info->lba_to_pba[lba];
958 
959 	if (pba == UNDEF) {
960 		pba = sddr09_find_unused_pba(info);
961 		if (!pba) {
962 			printk("sddr09_write_lba: Out of unused blocks\n");
963 			return USB_STOR_TRANSPORT_ERROR;
964 		}
965 		info->pba_to_lba[pba] = lba;
966 		info->lba_to_pba[lba] = pba;
967 	}
968 
969 	if (pba == 1) {
970 		/* Maybe it is impossible to write to PBA 1.
971 		   Fake success, but don't do anything. */
972 		printk("sddr09: avoid writing to pba 1\n");
973 		return USB_STOR_TRANSPORT_GOOD;
974 	}
975 
976 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
977 	blocklen = (pagelen << info->blockshift);
978 	blockbuffer = kmalloc(blocklen, GFP_NOIO);
979 	if (!blockbuffer) {
980 		printk("sddr09_write_lba: Out of memory\n");
981 		return USB_STOR_TRANSPORT_ERROR;
982 	}
983 
984 	/* read old contents */
985 	address = (pba << (info->pageshift + info->blockshift));
986 	result = sddr09_read22(us, address>>1, info->blocksize,
987 			       info->pageshift, blockbuffer, 0);
988 	if (result != USB_STOR_TRANSPORT_GOOD)
989 		goto err;
990 
991 	/* check old contents */
992 	for (i = 0; i < info->blockshift; i++) {
993 		bptr = blockbuffer + i*pagelen;
994 		cptr = bptr + info->pagesize;
995 		nand_compute_ecc(bptr, ecc);
996 		if (!nand_compare_ecc(cptr+13, ecc)) {
997 			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
998 				  i, pba);
999 			nand_store_ecc(cptr+13, ecc);
1000 		}
1001 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
1002 		if (!nand_compare_ecc(cptr+8, ecc)) {
1003 			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
1004 				  i, pba);
1005 			nand_store_ecc(cptr+8, ecc);
1006 		}
1007 	}
1008 
1009 	/* copy in new stuff and compute ECC */
1010 	xptr = ptr;
1011 	for (i = page; i < page+pages; i++) {
1012 		bptr = blockbuffer + i*pagelen;
1013 		cptr = bptr + info->pagesize;
1014 		memcpy(bptr, xptr, info->pagesize);
1015 		xptr += info->pagesize;
1016 		nand_compute_ecc(bptr, ecc);
1017 		nand_store_ecc(cptr+13, ecc);
1018 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
1019 		nand_store_ecc(cptr+8, ecc);
1020 		cptr[6] = cptr[11] = MSB_of(lbap);
1021 		cptr[7] = cptr[12] = LSB_of(lbap);
1022 	}
1023 
1024 	US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
1025 
1026 	result = sddr09_write_inplace(us, address>>1, info->blocksize,
1027 				      info->pageshift, blockbuffer, 0);
1028 
1029 	US_DEBUGP("sddr09_write_inplace returns %d\n", result);
1030 
1031 #if 0
1032 	{
1033 	    unsigned char status = 0;
1034 	    int result2 = sddr09_read_status(us, &status);
1035 	    if (result2 != USB_STOR_TRANSPORT_GOOD)
1036 		US_DEBUGP("sddr09_write_inplace: cannot read status\n");
1037 	    else if (status != 0xc0)
1038 		US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
1039 			  status);
1040 	}
1041 #endif
1042 
1043 #if 0
1044 	{
1045 	    int result2 = sddr09_test_unit_ready(us);
1046 	}
1047 #endif
1048  err:
1049 	kfree(blockbuffer);
1050 
1051 	/* TODO: instead of doing kmalloc/kfree for each block,
1052 	   add a bufferpointer to the info structure */
1053 
1054 	return result;
1055 }
1056 
1057 static int
sddr09_write_data(struct us_data * us,unsigned long address,unsigned int sectors,unsigned char * content,int use_sg)1058 sddr09_write_data(struct us_data *us,
1059 		  unsigned long address,
1060 		  unsigned int sectors,
1061 		  unsigned char *content,
1062 		  int use_sg) {
1063 
1064 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1065 	unsigned int lba, page, pages;
1066 	unsigned char *buffer = NULL;
1067 	unsigned char *ptr;
1068 	struct scatterlist *sg = NULL;
1069 	int result, i, len;
1070 
1071 	// If we're using scatter-gather, we have to create a new
1072 	// buffer to write all of the data in first, since a
1073 	// scatter-gather buffer could in theory start in the middle
1074 	// of a page, which would be bad. A developer who wants a
1075 	// challenge might want to write a limited-buffer
1076 	// version of this code.
1077 
1078 	len = sectors*info->pagesize;
1079 
1080 	if (use_sg) {
1081 		int transferred = 0;
1082 
1083 		sg = (struct scatterlist *)content;
1084 		buffer = kmalloc(len, GFP_NOIO);
1085 		if (buffer == NULL)
1086 			return USB_STOR_TRANSPORT_ERROR;
1087 
1088 		for (i=0; i<use_sg && transferred<len; i++) {
1089 			memcpy(buffer+transferred,
1090 			       sg[i].address,
1091 			       len-transferred > sg[i].length ?
1092 			        sg[i].length : len-transferred);
1093 			transferred += sg[i].length;
1094 		}
1095 		ptr = buffer;
1096 	} else
1097 		ptr = content;
1098 
1099 	// Figure out the initial LBA and page
1100 	lba = address >> info->blockshift;
1101 	page = (address & info->blockmask);
1102 
1103 	// This could be made much more efficient by checking for
1104 	// contiguous LBA's. Another exercise left to the student.
1105 
1106 	result = USB_STOR_TRANSPORT_GOOD;
1107 
1108 	while (sectors > 0) {
1109 
1110 		// Write as many sectors as possible in this block
1111 
1112 		pages = info->blocksize - page;
1113 		if (pages > sectors)
1114 			pages = sectors;
1115 
1116 		result = sddr09_write_lba(us, lba, page, pages, ptr);
1117 		if (result != USB_STOR_TRANSPORT_GOOD)
1118 			break;
1119 
1120 		page = 0;
1121 		lba++;
1122 		sectors -= pages;
1123 		ptr += (pages << info->pageshift);
1124 	}
1125 
1126 	if (use_sg)
1127 		kfree(buffer);
1128 
1129 	return result;
1130 }
1131 
sddr09_read_control(struct us_data * us,unsigned long address,unsigned int blocks,unsigned char * content,int use_sg)1132 int sddr09_read_control(struct us_data *us,
1133 		unsigned long address,
1134 		unsigned int blocks,
1135 		unsigned char *content,
1136 		int use_sg) {
1137 
1138 	US_DEBUGP("Read control address %08lX blocks %04X\n",
1139 		address, blocks);
1140 
1141 	return sddr09_read21(us, address, blocks, CONTROL_SHIFT, content, use_sg);
1142 }
1143 
1144 static int
sddr09_read_deviceID(struct us_data * us,unsigned char * deviceID)1145 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1146 /*
1147  * Read Device ID Command: 12 bytes.
1148  * byte 0: opcode: ED
1149  *
1150  * Returns 2 bytes: Manufacturer ID and Device ID.
1151  * On more recent cards 3 bytes: the third byte is an option code A5
1152  * signifying that the secret command to read an 128-bit ID is available.
1153  * On still more recent cards 4 bytes: the fourth byte C0 means that
1154  * a second read ID cmd is available.
1155  */
1156 
1157 	unsigned char command[12] = {
1158 		0xed, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1159 	};
1160 	unsigned char content[64];
1161 	int result, i;
1162 
1163 	result = sddr09_send_scsi_command(us, command, sizeof(command));
1164 	if (result != USB_STOR_TRANSPORT_GOOD)
1165 		return result;
1166 
1167 	result = sddr09_bulk_transport(us, SCSI_DATA_READ, content, 64, 0);
1168 
1169 	for (i = 0; i < 4; i++)
1170 		deviceID[i] = content[i];
1171 
1172 	return result;
1173 }
1174 
1175 static int
sddr09_get_wp(struct us_data * us,struct sddr09_card_info * info)1176 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1177 	int result;
1178 	unsigned char status;
1179 
1180 	result = sddr09_read_status(us, &status);
1181 	if (result != USB_STOR_TRANSPORT_GOOD) {
1182 		US_DEBUGP("sddr09_get_wp: read_status fails\n");
1183 		return result;
1184 	}
1185 	US_DEBUGP("sddr09_get_wp: status %02X", status);
1186 	if ((status & 0x80) == 0) {
1187 		info->flags |= SDDR09_WP;	/* write protected */
1188 		US_DEBUGP(" WP");
1189 	}
1190 	if (status & 0x40)
1191 		US_DEBUGP(" Ready");
1192 	if (status & 0x20)
1193 		US_DEBUGP(" Suspended");
1194 	if (status & 0x1)
1195 		US_DEBUGP(" Error");
1196 	US_DEBUGP("\n");
1197 	return USB_STOR_TRANSPORT_GOOD;
1198 }
1199 
1200 #if 0
1201 /*
1202  * Reset Command: 12 bytes.
1203  * byte 0: opcode: EB
1204  */
1205 static int
1206 sddr09_reset(struct us_data *us) {
1207 
1208 	unsigned char command[12] = {
1209 		0xeb, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1210 	};
1211 
1212 	return sddr09_send_scsi_command(us, command, sizeof(command));
1213 }
1214 #endif
1215 
1216 static struct nand_flash_dev *
sddr09_get_cardinfo(struct us_data * us,unsigned char flags)1217 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1218 	struct nand_flash_dev *cardinfo;
1219 	unsigned char deviceID[4];
1220 	char blurbtxt[256];
1221 	int result;
1222 
1223 	US_DEBUGP("Reading capacity...\n");
1224 
1225 	result = sddr09_read_deviceID(us, deviceID);
1226 
1227 	if (result != USB_STOR_TRANSPORT_GOOD) {
1228 		US_DEBUGP("Result of read_deviceID is %d\n", result);
1229 		printk("sddr09: could not read card info\n");
1230 		return 0;
1231 	}
1232 
1233 	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1234 		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1235 
1236 	/* Byte 0 is the manufacturer */
1237 	sprintf(blurbtxt + strlen(blurbtxt),
1238 		": Manuf. %s",
1239 		nand_flash_manufacturer(deviceID[0]));
1240 
1241 	/* Byte 1 is the device type */
1242 	cardinfo = nand_find_id(deviceID[1]);
1243 	if (cardinfo) {
1244 		/* MB or MiB? It is neither. A 16 MB card has
1245 		   17301504 raw bytes, of which 16384000 are
1246 		   usable for user data. */
1247 		sprintf(blurbtxt + strlen(blurbtxt),
1248 			", %d MB", 1<<(cardinfo->chipshift - 20));
1249 	} else {
1250 		sprintf(blurbtxt + strlen(blurbtxt),
1251 			", type unrecognized");
1252 	}
1253 
1254 	/* Byte 2 is code to signal availability of 128-bit ID */
1255 	if (deviceID[2] == 0xa5) {
1256 		sprintf(blurbtxt + strlen(blurbtxt),
1257 			", 128-bit ID");
1258 	}
1259 
1260 	/* Byte 3 announces the availability of another read ID command */
1261 	if (deviceID[3] == 0xc0) {
1262 		sprintf(blurbtxt + strlen(blurbtxt),
1263 			", extra cmd");
1264 	}
1265 
1266 	if (flags & SDDR09_WP)
1267 		sprintf(blurbtxt + strlen(blurbtxt),
1268 			", WP");
1269 
1270 	printk("%s\n", blurbtxt);
1271 
1272 	return cardinfo;
1273 }
1274 
1275 static int
sddr09_read_map(struct us_data * us)1276 sddr09_read_map(struct us_data *us) {
1277 
1278 	struct scatterlist *sg;
1279 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1280 	int numblocks, alloc_len, alloc_blocks;
1281 	int i, j, result;
1282 	unsigned char *ptr;
1283 	unsigned int lba, lbact;
1284 
1285 	if (!info->capacity)
1286 		return -1;
1287 
1288 	// read 64 (1<<6) bytes for every block
1289 	// ( 1 << ( blockshift + pageshift ) bytes)
1290 	//	 of capacity:
1291 	// (1<<6)*capacity/(1<<(b+p)) =
1292 	// ((1<<6)*capacity)>>(b+p) =
1293 	// capacity>>(b+p-6)
1294 
1295 	alloc_len = info->capacity >>
1296 		(info->blockshift + info->pageshift - CONTROL_SHIFT);
1297 
1298 	// Allocate a number of scatterlist structures according to
1299 	// the number of 128k blocks in the alloc_len. Adding 128k-1
1300 	// and then dividing by 128k gives the correct number of blocks.
1301 	// 128k = 1<<17
1302 
1303 	alloc_blocks = (alloc_len + (1<<17) - 1) >> 17;
1304 	sg = kmalloc(alloc_blocks*sizeof(struct scatterlist),
1305 		     GFP_NOIO);
1306 	if (sg == NULL)
1307 		return 0;
1308 
1309 	for (i=0; i<alloc_blocks; i++) {
1310 		if (i<alloc_blocks-1) {
1311 			sg[i].address = kmalloc( (1<<17), GFP_NOIO );
1312 			sg[i].page = NULL;
1313 			sg[i].length = (1<<17);
1314 		} else {
1315 			sg[i].address = kmalloc(alloc_len, GFP_NOIO);
1316 			sg[i].page = NULL;
1317 			sg[i].length = alloc_len;
1318 		}
1319 		alloc_len -= sg[i].length;
1320 	}
1321 	for (i=0; i<alloc_blocks; i++)
1322 		if (sg[i].address == NULL) {
1323 			for (i=0; i<alloc_blocks; i++)
1324 				if (sg[i].address != NULL)
1325 					kfree(sg[i].address);
1326 			kfree(sg);
1327 			return 0;
1328 		}
1329 
1330 	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1331 
1332 	result = sddr09_read_control(us, 0, numblocks,
1333 				     (unsigned char *)sg, alloc_blocks);
1334 	if (result != USB_STOR_TRANSPORT_GOOD) {
1335 		for (i=0; i<alloc_blocks; i++)
1336 			kfree(sg[i].address);
1337 		kfree(sg);
1338 		return -1;
1339 	}
1340 
1341 	kfree(info->lba_to_pba);
1342 	kfree(info->pba_to_lba);
1343 	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1344 	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1345 
1346 	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1347 		kfree(info->lba_to_pba);
1348 		kfree(info->pba_to_lba);
1349 		info->lba_to_pba = NULL;
1350 		info->pba_to_lba = NULL;
1351 		for (i=0; i<alloc_blocks; i++)
1352 			kfree(sg[i].address);
1353 		kfree(sg);
1354 		return 0;
1355 	}
1356 
1357 	for (i = 0; i < numblocks; i++)
1358 		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1359 
1360 	ptr = sg[0].address;
1361 
1362 	/*
1363 	 * Define lba-pba translation table
1364 	 */
1365 	// Each block is 64 bytes of control data, so block i is located in
1366 	// scatterlist block i*64/128k = i*(2^6)*(2^-17) = i*(2^-11)
1367 
1368 #if 0
1369 	/* No translation */
1370 	for (i=0; i<numblocks; i++) {
1371 		lba = i;
1372 		info->pba_to_lba[i] = lba;
1373 		info->lba_to_pba[lba] = i;
1374 	}
1375 	printk("sddr09: no translation today\n");
1376 #else
1377 	for (i=0; i<numblocks; i++) {
1378 		ptr = sg[i>>11].address + ((i&0x7ff)<<6);
1379 
1380 		if (i == 0 || i == 1) {
1381 			info->pba_to_lba[i] = UNUSABLE;
1382 			continue;
1383 		}
1384 
1385 		/* special PBAs have control field 0^16 */
1386 		for (j = 0; j < 16; j++)
1387 			if (ptr[j] != 0)
1388 				goto nonz;
1389 		info->pba_to_lba[i] = UNUSABLE;
1390 		printk("sddr09: PBA %04X has no logical mapping\n", i);
1391 		continue;
1392 
1393 	nonz:
1394 		/* unwritten PBAs have control field FF^16 */
1395 		for (j = 0; j < 16; j++)
1396 			if (ptr[j] != 0xff)
1397 				goto nonff;
1398 		continue;
1399 
1400 	nonff:
1401 		/* normal PBAs start with six FFs */
1402 		if (j < 6) {
1403 			printk("sddr09: PBA %04X has no logical mapping: "
1404 			       "reserved area = %02X%02X%02X%02X "
1405 			       "data status %02X block status %02X\n",
1406 			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1407 			       ptr[4], ptr[5]);
1408 			info->pba_to_lba[i] = UNUSABLE;
1409 			continue;
1410 		}
1411 
1412 		if ((ptr[6] >> 4) != 0x01) {
1413 			printk("sddr09: PBA %04X has invalid address field "
1414 			       "%02X%02X/%02X%02X\n",
1415 			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1416 			info->pba_to_lba[i] = UNUSABLE;
1417 			continue;
1418 		}
1419 
1420 		/* check even parity */
1421 		if (parity[ptr[6] ^ ptr[7]]) {
1422 			printk("sddr09: Bad parity in LBA for block %04X"
1423 			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1424 			info->pba_to_lba[i] = UNUSABLE;
1425 			continue;
1426 		}
1427 
1428 		lba = short_pack(ptr[7], ptr[6]);
1429 		lba = (lba & 0x07FF) >> 1;
1430 
1431 		/*
1432 		 * Every 1024 physical blocks ("zone"), the LBA numbers
1433 		 * go back to zero, but are within a higher block of LBA's.
1434 		 * Also, there is a maximum of 1000 LBA's per zone.
1435 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1436 		 * which are really LBA 1000-1999. This allows for 24 bad
1437 		 * or special physical blocks per zone.
1438 		 */
1439 
1440 		if (lba >= 1000) {
1441 			printk("sddr09: Bad LBA %04X for block %04X\n",
1442 			       lba, i);
1443 			info->pba_to_lba[i] = UNDEF /* UNUSABLE */;
1444 			continue;
1445 		}
1446 
1447 		lba += 1000*(i/0x400);
1448 
1449 		if (lba<0x10 || (lba >= 0x3E0 && lba < 0x3EF))
1450 			US_DEBUGP("LBA %04X <-> PBA %04X\n", lba, i);
1451 
1452 		info->pba_to_lba[i] = lba;
1453 		info->lba_to_pba[lba] = i;
1454 	}
1455 #endif
1456 
1457 	/*
1458 	 * Approximate capacity. This is not entirely correct yet,
1459 	 * since a zone with less than 1000 usable pages leads to
1460 	 * missing LBAs. Especially if it is the last zone, some
1461 	 * LBAs can be past capacity.
1462 	 */
1463 	lbact = 0;
1464 	for (i = 0; i < numblocks; i += 1024) {
1465 		int ct = 0;
1466 
1467 		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1468 			if (info->pba_to_lba[i+j] != UNUSABLE) {
1469 				if (ct >= 1000)
1470 					info->pba_to_lba[i+j] = SPARE;
1471 				else
1472 					ct++;
1473 			}
1474 		}
1475 		lbact += ct;
1476 	}
1477 	info->lbact = lbact;
1478 	US_DEBUGP("Found %d LBA's\n", lbact);
1479 
1480 	for (i=0; i<alloc_blocks; i++)
1481 		kfree(sg[i].address);
1482 	kfree(sg);
1483 	return 0;
1484 }
1485 
1486 static void
sddr09_card_info_destructor(void * extra)1487 sddr09_card_info_destructor(void *extra) {
1488 	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1489 
1490 	if (!info)
1491 		return;
1492 
1493 	kfree(info->lba_to_pba);
1494 	kfree(info->pba_to_lba);
1495 }
1496 
1497 static void
sddr09_init_card_info(struct us_data * us)1498 sddr09_init_card_info(struct us_data *us) {
1499 	if (!us->extra) {
1500 		us->extra = kmalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1501 		if (us->extra) {
1502 			memset(us->extra, 0, sizeof(struct sddr09_card_info));
1503 			us->extra_destructor = sddr09_card_info_destructor;
1504 		}
1505 	}
1506 }
1507 
1508 /*
1509  * It is unclear whether this does anything.
1510  * However, the request sense succeeds only after a reboot,
1511  * not if we do this a second time.
1512  */
1513 int
sddr09_init(struct us_data * us)1514 sddr09_init(struct us_data *us) {
1515 #if 0
1516 	int result;
1517 	unsigned char data[2];
1518 
1519 	printk("sddr09_init\n");
1520 
1521 	nand_init_ecc();
1522 
1523 	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1524 	if (result != USB_STOR_TRANSPORT_GOOD) {
1525 		US_DEBUGP("sddr09_init: send_command fails\n");
1526 		return result;
1527 	}
1528 
1529 	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1530 	// get 07 02
1531 
1532 	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1533 	if (result != USB_STOR_TRANSPORT_GOOD) {
1534 		US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1535 		return result;
1536 	}
1537 
1538 	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1539 	// get 07 00
1540 
1541 #if 1
1542 	result = sddr09_request_sense(us, data, sizeof(data));
1543 	if (result == USB_STOR_TRANSPORT_GOOD && data[2] != 0) {
1544 		int j;
1545 		for (j=0; j<sizeof(data); j++)
1546 			printk(" %02X", data[j]);
1547 		printk("\n");
1548 		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1549 		// 70: current command
1550 		// sense key 0, sense code 0, extd sense code 0
1551 		// additional transfer length * = sizeof(data) - 7
1552 	}
1553 #endif
1554 #endif
1555 	return USB_STOR_TRANSPORT_GOOD;		/* not result */
1556 }
1557 
1558 /*
1559  * Transport for the Sandisk SDDR-09
1560  */
sddr09_transport(Scsi_Cmnd * srb,struct us_data * us)1561 int sddr09_transport(Scsi_Cmnd *srb, struct us_data *us)
1562 {
1563 	static unsigned char sense = 0;
1564 	static unsigned char havefakesense = 0;
1565 	int result, i;
1566 	unsigned char *ptr;
1567 	unsigned long capacity;
1568 	unsigned int page, pages;
1569 	char string[64];
1570 
1571 	struct sddr09_card_info *info;
1572 
1573 	unsigned char inquiry_response[36] = {
1574 		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1575 	};
1576 
1577 	unsigned char mode_page_01[16] = {
1578 		0x0F, 0x00, 0, 0x00,
1579 		0x01, 0x0A,
1580 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1581 	};
1582 
1583 	info = (struct sddr09_card_info *)us->extra;
1584 	if (!info) {
1585 		nand_init_ecc();
1586 		sddr09_init_card_info(us);
1587 		info = (struct sddr09_card_info *)us->extra;
1588 		if (!info)
1589 			return USB_STOR_TRANSPORT_ERROR;
1590 	}
1591 
1592 	ptr = (unsigned char *)srb->request_buffer;
1593 
1594 	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1595 		/* for a faked command, we have to follow with a faked sense */
1596 		memset(ptr, 0, srb->request_bufflen);
1597 		if (srb->request_bufflen > 7) {
1598 			ptr[0] = 0x70;
1599 			ptr[2] = sense;
1600 			ptr[7] = srb->request_bufflen - 7;
1601 		}
1602 		sense = havefakesense = 0;
1603 		return USB_STOR_TRANSPORT_GOOD;
1604 	}
1605 
1606 	sense = 0;
1607 	havefakesense = 1;
1608 
1609 	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1610 	   respond to INQUIRY commands */
1611 
1612 	if (srb->cmnd[0] == INQUIRY) {
1613 		memset(inquiry_response+8, 0, 28);
1614 		fill_inquiry_response(us, inquiry_response, 36);
1615 		return USB_STOR_TRANSPORT_GOOD;
1616 	}
1617 
1618 	if (srb->cmnd[0] == READ_CAPACITY) {
1619 		struct nand_flash_dev *cardinfo;
1620 
1621 		sddr09_get_wp(us, info);	/* read WP bit */
1622 
1623 		cardinfo = sddr09_get_cardinfo(us, info->flags);
1624 		if (!cardinfo)
1625 			return USB_STOR_TRANSPORT_FAILED;
1626 
1627 		info->capacity = (1 << cardinfo->chipshift);
1628 		info->pageshift = cardinfo->pageshift;
1629 		info->pagesize = (1 << info->pageshift);
1630 		info->blockshift = cardinfo->blockshift;
1631 		info->blocksize = (1 << info->blockshift);
1632 		info->blockmask = info->blocksize - 1;
1633 
1634 		// map initialization, must follow get_cardinfo()
1635 		sddr09_read_map(us);
1636 
1637 		// Report capacity
1638 
1639 		capacity = (info->lbact << info->blockshift) - 1;
1640 
1641 		ptr[0] = MSB_of(capacity>>16);
1642 		ptr[1] = LSB_of(capacity>>16);
1643 		ptr[2] = MSB_of(capacity&0xFFFF);
1644 		ptr[3] = LSB_of(capacity&0xFFFF);
1645 
1646 		// Report page size
1647 
1648 		ptr[4] = MSB_of(info->pagesize>>16);
1649 		ptr[5] = LSB_of(info->pagesize>>16);
1650 		ptr[6] = MSB_of(info->pagesize&0xFFFF);
1651 		ptr[7] = LSB_of(info->pagesize&0xFFFF);
1652 
1653 		return USB_STOR_TRANSPORT_GOOD;
1654 	}
1655 
1656 	if (srb->cmnd[0] == MODE_SENSE) {
1657 
1658 		// Read-write error recovery page: there needs to
1659 		// be a check for write-protect here
1660 
1661 		if ( (srb->cmnd[2] & 0x3F) == 0x01 ) {
1662 
1663 			US_DEBUGP(
1664 				"SDDR09: Dummy up request for mode page 1\n");
1665 
1666 			if (ptr == NULL ||
1667 			    srb->request_bufflen<sizeof(mode_page_01))
1668 				return USB_STOR_TRANSPORT_ERROR;
1669 
1670 			mode_page_01[0] = sizeof(mode_page_01) - 1;
1671 			mode_page_01[2] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1672 			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1673 			return USB_STOR_TRANSPORT_GOOD;
1674 
1675 		} else if ( (srb->cmnd[2] & 0x3F) == 0x3F ) {
1676 
1677 			US_DEBUGP("SDDR09: Dummy up request for "
1678 				  "all mode pages\n");
1679 
1680 			if (ptr == NULL ||
1681 			    srb->request_bufflen<sizeof(mode_page_01))
1682 				return USB_STOR_TRANSPORT_ERROR;
1683 
1684 			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1685 			return USB_STOR_TRANSPORT_GOOD;
1686 
1687 		}
1688 
1689 		return USB_STOR_TRANSPORT_ERROR;
1690 	}
1691 
1692 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1693 
1694 		US_DEBUGP(
1695 			"SDDR09: %s medium removal. Not that I can do"
1696 			" anything about it...\n",
1697 			(srb->cmnd[4]&0x03) ? "Prevent" : "Allow");
1698 
1699 		return USB_STOR_TRANSPORT_GOOD;
1700 
1701 	}
1702 
1703 	havefakesense = 0;
1704 
1705 	if (srb->cmnd[0] == READ_10) {
1706 
1707 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1708 		page <<= 16;
1709 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1710 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1711 
1712 		US_DEBUGP("READ_10: read page %d pagect %d\n",
1713 			  page, pages);
1714 
1715 		return sddr09_read_data(us, page, pages, ptr, srb->use_sg);
1716 	}
1717 
1718 	if (srb->cmnd[0] == WRITE_10) {
1719 
1720 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1721 		page <<= 16;
1722 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1723 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1724 
1725 		US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1726 			  page, pages);
1727 
1728 		return sddr09_write_data(us, page, pages, ptr, srb->use_sg);
1729 	}
1730 
1731 	// Pass TEST_UNIT_READY and REQUEST_SENSE through
1732 
1733 	if (srb->cmnd[0] != TEST_UNIT_READY &&
1734 	    srb->cmnd[0] != REQUEST_SENSE) {
1735 		havefakesense = 1;
1736 		return USB_STOR_TRANSPORT_ERROR;
1737 	}
1738 
1739 	for (; srb->cmd_len<12; srb->cmd_len++)
1740 		srb->cmnd[srb->cmd_len] = 0;
1741 
1742 	srb->cmnd[1] = 0x20;
1743 
1744 	string[0] = 0;
1745 	for (i=0; i<12; i++)
1746 		sprintf(string+strlen(string), "%02X ", srb->cmnd[i]);
1747 
1748 	US_DEBUGP("SDDR09: Send control for command %s\n",
1749 		  string);
1750 
1751 	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1752 	if (result != USB_STOR_TRANSPORT_GOOD) {
1753 		US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1754 			  "returns %d\n", result);
1755 		return result;
1756 	}
1757 
1758 	if (srb->request_bufflen == 0)
1759 		return USB_STOR_TRANSPORT_GOOD;
1760 
1761 	if (srb->sc_data_direction == SCSI_DATA_WRITE ||
1762 	    srb->sc_data_direction == SCSI_DATA_READ) {
1763 
1764 		US_DEBUGP("SDDR09: %s %d bytes\n",
1765 			  (srb->sc_data_direction == SCSI_DATA_WRITE) ?
1766 			  "sending" : "receiving",
1767 			  srb->request_bufflen);
1768 
1769 		result = sddr09_bulk_transport(us,
1770 					       srb->sc_data_direction,
1771 					       srb->request_buffer,
1772 					       srb->request_bufflen,
1773 					       srb->use_sg);
1774 
1775 		return result;
1776 	}
1777 
1778 	return USB_STOR_TRANSPORT_GOOD;
1779 }
1780 
1781