1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. The name of the author may not be used to endorse or promote products
31 * derived from this software without specific prior written permission.
32 *
33 * Where this Software is combined with software released under the terms of
34 * the GNU Public License ("GPL") and the terms of the GPL would require the
35 * combined work to also be released under the terms of the GPL, the terms
36 * and conditions of this License will apply in addition to those of the
37 * GPL with the exception of any terms or conditions of this License that
38 * conflict with, or are expressly prohibited by, the GPL.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
44 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 */
52
53 #define SYM_DRIVER_NAME "sym-2.1.17a"
54
55 #ifdef __FreeBSD__
56 #include <dev/sym/sym_glue.h>
57 #else
58 #include "sym_glue.h"
59 #endif
60
61 #if 0
62 #define SYM_DEBUG_GENERIC_SUPPORT
63 #endif
64
65 /*
66 * Needed function prototypes.
67 */
68 static void sym_int_ma (hcb_p np);
69 static void sym_int_sir (hcb_p np);
70 static ccb_p sym_alloc_ccb(hcb_p np);
71 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa);
72 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
73 static void sym_complete_error (hcb_p np, ccb_p cp);
74 static void sym_complete_ok (hcb_p np, ccb_p cp);
75 static int sym_compute_residual(hcb_p np, ccb_p cp);
76
77 /*
78 * Returns the name of this driver.
79 */
sym_driver_name(void)80 char *sym_driver_name(void)
81 {
82 return SYM_DRIVER_NAME;
83 }
84 /*
85 * Print a buffer in hexadecimal format.
86 */
sym_printb_hex(u_char * p,int n)87 static void sym_printb_hex (u_char *p, int n)
88 {
89 while (n-- > 0)
90 printf (" %x", *p++);
91 }
92
93 /*
94 * Same with a label at beginning and .\n at end.
95 */
sym_printl_hex(char * label,u_char * p,int n)96 static void sym_printl_hex (char *label, u_char *p, int n)
97 {
98 printf ("%s", label);
99 sym_printb_hex (p, n);
100 printf (".\n");
101 }
102
103 /*
104 * Print something which allows to retrieve the controler type,
105 * unit, target, lun concerned by a kernel message.
106 */
sym_print_target(hcb_p np,int target)107 static void sym_print_target (hcb_p np, int target)
108 {
109 printf ("%s:%d:", sym_name(np), target);
110 }
111
sym_print_lun(hcb_p np,int target,int lun)112 static void sym_print_lun(hcb_p np, int target, int lun)
113 {
114 printf ("%s:%d:%d:", sym_name(np), target, lun);
115 }
116
117 /*
118 * Print out the content of a SCSI message.
119 */
sym_show_msg(u_char * msg)120 static int sym_show_msg (u_char * msg)
121 {
122 u_char i;
123 printf ("%x",*msg);
124 if (*msg==M_EXTENDED) {
125 for (i=1;i<8;i++) {
126 if (i-1>msg[1]) break;
127 printf ("-%x",msg[i]);
128 };
129 return (i+1);
130 } else if ((*msg & 0xf0) == 0x20) {
131 printf ("-%x",msg[1]);
132 return (2);
133 };
134 return (1);
135 }
136
sym_print_msg(ccb_p cp,char * label,u_char * msg)137 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
138 {
139 PRINT_ADDR(cp);
140 if (label)
141 printf ("%s: ", label);
142
143 (void) sym_show_msg (msg);
144 printf (".\n");
145 }
146
sym_print_nego_msg(hcb_p np,int target,char * label,u_char * msg)147 static void sym_print_nego_msg (hcb_p np, int target, char *label, u_char *msg)
148 {
149 PRINT_TARGET(np, target);
150 if (label)
151 printf ("%s: ", label);
152
153 (void) sym_show_msg (msg);
154 printf (".\n");
155 }
156
157 /*
158 * Print something that tells about extended errors.
159 */
sym_print_xerr(ccb_p cp,int x_status)160 void sym_print_xerr(ccb_p cp, int x_status)
161 {
162 if (x_status & XE_PARITY_ERR) {
163 PRINT_ADDR(cp);
164 printf ("unrecovered SCSI parity error.\n");
165 }
166 if (x_status & XE_EXTRA_DATA) {
167 PRINT_ADDR(cp);
168 printf ("extraneous data discarded.\n");
169 }
170 if (x_status & XE_BAD_PHASE) {
171 PRINT_ADDR(cp);
172 printf ("illegal scsi phase (4/5).\n");
173 }
174 if (x_status & XE_SODL_UNRUN) {
175 PRINT_ADDR(cp);
176 printf ("ODD transfer in DATA OUT phase.\n");
177 }
178 if (x_status & XE_SWIDE_OVRUN) {
179 PRINT_ADDR(cp);
180 printf ("ODD transfer in DATA IN phase.\n");
181 }
182 }
183
184 /*
185 * Return a string for SCSI BUS mode.
186 */
sym_scsi_bus_mode(int mode)187 static char *sym_scsi_bus_mode(int mode)
188 {
189 switch(mode) {
190 case SMODE_HVD: return "HVD";
191 case SMODE_SE: return "SE";
192 case SMODE_LVD: return "LVD";
193 }
194 return "??";
195 }
196
197 /*
198 * Soft reset the chip.
199 *
200 * Raising SRST when the chip is running may cause
201 * problems on dual function chips (see below).
202 * On the other hand, LVD devices need some delay
203 * to settle and report actual BUS mode in STEST4.
204 */
sym_chip_reset(hcb_p np)205 static void sym_chip_reset (hcb_p np)
206 {
207 OUTB (nc_istat, SRST);
208 UDELAY (10);
209 OUTB (nc_istat, 0);
210 UDELAY(2000); /* For BUS MODE to settle */
211 }
212
213 /*
214 * Really soft reset the chip.:)
215 *
216 * Some 896 and 876 chip revisions may hang-up if we set
217 * the SRST (soft reset) bit at the wrong time when SCRIPTS
218 * are running.
219 * So, we need to abort the current operation prior to
220 * soft resetting the chip.
221 */
sym_soft_reset(hcb_p np)222 static void sym_soft_reset (hcb_p np)
223 {
224 u_char istat = 0;
225 int i;
226
227 if (!(np->features & FE_ISTAT1) || !(INB (nc_istat1) & SCRUN))
228 goto do_chip_reset;
229
230 OUTB (nc_istat, CABRT);
231 for (i = 100000 ; i ; --i) {
232 istat = INB (nc_istat);
233 if (istat & SIP) {
234 INW (nc_sist);
235 }
236 else if (istat & DIP) {
237 if (INB (nc_dstat) & ABRT)
238 break;
239 }
240 UDELAY(5);
241 }
242 OUTB (nc_istat, 0);
243 if (!i)
244 printf("%s: unable to abort current chip operation, "
245 "ISTAT=0x%02x.\n", sym_name(np), istat);
246 do_chip_reset:
247 sym_chip_reset (np);
248 }
249
250 /*
251 * Start reset process.
252 *
253 * The interrupt handler will reinitialize the chip.
254 */
sym_start_reset(hcb_p np)255 static void sym_start_reset(hcb_p np)
256 {
257 (void) sym_reset_scsi_bus(np, 1);
258 }
259
sym_reset_scsi_bus(hcb_p np,int enab_int)260 int sym_reset_scsi_bus(hcb_p np, int enab_int)
261 {
262 u32 term;
263 int retv = 0;
264
265 sym_soft_reset(np); /* Soft reset the chip */
266 if (enab_int)
267 OUTW (nc_sien, RST);
268 /*
269 * Enable Tolerant, reset IRQD if present and
270 * properly set IRQ mode, prior to resetting the bus.
271 */
272 OUTB (nc_stest3, TE);
273 OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
274 OUTB (nc_scntl1, CRST);
275 UDELAY (200);
276
277 if (!SYM_SETUP_SCSI_BUS_CHECK)
278 goto out;
279 /*
280 * Check for no terminators or SCSI bus shorts to ground.
281 * Read SCSI data bus, data parity bits and control signals.
282 * We are expecting RESET to be TRUE and other signals to be
283 * FALSE.
284 */
285 term = INB(nc_sstat0);
286 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
287 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
288 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
289 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
290 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
291
292 if (!(np->features & FE_WIDE))
293 term &= 0x3ffff;
294
295 if (term != (2<<7)) {
296 printf("%s: suspicious SCSI data while resetting the BUS.\n",
297 sym_name(np));
298 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
299 "0x%lx, expecting 0x%lx\n",
300 sym_name(np),
301 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
302 (u_long)term, (u_long)(2<<7));
303 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
304 retv = 1;
305 }
306 out:
307 OUTB (nc_scntl1, 0);
308 /* MDELAY(100); */
309 return retv;
310 }
311
312 /*
313 * Select SCSI clock frequency
314 */
sym_selectclock(hcb_p np,u_char scntl3)315 static void sym_selectclock(hcb_p np, u_char scntl3)
316 {
317 /*
318 * If multiplier not present or not selected, leave here.
319 */
320 if (np->multiplier <= 1) {
321 OUTB(nc_scntl3, scntl3);
322 return;
323 }
324
325 if (sym_verbose >= 2)
326 printf ("%s: enabling clock multiplier\n", sym_name(np));
327
328 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
329 /*
330 * Wait for the LCKFRQ bit to be set if supported by the chip.
331 * Otherwise wait 50 micro-seconds (at least).
332 */
333 if (np->features & FE_LCKFRQ) {
334 int i = 20;
335 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
336 UDELAY (20);
337 if (!i)
338 printf("%s: the chip cannot lock the frequency\n",
339 sym_name(np));
340 } else
341 UDELAY ((50+10));
342 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
343 OUTB(nc_scntl3, scntl3);
344 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
345 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
346 }
347
348
349 /*
350 * Determine the chip's clock frequency.
351 *
352 * This is essential for the negotiation of the synchronous
353 * transfer rate.
354 *
355 * Note: we have to return the correct value.
356 * THERE IS NO SAFE DEFAULT VALUE.
357 *
358 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
359 * 53C860 and 53C875 rev. 1 support fast20 transfers but
360 * do not have a clock doubler and so are provided with a
361 * 80 MHz clock. All other fast20 boards incorporate a doubler
362 * and so should be delivered with a 40 MHz clock.
363 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
364 * clock and provide a clock quadrupler (160 Mhz).
365 */
366
367 /*
368 * calculate SCSI clock frequency (in KHz)
369 */
getfreq(hcb_p np,int gen)370 static unsigned getfreq (hcb_p np, int gen)
371 {
372 unsigned int ms = 0;
373 unsigned int f;
374
375 /*
376 * Measure GEN timer delay in order
377 * to calculate SCSI clock frequency
378 *
379 * This code will never execute too
380 * many loop iterations (if DELAY is
381 * reasonably correct). It could get
382 * too low a delay (too high a freq.)
383 * if the CPU is slow executing the
384 * loop for some reason (an NMI, for
385 * example). For this reason we will
386 * if multiple measurements are to be
387 * performed trust the higher delay
388 * (lower frequency returned).
389 */
390 OUTW (nc_sien , 0); /* mask all scsi interrupts */
391 (void) INW (nc_sist); /* clear pending scsi interrupt */
392 OUTB (nc_dien , 0); /* mask all dma interrupts */
393 (void) INW (nc_sist); /* another one, just to be sure :) */
394 /*
395 * The C1010-33 core does not report GEN in SIST,
396 * if this interrupt is masked in SIEN.
397 * I don't know yet if the C1010-66 behaves the same way.
398 */
399 if (np->features & FE_C10) {
400 OUTW (nc_sien, GEN);
401 OUTB (nc_istat1, SIRQD);
402 }
403 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
404 OUTB (nc_stime1, 0); /* disable general purpose timer */
405 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
406 while (!(INW(nc_sist) & GEN) && ms++ < 100000)
407 UDELAY (1000/4);/* count in 1/4 of ms */
408 OUTB (nc_stime1, 0); /* disable general purpose timer */
409 /*
410 * Undo C1010-33 specific settings.
411 */
412 if (np->features & FE_C10) {
413 OUTW (nc_sien, 0);
414 OUTB (nc_istat1, 0);
415 }
416 /*
417 * set prescaler to divide by whatever 0 means
418 * 0 ought to choose divide by 2, but appears
419 * to set divide by 3.5 mode in my 53c810 ...
420 */
421 OUTB (nc_scntl3, 0);
422
423 /*
424 * adjust for prescaler, and convert into KHz
425 */
426 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
427
428 /*
429 * The C1010-33 result is biased by a factor
430 * of 2/3 compared to earlier chips.
431 */
432 if (np->features & FE_C10)
433 f = (f * 2) / 3;
434
435 if (sym_verbose >= 2)
436 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
437 sym_name(np), gen, ms/4, f);
438
439 return f;
440 }
441
sym_getfreq(hcb_p np)442 static unsigned sym_getfreq (hcb_p np)
443 {
444 u_int f1, f2;
445 int gen = 8;
446
447 (void) getfreq (np, gen); /* throw away first result */
448 f1 = getfreq (np, gen);
449 f2 = getfreq (np, gen);
450 if (f1 > f2) f1 = f2; /* trust lower result */
451 return f1;
452 }
453
454 /*
455 * Get/probe chip SCSI clock frequency
456 */
sym_getclock(hcb_p np,int mult)457 static void sym_getclock (hcb_p np, int mult)
458 {
459 unsigned char scntl3 = np->sv_scntl3;
460 unsigned char stest1 = np->sv_stest1;
461 unsigned f1;
462
463 np->multiplier = 1;
464 f1 = 40000;
465 /*
466 * True with 875/895/896/895A with clock multiplier selected
467 */
468 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
469 if (sym_verbose >= 2)
470 printf ("%s: clock multiplier found\n", sym_name(np));
471 np->multiplier = mult;
472 }
473
474 /*
475 * If multiplier not found or scntl3 not 7,5,3,
476 * reset chip and get frequency from general purpose timer.
477 * Otherwise trust scntl3 BIOS setting.
478 */
479 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
480 OUTB (nc_stest1, 0); /* make sure doubler is OFF */
481 f1 = sym_getfreq (np);
482
483 if (sym_verbose)
484 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
485
486 if (f1 < 45000) f1 = 40000;
487 else if (f1 < 55000) f1 = 50000;
488 else f1 = 80000;
489
490 if (f1 < 80000 && mult > 1) {
491 if (sym_verbose >= 2)
492 printf ("%s: clock multiplier assumed\n",
493 sym_name(np));
494 np->multiplier = mult;
495 }
496 } else {
497 if ((scntl3 & 7) == 3) f1 = 40000;
498 else if ((scntl3 & 7) == 5) f1 = 80000;
499 else f1 = 160000;
500
501 f1 /= np->multiplier;
502 }
503
504 /*
505 * Compute controller synchronous parameters.
506 */
507 f1 *= np->multiplier;
508 np->clock_khz = f1;
509 }
510
511 /*
512 * Get/probe PCI clock frequency
513 */
sym_getpciclock(hcb_p np)514 static int sym_getpciclock (hcb_p np)
515 {
516 int f = 0;
517
518 /*
519 * For now, we only need to know about the actual
520 * PCI BUS clock frequency for C1010-66 chips.
521 */
522 #if 1
523 if (np->features & FE_66MHZ) {
524 #else
525 if (1) {
526 #endif
527 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
528 f = (int) sym_getfreq (np);
529 OUTB (nc_stest1, 0);
530 }
531 np->pciclk_khz = f;
532
533 return f;
534 }
535
536 /*
537 * SYMBIOS chip clock divisor table.
538 *
539 * Divisors are multiplied by 10,000,000 in order to make
540 * calculations more simple.
541 */
542 #define _5M 5000000
543 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
544
545 /*
546 * Get clock factor and sync divisor for a given
547 * synchronous factor period.
548 */
549 static int
550 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
551 {
552 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
553 int div = np->clock_divn; /* Number of divisors supported */
554 u32 fak; /* Sync factor in sxfer */
555 u32 per; /* Period in tenths of ns */
556 u32 kpc; /* (per * clk) */
557 int ret;
558
559 /*
560 * Compute the synchronous period in tenths of nano-seconds
561 */
562 if (dt && sfac <= 9) per = 125;
563 else if (sfac <= 10) per = 250;
564 else if (sfac == 11) per = 303;
565 else if (sfac == 12) per = 500;
566 else per = 40 * sfac;
567 ret = per;
568
569 kpc = per * clk;
570 if (dt)
571 kpc <<= 1;
572
573 /*
574 * For earliest C10 revision 0, we cannot use extra
575 * clocks for the setting of the SCSI clocking.
576 * Note that this limits the lowest sync data transfer
577 * to 5 Mega-transfers per second and may result in
578 * using higher clock divisors.
579 */
580 #if 1
581 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
582 /*
583 * Look for the lowest clock divisor that allows an
584 * output speed not faster than the period.
585 */
586 while (div > 0) {
587 --div;
588 if (kpc > (div_10M[div] << 2)) {
589 ++div;
590 break;
591 }
592 }
593 fak = 0; /* No extra clocks */
594 if (div == np->clock_divn) { /* Are we too fast ? */
595 ret = -1;
596 }
597 *divp = div;
598 *fakp = fak;
599 return ret;
600 }
601 #endif
602
603 /*
604 * Look for the greatest clock divisor that allows an
605 * input speed faster than the period.
606 */
607 while (div-- > 0)
608 if (kpc >= (div_10M[div] << 2)) break;
609
610 /*
611 * Calculate the lowest clock factor that allows an output
612 * speed not faster than the period, and the max output speed.
613 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
614 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
615 */
616 if (dt) {
617 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
618 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
619 }
620 else {
621 fak = (kpc - 1) / div_10M[div] + 1 - 4;
622 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
623 }
624
625 /*
626 * Check against our hardware limits, or bugs :).
627 */
628 if (fak < 0) {fak = 0; ret = -1;}
629 if (fak > 2) {fak = 2; ret = -1;}
630
631 /*
632 * Compute and return sync parameters.
633 */
634 *divp = div;
635 *fakp = fak;
636
637 return ret;
638 }
639
640 /*
641 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
642 * 128 transfers. All chips support at least 16 transfers
643 * bursts. The 825A, 875 and 895 chips support bursts of up
644 * to 128 transfers and the 895A and 896 support bursts of up
645 * to 64 transfers. All other chips support up to 16
646 * transfers bursts.
647 *
648 * For PCI 32 bit data transfers each transfer is a DWORD.
649 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
650 *
651 * We use log base 2 (burst length) as internal code, with
652 * value 0 meaning "burst disabled".
653 */
654
655 /*
656 * Burst length from burst code.
657 */
658 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
659
660 /*
661 * Burst code from io register bits.
662 */
663 #define burst_code(dmode, ctest4, ctest5) \
664 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
665
666 /*
667 * Set initial io register bits from burst code.
668 */
669 static __inline void sym_init_burst(hcb_p np, u_char bc)
670 {
671 np->rv_ctest4 &= ~0x80;
672 np->rv_dmode &= ~(0x3 << 6);
673 np->rv_ctest5 &= ~0x4;
674
675 if (!bc) {
676 np->rv_ctest4 |= 0x80;
677 }
678 else {
679 --bc;
680 np->rv_dmode |= ((bc & 0x3) << 6);
681 np->rv_ctest5 |= (bc & 0x4);
682 }
683 }
684
685
686 /*
687 * Print out the list of targets that have some flag disabled by user.
688 */
689 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
690 {
691 int cnt;
692 int i;
693
694 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
695 if (i == np->myaddr)
696 continue;
697 if (np->target[i].usrflags & mask) {
698 if (!cnt++)
699 printf("%s: %s disabled for targets",
700 sym_name(np), msg);
701 printf(" %d", i);
702 }
703 }
704 if (cnt)
705 printf(".\n");
706 }
707
708 /*
709 * Save initial settings of some IO registers.
710 * Assumed to have been set by BIOS.
711 * We cannot reset the chip prior to reading the
712 * IO registers, since informations will be lost.
713 * Since the SCRIPTS processor may be running, this
714 * is not safe on paper, but it seems to work quite
715 * well. :)
716 */
717 static void sym_save_initial_setting (hcb_p np)
718 {
719 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
720 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
721 np->sv_dmode = INB(nc_dmode) & 0xce;
722 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
723 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
724 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
725 np->sv_gpcntl = INB(nc_gpcntl);
726 np->sv_stest1 = INB(nc_stest1);
727 np->sv_stest2 = INB(nc_stest2) & 0x20;
728 np->sv_stest4 = INB(nc_stest4);
729 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
730 np->sv_scntl4 = INB(nc_scntl4);
731 np->sv_ctest5 = INB(nc_ctest5) & 0x04;
732 }
733 else
734 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
735 }
736
737 /*
738 * Prepare io register values used by sym_start_up()
739 * according to selected and supported features.
740 */
741 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
742 {
743 u_char burst_max;
744 u32 period;
745 int i;
746
747 /*
748 * Wide ?
749 */
750 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
751
752 /*
753 * Guess the frequency of the chip's clock.
754 */
755 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
756 np->clock_khz = 160000;
757 else if (np->features & FE_ULTRA)
758 np->clock_khz = 80000;
759 else
760 np->clock_khz = 40000;
761
762 /*
763 * Get the clock multiplier factor.
764 */
765 if (np->features & FE_QUAD)
766 np->multiplier = 4;
767 else if (np->features & FE_DBLR)
768 np->multiplier = 2;
769 else
770 np->multiplier = 1;
771
772 /*
773 * Measure SCSI clock frequency for chips
774 * it may vary from assumed one.
775 */
776 if (np->features & FE_VARCLK)
777 sym_getclock(np, np->multiplier);
778
779 /*
780 * Divisor to be used for async (timer pre-scaler).
781 */
782 i = np->clock_divn - 1;
783 while (--i >= 0) {
784 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
785 ++i;
786 break;
787 }
788 }
789 np->rv_scntl3 = i+1;
790
791 /*
792 * The C1010 uses hardwired divisors for async.
793 * So, we just throw away, the async. divisor.:-)
794 */
795 if (np->features & FE_C10)
796 np->rv_scntl3 = 0;
797
798 /*
799 * Minimum synchronous period factor supported by the chip.
800 * Btw, 'period' is in tenths of nanoseconds.
801 */
802 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
803 if (period <= 250) np->minsync = 10;
804 else if (period <= 303) np->minsync = 11;
805 else if (period <= 500) np->minsync = 12;
806 else np->minsync = (period + 40 - 1) / 40;
807
808 /*
809 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
810 */
811 if (np->minsync < 25 &&
812 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
813 np->minsync = 25;
814 else if (np->minsync < 12 &&
815 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
816 np->minsync = 12;
817
818 /*
819 * Maximum synchronous period factor supported by the chip.
820 */
821 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
822 np->maxsync = period > 2540 ? 254 : period / 10;
823
824 /*
825 * If chip is a C1010, guess the sync limits in DT mode.
826 */
827 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
828 if (np->clock_khz == 160000) {
829 np->minsync_dt = 9;
830 np->maxsync_dt = 50;
831 np->maxoffs_dt = nvram->type ? 62 : 31;
832 }
833 }
834
835 /*
836 * 64 bit addressing (895A/896/1010) ?
837 */
838 if (np->features & FE_DAC) {
839 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
840 np->rv_ccntl1 |= (DDAC);
841 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
842 if (!np->use_dac)
843 np->rv_ccntl1 |= (DDAC);
844 else
845 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
846 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
847 if (!np->use_dac)
848 np->rv_ccntl1 |= (DDAC);
849 else
850 np->rv_ccntl1 |= (0 | EXTIBMV);
851 #endif
852 }
853
854 /*
855 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
856 */
857 if (np->features & FE_NOPM)
858 np->rv_ccntl0 |= (ENPMJ);
859
860 /*
861 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
862 * In dual channel mode, contention occurs if internal cycles
863 * are used. Disable internal cycles.
864 */
865 if (np->device_id == PCI_ID_LSI53C1010 &&
866 np->revision_id < 0x1)
867 np->rv_ccntl0 |= DILS;
868
869 /*
870 * Select burst length (dwords)
871 */
872 burst_max = SYM_SETUP_BURST_ORDER;
873 if (burst_max == 255)
874 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
875 np->sv_ctest5);
876 if (burst_max > 7)
877 burst_max = 7;
878 if (burst_max > np->maxburst)
879 burst_max = np->maxburst;
880
881 /*
882 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
883 * This chip and the 860 Rev 1 may wrongly use PCI cache line
884 * based transactions on LOAD/STORE instructions. So we have
885 * to prevent these chips from using such PCI transactions in
886 * this driver. The generic ncr driver that does not use
887 * LOAD/STORE instructions does not need this work-around.
888 */
889 if ((np->device_id == PCI_ID_SYM53C810 &&
890 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
891 (np->device_id == PCI_ID_SYM53C860 &&
892 np->revision_id <= 0x1))
893 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
894
895 /*
896 * Select all supported special features.
897 * If we are using on-board RAM for scripts, prefetch (PFEN)
898 * does not help, but burst op fetch (BOF) does.
899 * Disabling PFEN makes sure BOF will be used.
900 */
901 if (np->features & FE_ERL)
902 np->rv_dmode |= ERL; /* Enable Read Line */
903 if (np->features & FE_BOF)
904 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
905 if (np->features & FE_ERMP)
906 np->rv_dmode |= ERMP; /* Enable Read Multiple */
907 #if 1
908 if ((np->features & FE_PFEN) && !np->ram_ba)
909 #else
910 if (np->features & FE_PFEN)
911 #endif
912 np->rv_dcntl |= PFEN; /* Prefetch Enable */
913 if (np->features & FE_CLSE)
914 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
915 if (np->features & FE_WRIE)
916 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
917 if (np->features & FE_DFS)
918 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
919
920 /*
921 * Select some other
922 */
923 if (SYM_SETUP_PCI_PARITY)
924 np->rv_ctest4 |= MPEE; /* Master parity checking */
925 if (SYM_SETUP_SCSI_PARITY)
926 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
927
928 /*
929 * Get parity checking, host ID and verbose mode from NVRAM
930 */
931 np->myaddr = 255;
932 sym_nvram_setup_host (np, nvram);
933
934 /*
935 * Get SCSI addr of host adapter (set by bios?).
936 */
937 if (np->myaddr == 255) {
938 np->myaddr = INB(nc_scid) & 0x07;
939 if (!np->myaddr)
940 np->myaddr = SYM_SETUP_HOST_ID;
941 }
942
943 /*
944 * Prepare initial io register bits for burst length
945 */
946 sym_init_burst(np, burst_max);
947
948 /*
949 * Set SCSI BUS mode.
950 * - LVD capable chips (895/895A/896/1010) report the
951 * current BUS mode through the STEST4 IO register.
952 * - For previous generation chips (825/825A/875),
953 * user has to tell us how to check against HVD,
954 * since a 100% safe algorithm is not possible.
955 */
956 np->scsi_mode = SMODE_SE;
957 if (np->features & (FE_ULTRA2|FE_ULTRA3))
958 np->scsi_mode = (np->sv_stest4 & SMODE);
959 else if (np->features & FE_DIFF) {
960 if (SYM_SETUP_SCSI_DIFF == 1) {
961 if (np->sv_scntl3) {
962 if (np->sv_stest2 & 0x20)
963 np->scsi_mode = SMODE_HVD;
964 }
965 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
966 if (!(INB(nc_gpreg) & 0x08))
967 np->scsi_mode = SMODE_HVD;
968 }
969 }
970 else if (SYM_SETUP_SCSI_DIFF == 2)
971 np->scsi_mode = SMODE_HVD;
972 }
973 if (np->scsi_mode == SMODE_HVD)
974 np->rv_stest2 |= 0x20;
975
976 /*
977 * Set LED support from SCRIPTS.
978 * Ignore this feature for boards known to use a
979 * specific GPIO wiring and for the 895A, 896
980 * and 1010 that drive the LED directly.
981 */
982 if ((SYM_SETUP_SCSI_LED ||
983 (nvram->type == SYM_SYMBIOS_NVRAM ||
984 (nvram->type == SYM_TEKRAM_NVRAM &&
985 np->device_id == PCI_ID_SYM53C895))) &&
986 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
987 np->features |= FE_LED0;
988
989 /*
990 * Set irq mode.
991 */
992 switch(SYM_SETUP_IRQ_MODE & 3) {
993 case 2:
994 np->rv_dcntl |= IRQM;
995 break;
996 case 1:
997 np->rv_dcntl |= (np->sv_dcntl & IRQM);
998 break;
999 default:
1000 break;
1001 }
1002
1003 /*
1004 * Configure targets according to driver setup.
1005 * If NVRAM present get targets setup from NVRAM.
1006 */
1007 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
1008 tcb_p tp = &np->target[i];
1009
1010 tp->tinfo.user.scsi_version = tp->tinfo.curr.scsi_version= 2;
1011 tp->tinfo.user.spi_version = tp->tinfo.curr.spi_version = 2;
1012 tp->tinfo.user.period = np->minsync;
1013 tp->tinfo.user.offset = np->maxoffs;
1014 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
1015 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
1016 tp->usrtags = SYM_SETUP_MAX_TAG;
1017
1018 sym_nvram_setup_target (np, i, nvram);
1019
1020 /*
1021 * For now, guess PPR/DT support from the period
1022 * and BUS width.
1023 */
1024 if (np->features & FE_ULTRA3) {
1025 if (tp->tinfo.user.period <= 9 &&
1026 tp->tinfo.user.width == BUS_16_BIT) {
1027 tp->tinfo.user.options |= PPR_OPT_DT;
1028 tp->tinfo.user.offset = np->maxoffs_dt;
1029 tp->tinfo.user.spi_version = 3;
1030 }
1031 }
1032
1033 if (!tp->usrtags)
1034 tp->usrflags &= ~SYM_TAGS_ENABLED;
1035 }
1036
1037 /*
1038 * Let user know about the settings.
1039 */
1040 i = nvram->type;
1041 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
1042 i == SYM_SYMBIOS_NVRAM ? "Symbios" :
1043 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
1044 np->myaddr,
1045 (np->features & FE_ULTRA3) ? 80 :
1046 (np->features & FE_ULTRA2) ? 40 :
1047 (np->features & FE_ULTRA) ? 20 : 10,
1048 sym_scsi_bus_mode(np->scsi_mode),
1049 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
1050 /*
1051 * Tell him more on demand.
1052 */
1053 if (sym_verbose) {
1054 printf("%s: %s IRQ line driver%s\n",
1055 sym_name(np),
1056 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
1057 np->ram_ba ? ", using on-chip SRAM" : "");
1058 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
1059 if (np->features & FE_NOPM)
1060 printf("%s: handling phase mismatch from SCRIPTS.\n",
1061 sym_name(np));
1062 }
1063 /*
1064 * And still more.
1065 */
1066 if (sym_verbose >= 2) {
1067 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1068 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1069 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
1070 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
1071
1072 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1073 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1074 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
1075 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
1076 }
1077 /*
1078 * Let user be aware of targets that have some disable flags set.
1079 */
1080 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1081 if (sym_verbose)
1082 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1083 "SCAN FOR LUNS");
1084
1085 return 0;
1086 }
1087
1088 /*
1089 * Test the pci bus snoop logic :-(
1090 *
1091 * Has to be called with interrupts disabled.
1092 */
1093 #ifndef SYM_CONF_IOMAPPED
1094 static int sym_regtest (hcb_p np)
1095 {
1096 register volatile u32 data;
1097 /*
1098 * chip registers may NOT be cached.
1099 * write 0xffffffff to a read only register area,
1100 * and try to read it back.
1101 */
1102 data = 0xffffffff;
1103 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
1104 data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
1105 #if 1
1106 if (data == 0xffffffff) {
1107 #else
1108 if ((data & 0xe2f0fffd) != 0x02000080) {
1109 #endif
1110 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1111 (unsigned) data);
1112 return (0x10);
1113 };
1114 return (0);
1115 }
1116 #endif
1117
1118 static int sym_snooptest (hcb_p np)
1119 {
1120 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1121 int i, err=0;
1122 #ifndef SYM_CONF_IOMAPPED
1123 err |= sym_regtest (np);
1124 if (err) return (err);
1125 #endif
1126 restart_test:
1127 /*
1128 * Enable Master Parity Checking as we intend
1129 * to enable it for normal operations.
1130 */
1131 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
1132 /*
1133 * init
1134 */
1135 pc = SCRIPTZ_BA (np, snooptest);
1136 host_wr = 1;
1137 sym_wr = 2;
1138 /*
1139 * Set memory and register.
1140 */
1141 np->scratch = cpu_to_scr(host_wr);
1142 OUTL (nc_temp, sym_wr);
1143 /*
1144 * Start script (exchange values)
1145 */
1146 OUTL (nc_dsa, np->hcb_ba);
1147 OUTL_DSP (pc);
1148 /*
1149 * Wait 'til done (with timeout)
1150 */
1151 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1152 if (INB(nc_istat) & (INTF|SIP|DIP))
1153 break;
1154 if (i>=SYM_SNOOP_TIMEOUT) {
1155 printf ("CACHE TEST FAILED: timeout.\n");
1156 return (0x20);
1157 };
1158 /*
1159 * Check for fatal DMA errors.
1160 */
1161 dstat = INB (nc_dstat);
1162 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1163 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1164 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1165 "DISABLING MASTER DATA PARITY CHECKING.\n",
1166 sym_name(np));
1167 np->rv_ctest4 &= ~MPEE;
1168 goto restart_test;
1169 }
1170 #endif
1171 if (dstat & (MDPE|BF|IID)) {
1172 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1173 return (0x80);
1174 }
1175 /*
1176 * Save termination position.
1177 */
1178 pc = INL (nc_dsp);
1179 /*
1180 * Read memory and register.
1181 */
1182 host_rd = scr_to_cpu(np->scratch);
1183 sym_rd = INL (nc_scratcha);
1184 sym_bk = INL (nc_temp);
1185 /*
1186 * Check termination position.
1187 */
1188 if (pc != SCRIPTZ_BA (np, snoopend)+8) {
1189 printf ("CACHE TEST FAILED: script execution failed.\n");
1190 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1191 (u_long) SCRIPTZ_BA (np, snooptest), (u_long) pc,
1192 (u_long) SCRIPTZ_BA (np, snoopend) +8);
1193 return (0x40);
1194 };
1195 /*
1196 * Show results.
1197 */
1198 if (host_wr != sym_rd) {
1199 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1200 (int) host_wr, (int) sym_rd);
1201 err |= 1;
1202 };
1203 if (host_rd != sym_wr) {
1204 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1205 (int) sym_wr, (int) host_rd);
1206 err |= 2;
1207 };
1208 if (sym_bk != sym_wr) {
1209 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1210 (int) sym_wr, (int) sym_bk);
1211 err |= 4;
1212 };
1213
1214 return (err);
1215 }
1216
1217 /*
1218 * log message for real hard errors
1219 *
1220 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1221 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1222 *
1223 * exception register:
1224 * ds: dstat
1225 * si: sist
1226 *
1227 * SCSI bus lines:
1228 * so: control lines as driven by chip.
1229 * si: control lines as seen by chip.
1230 * sd: scsi data lines as seen by chip.
1231 *
1232 * wide/fastmode:
1233 * sx: sxfer (see the manual)
1234 * s3: scntl3 (see the manual)
1235 * s4: scntl4 (see the manual)
1236 *
1237 * current script command:
1238 * dsp: script adress (relative to start of script).
1239 * dbc: first word of script command.
1240 *
1241 * First 24 register of the chip:
1242 * r0..rf
1243 */
1244 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
1245 {
1246 u32 dsp;
1247 int script_ofs;
1248 int script_size;
1249 char *script_name;
1250 u_char *script_base;
1251 int i;
1252
1253 dsp = INL (nc_dsp);
1254
1255 if (dsp > np->scripta_ba &&
1256 dsp <= np->scripta_ba + np->scripta_sz) {
1257 script_ofs = dsp - np->scripta_ba;
1258 script_size = np->scripta_sz;
1259 script_base = (u_char *) np->scripta0;
1260 script_name = "scripta";
1261 }
1262 else if (np->scriptb_ba < dsp &&
1263 dsp <= np->scriptb_ba + np->scriptb_sz) {
1264 script_ofs = dsp - np->scriptb_ba;
1265 script_size = np->scriptb_sz;
1266 script_base = (u_char *) np->scriptb0;
1267 script_name = "scriptb";
1268 } else {
1269 script_ofs = dsp;
1270 script_size = 0;
1271 script_base = 0;
1272 script_name = "mem";
1273 }
1274
1275 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1276 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
1277 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
1278 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
1279 (unsigned)INB (nc_scntl3),
1280 (np->features & FE_C10) ? (unsigned)INB (nc_scntl4) : 0,
1281 script_name, script_ofs, (unsigned)INL (nc_dbc));
1282
1283 if (((script_ofs & 3) == 0) &&
1284 (unsigned)script_ofs < script_size) {
1285 printf ("%s: script cmd = %08x\n", sym_name(np),
1286 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1287 }
1288
1289 printf ("%s: regdump:", sym_name(np));
1290 for (i=0; i<24;i++)
1291 printf (" %02x", (unsigned)INB_OFF(i));
1292 printf (".\n");
1293
1294 /*
1295 * PCI BUS error.
1296 */
1297 if (dstat & (MDPE|BF))
1298 sym_log_bus_error(np);
1299 }
1300
1301 static struct sym_pci_chip sym_pci_dev_table[] = {
1302 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
1303 FE_ERL}
1304 ,
1305 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1306 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
1307 FE_BOF}
1308 ,
1309 #else
1310 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
1311 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1312 ,
1313 #endif
1314 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64,
1315 FE_BOF|FE_ERL}
1316 ,
1317 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64,
1318 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1319 ,
1320 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
1321 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1322 ,
1323 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
1324 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1325 ,
1326 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
1327 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1328 FE_RAM|FE_DIFF|FE_VARCLK}
1329 ,
1330 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
1331 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1332 FE_RAM|FE_DIFF|FE_VARCLK}
1333 ,
1334 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
1335 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1336 FE_RAM|FE_DIFF|FE_VARCLK}
1337 ,
1338 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
1339 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1340 FE_RAM|FE_DIFF|FE_VARCLK}
1341 ,
1342 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1343 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
1344 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1345 FE_RAM|FE_LCKFRQ}
1346 ,
1347 #else
1348 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
1349 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1350 FE_RAM|FE_LCKFRQ}
1351 ,
1352 #endif
1353 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
1354 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1355 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1356 ,
1357 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
1358 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1359 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1360 ,
1361 {PCI_ID_SYM53C875A, 0xff, "875a", 6, 31, 7, 4,
1362 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1363 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1364 ,
1365 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
1366 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1367 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1368 FE_C10}
1369 ,
1370 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
1371 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1372 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1373 FE_C10|FE_U3EN}
1374 ,
1375 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
1376 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1377 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1378 FE_C10|FE_U3EN}
1379 ,
1380 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
1381 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1382 FE_RAM|FE_IO256|FE_LEDC}
1383 };
1384
1385 #define sym_pci_num_devs \
1386 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
1387
1388 /*
1389 * Look up the chip table.
1390 *
1391 * Return a pointer to the chip entry if found,
1392 * zero otherwise.
1393 */
1394 struct sym_pci_chip *
1395 sym_lookup_pci_chip_table (u_short device_id, u_char revision)
1396 {
1397 struct sym_pci_chip *chip;
1398 int i;
1399
1400 for (i = 0; i < sym_pci_num_devs; i++) {
1401 chip = &sym_pci_dev_table[i];
1402 if (device_id != chip->device_id)
1403 continue;
1404 if (revision > chip->revision_id)
1405 continue;
1406 return chip;
1407 }
1408
1409 return 0;
1410 }
1411
1412 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1413 /*
1414 * Lookup the 64 bit DMA segments map.
1415 * This is only used if the direct mapping
1416 * has been unsuccessful.
1417 */
1418 int sym_lookup_dmap(hcb_p np, u32 h, int s)
1419 {
1420 int i;
1421
1422 if (!np->use_dac)
1423 goto weird;
1424
1425 /* Look up existing mappings */
1426 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1427 if (h == np->dmap_bah[i])
1428 return i;
1429 }
1430 /* If direct mapping is free, get it */
1431 if (!np->dmap_bah[s])
1432 goto new;
1433 /* Collision -> lookup free mappings */
1434 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1435 if (!np->dmap_bah[s])
1436 goto new;
1437 }
1438 weird:
1439 panic("sym: ran out of 64 bit DMA segment registers");
1440 return -1;
1441 new:
1442 np->dmap_bah[s] = h;
1443 np->dmap_dirty = 1;
1444 return s;
1445 }
1446
1447 /*
1448 * Update IO registers scratch C..R so they will be
1449 * in sync. with queued CCB expectations.
1450 */
1451 static void sym_update_dmap_regs(hcb_p np)
1452 {
1453 int o, i;
1454
1455 if (!np->dmap_dirty)
1456 return;
1457 o = offsetof(struct sym_reg, nc_scrx[0]);
1458 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1459 OUTL_OFF(o, np->dmap_bah[i]);
1460 o += 4;
1461 }
1462 np->dmap_dirty = 0;
1463 }
1464 #endif
1465
1466 /*
1467 * Prepare the next negotiation message if needed.
1468 *
1469 * Fill in the part of message buffer that contains the
1470 * negotiation and the nego_status field of the CCB.
1471 * Returns the size of the message in bytes.
1472 */
1473 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
1474 {
1475 tcb_p tp = &np->target[cp->target];
1476 int msglen = 0;
1477
1478 /*
1479 * Early C1010 chips need a work-around for DT
1480 * data transfer to work.
1481 */
1482 if (!(np->features & FE_U3EN))
1483 tp->tinfo.goal.options = 0;
1484 /*
1485 * negotiate using PPR ?
1486 */
1487 if (tp->tinfo.goal.options & PPR_OPT_MASK)
1488 nego = NS_PPR;
1489 /*
1490 * negotiate wide transfers ?
1491 */
1492 else if (tp->tinfo.curr.width != tp->tinfo.goal.width)
1493 nego = NS_WIDE;
1494 /*
1495 * negotiate synchronous transfers?
1496 */
1497 else if (tp->tinfo.curr.period != tp->tinfo.goal.period ||
1498 tp->tinfo.curr.offset != tp->tinfo.goal.offset)
1499 nego = NS_SYNC;
1500
1501 switch (nego) {
1502 case NS_SYNC:
1503 msgptr[msglen++] = M_EXTENDED;
1504 msgptr[msglen++] = 3;
1505 msgptr[msglen++] = M_X_SYNC_REQ;
1506 msgptr[msglen++] = tp->tinfo.goal.period;
1507 msgptr[msglen++] = tp->tinfo.goal.offset;
1508 break;
1509 case NS_WIDE:
1510 msgptr[msglen++] = M_EXTENDED;
1511 msgptr[msglen++] = 2;
1512 msgptr[msglen++] = M_X_WIDE_REQ;
1513 msgptr[msglen++] = tp->tinfo.goal.width;
1514 break;
1515 case NS_PPR:
1516 msgptr[msglen++] = M_EXTENDED;
1517 msgptr[msglen++] = 6;
1518 msgptr[msglen++] = M_X_PPR_REQ;
1519 msgptr[msglen++] = tp->tinfo.goal.period;
1520 msgptr[msglen++] = 0;
1521 msgptr[msglen++] = tp->tinfo.goal.offset;
1522 msgptr[msglen++] = tp->tinfo.goal.width;
1523 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
1524 break;
1525 };
1526
1527 cp->nego_status = nego;
1528
1529 if (nego) {
1530 tp->nego_cp = cp; /* Keep track a nego will be performed */
1531 if (DEBUG_FLAGS & DEBUG_NEGO) {
1532 sym_print_nego_msg(np, cp->target,
1533 nego == NS_SYNC ? "sync msgout" :
1534 nego == NS_WIDE ? "wide msgout" :
1535 "ppr msgout", msgptr);
1536 };
1537 };
1538
1539 return msglen;
1540 }
1541
1542 /*
1543 * Insert a job into the start queue.
1544 */
1545 void sym_put_start_queue(hcb_p np, ccb_p cp)
1546 {
1547 u_short qidx;
1548
1549 #ifdef SYM_CONF_IARB_SUPPORT
1550 /*
1551 * If the previously queued CCB is not yet done,
1552 * set the IARB hint. The SCRIPTS will go with IARB
1553 * for this job when starting the previous one.
1554 * We leave devices a chance to win arbitration by
1555 * not using more than 'iarb_max' consecutive
1556 * immediate arbitrations.
1557 */
1558 if (np->last_cp && np->iarb_count < np->iarb_max) {
1559 np->last_cp->host_flags |= HF_HINT_IARB;
1560 ++np->iarb_count;
1561 }
1562 else
1563 np->iarb_count = 0;
1564 np->last_cp = cp;
1565 #endif
1566
1567 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1568 /*
1569 * Make SCRIPTS aware of the 64 bit DMA
1570 * segment registers not being up-to-date.
1571 */
1572 if (np->dmap_dirty)
1573 cp->host_xflags |= HX_DMAP_DIRTY;
1574 #endif
1575
1576 /*
1577 * Optionnaly, set the IO timeout condition.
1578 */
1579 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
1580 sym_timeout_ccb(np, cp, sym_cam_timeout(cp->cam_ccb));
1581 #endif
1582
1583 /*
1584 * Insert first the idle task and then our job.
1585 * The MBs should ensure proper ordering.
1586 */
1587 qidx = np->squeueput + 2;
1588 if (qidx >= MAX_QUEUE*2) qidx = 0;
1589
1590 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1591 MEMORY_WRITE_BARRIER();
1592 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1593
1594 np->squeueput = qidx;
1595
1596 if (DEBUG_FLAGS & DEBUG_QUEUE)
1597 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1598
1599 /*
1600 * Script processor may be waiting for reselect.
1601 * Wake it up.
1602 */
1603 MEMORY_WRITE_BARRIER();
1604 OUTB (nc_istat, SIGP|np->istat_sem);
1605 }
1606
1607 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1608 /*
1609 * Start next ready-to-start CCBs.
1610 */
1611 void sym_start_next_ccbs(hcb_p np, lcb_p lp, int maxn)
1612 {
1613 SYM_QUEHEAD *qp;
1614 ccb_p cp;
1615
1616 /*
1617 * Paranoia, as usual. :-)
1618 */
1619 assert(!lp->started_tags || !lp->started_no_tag);
1620
1621 /*
1622 * Try to start as many commands as asked by caller.
1623 * Prevent from having both tagged and untagged
1624 * commands queued to the device at the same time.
1625 */
1626 while (maxn--) {
1627 qp = sym_remque_head(&lp->waiting_ccbq);
1628 if (!qp)
1629 break;
1630 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1631 if (cp->tag != NO_TAG) {
1632 if (lp->started_no_tag ||
1633 lp->started_tags >= lp->started_max) {
1634 sym_insque_head(qp, &lp->waiting_ccbq);
1635 break;
1636 }
1637 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1638 lp->head.resel_sa =
1639 cpu_to_scr(SCRIPTA_BA (np, resel_tag));
1640 ++lp->started_tags;
1641 } else {
1642 if (lp->started_no_tag || lp->started_tags) {
1643 sym_insque_head(qp, &lp->waiting_ccbq);
1644 break;
1645 }
1646 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1647 lp->head.resel_sa =
1648 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
1649 ++lp->started_no_tag;
1650 }
1651 cp->started = 1;
1652 sym_insque_tail(qp, &lp->started_ccbq);
1653 sym_put_start_queue(np, cp);
1654 }
1655 }
1656 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1657
1658 /*
1659 * The chip may have completed jobs. Look at the DONE QUEUE.
1660 *
1661 * On paper, memory read barriers may be needed here to
1662 * prevent out of order LOADs by the CPU from having
1663 * prefetched stale data prior to DMA having occurred.
1664 */
1665 static int sym_wakeup_done (hcb_p np)
1666 {
1667 ccb_p cp;
1668 int i, n;
1669 u32 dsa;
1670
1671 n = 0;
1672 i = np->dqueueget;
1673
1674 /* MEMORY_READ_BARRIER(); */
1675 while (1) {
1676 dsa = scr_to_cpu(np->dqueue[i]);
1677 if (!dsa)
1678 break;
1679 np->dqueue[i] = 0;
1680 if ((i = i+2) >= MAX_QUEUE*2)
1681 i = 0;
1682
1683 cp = sym_ccb_from_dsa(np, dsa);
1684 if (cp) {
1685 MEMORY_READ_BARRIER();
1686 sym_complete_ok (np, cp);
1687 ++n;
1688 }
1689 else
1690 printf ("%s: bad DSA (%x) in done queue.\n",
1691 sym_name(np), (u_int) dsa);
1692 }
1693 np->dqueueget = i;
1694
1695 return n;
1696 }
1697
1698 /*
1699 * Complete all active CCBs with error.
1700 * Used on CHIP/SCSI RESET.
1701 */
1702 static void sym_flush_busy_queue (hcb_p np, int cam_status)
1703 {
1704 /*
1705 * Move all active CCBs to the COMP queue
1706 * and flush this queue.
1707 */
1708 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1709 sym_que_init(&np->busy_ccbq);
1710 sym_flush_comp_queue(np, cam_status);
1711 }
1712
1713 /*
1714 * Start chip.
1715 *
1716 * 'reason' means:
1717 * 0: initialisation.
1718 * 1: SCSI BUS RESET delivered or received.
1719 * 2: SCSI BUS MODE changed.
1720 */
1721 void sym_start_up (hcb_p np, int reason)
1722 {
1723 int i;
1724 u32 phys;
1725
1726 /*
1727 * Reset chip if asked, otherwise just clear fifos.
1728 */
1729 if (reason == 1)
1730 sym_soft_reset(np);
1731 else {
1732 OUTB (nc_stest3, TE|CSF);
1733 OUTONB (nc_ctest3, CLF);
1734 }
1735
1736 /*
1737 * Clear Start Queue
1738 */
1739 phys = np->squeue_ba;
1740 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1741 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1742 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1743 }
1744 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1745
1746 /*
1747 * Start at first entry.
1748 */
1749 np->squeueput = 0;
1750
1751 /*
1752 * Clear Done Queue
1753 */
1754 phys = np->dqueue_ba;
1755 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1756 np->dqueue[i] = 0;
1757 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1758 }
1759 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1760
1761 /*
1762 * Start at first entry.
1763 */
1764 np->dqueueget = 0;
1765
1766 /*
1767 * Install patches in scripts.
1768 * This also let point to first position the start
1769 * and done queue pointers used from SCRIPTS.
1770 */
1771 np->fw_patch(np);
1772
1773 /*
1774 * Wakeup all pending jobs.
1775 */
1776 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
1777
1778 /*
1779 * Init chip.
1780 */
1781 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
1782 UDELAY (2000); /* The 895 needs time for the bus mode to settle */
1783
1784 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
1785 /* full arb., ena parity, par->ATN */
1786 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1787
1788 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1789
1790 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1791 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1792 OUTB (nc_istat , SIGP ); /* Signal Process */
1793 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1794 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1795
1796 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1797 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1798 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
1799
1800 /* Extended Sreq/Sack filtering not supported on the C10 */
1801 if (np->features & FE_C10)
1802 OUTB (nc_stest2, np->rv_stest2);
1803 else
1804 OUTB (nc_stest2, EXT|np->rv_stest2);
1805
1806 OUTB (nc_stest3, TE); /* TolerANT enable */
1807 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1808
1809 /*
1810 * For now, disable AIP generation on C1010-66.
1811 */
1812 if (np->device_id == PCI_ID_LSI53C1010_2)
1813 OUTB (nc_aipcntl1, DISAIP);
1814
1815 /*
1816 * C10101 rev. 0 errata.
1817 * Errant SGE's when in narrow. Write bits 4 & 5 of
1818 * STEST1 register to disable SGE. We probably should do
1819 * that from SCRIPTS for each selection/reselection, but
1820 * I just don't want. :)
1821 */
1822 if (np->device_id == PCI_ID_LSI53C1010 &&
1823 np->revision_id < 1)
1824 OUTB (nc_stest1, INB(nc_stest1) | 0x30);
1825
1826 /*
1827 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1828 * Disable overlapped arbitration for some dual function devices,
1829 * regardless revision id (kind of post-chip-design feature. ;-))
1830 */
1831 if (np->device_id == PCI_ID_SYM53C875)
1832 OUTB (nc_ctest0, (1<<5));
1833 else if (np->device_id == PCI_ID_SYM53C896)
1834 np->rv_ccntl0 |= DPR;
1835
1836 /*
1837 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1838 * and/or hardware phase mismatch, since only such chips
1839 * seem to support those IO registers.
1840 */
1841 if (np->features & (FE_DAC|FE_NOPM)) {
1842 OUTB (nc_ccntl0, np->rv_ccntl0);
1843 OUTB (nc_ccntl1, np->rv_ccntl1);
1844 }
1845
1846 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1847 /*
1848 * Set up scratch C and DRS IO registers to map the 32 bit
1849 * DMA address range our data structures are located in.
1850 */
1851 if (np->use_dac) {
1852 np->dmap_bah[0] = 0; /* ??? */
1853 OUTL (nc_scrx[0], np->dmap_bah[0]);
1854 OUTL (nc_drs, np->dmap_bah[0]);
1855 }
1856 #endif
1857
1858 /*
1859 * If phase mismatch handled by scripts (895A/896/1010),
1860 * set PM jump addresses.
1861 */
1862 if (np->features & FE_NOPM) {
1863 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
1864 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
1865 }
1866
1867 /*
1868 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1869 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1870 */
1871 if (np->features & FE_LED0)
1872 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
1873 else if (np->features & FE_LEDC)
1874 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
1875
1876 /*
1877 * enable ints
1878 */
1879 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1880 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
1881
1882 /*
1883 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1884 * Try to eat the spurious SBMC interrupt that may occur when
1885 * we reset the chip but not the SCSI BUS (at initialization).
1886 */
1887 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1888 OUTONW (nc_sien, SBMC);
1889 if (reason == 0) {
1890 MDELAY(100);
1891 INW (nc_sist);
1892 }
1893 np->scsi_mode = INB (nc_stest4) & SMODE;
1894 }
1895
1896 /*
1897 * Fill in target structure.
1898 * Reinitialize usrsync.
1899 * Reinitialize usrwide.
1900 * Prepare sync negotiation according to actual SCSI bus mode.
1901 */
1902 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1903 tcb_p tp = &np->target[i];
1904
1905 tp->to_reset = 0;
1906 tp->head.sval = 0;
1907 tp->head.wval = np->rv_scntl3;
1908 tp->head.uval = 0;
1909
1910 tp->tinfo.curr.period = 0;
1911 tp->tinfo.curr.offset = 0;
1912 tp->tinfo.curr.width = BUS_8_BIT;
1913 tp->tinfo.curr.options = 0;
1914 }
1915
1916 /*
1917 * Download SCSI SCRIPTS to on-chip RAM if present,
1918 * and start script processor.
1919 * We do the download preferently from the CPU.
1920 * For platforms that may not support PCI memory mapping,
1921 * we use simple SCRIPTS that performs MEMORY MOVEs.
1922 */
1923 if (np->ram_ba) {
1924 if (sym_verbose >= 2)
1925 printf ("%s: Downloading SCSI SCRIPTS.\n",
1926 sym_name(np));
1927 #ifdef SYM_OPT_NO_BUS_MEMORY_MAPPING
1928 np->fw_patch(np);
1929 if (np->ram_ws == 8192)
1930 phys = SCRIPTZ_BA (np, start_ram64);
1931 else
1932 phys = SCRIPTZ_BA (np, start_ram);
1933 #else
1934 if (np->ram_ws == 8192) {
1935 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
1936 phys = scr_to_cpu(np->scr_ram_seg);
1937 OUTL (nc_mmws, phys);
1938 OUTL (nc_mmrs, phys);
1939 OUTL (nc_sfs, phys);
1940 phys = SCRIPTB_BA (np, start64);
1941 }
1942 else
1943 phys = SCRIPTA_BA (np, init);
1944 OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
1945 #endif
1946 }
1947 else
1948 phys = SCRIPTA_BA (np, init);
1949
1950 np->istat_sem = 0;
1951
1952 OUTL (nc_dsa, np->hcb_ba);
1953 OUTL_DSP (phys);
1954
1955 /*
1956 * Notify the XPT about the RESET condition.
1957 */
1958 if (reason != 0)
1959 sym_xpt_async_bus_reset(np);
1960 }
1961
1962 /*
1963 * Switch trans mode for current job and it's target.
1964 */
1965 static void sym_settrans(hcb_p np, int target, u_char dt, u_char ofs,
1966 u_char per, u_char wide, u_char div, u_char fak)
1967 {
1968 SYM_QUEHEAD *qp;
1969 u_char sval, wval, uval;
1970 tcb_p tp = &np->target[target];
1971
1972 assert(target == (INB (nc_sdid) & 0x0f));
1973
1974 sval = tp->head.sval;
1975 wval = tp->head.wval;
1976 uval = tp->head.uval;
1977
1978 #if 0
1979 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1980 sval, wval, uval, np->rv_scntl3);
1981 #endif
1982 /*
1983 * Set the offset.
1984 */
1985 if (!(np->features & FE_C10))
1986 sval = (sval & ~0x1f) | ofs;
1987 else
1988 sval = (sval & ~0x3f) | ofs;
1989
1990 /*
1991 * Set the sync divisor and extra clock factor.
1992 */
1993 if (ofs != 0) {
1994 wval = (wval & ~0x70) | ((div+1) << 4);
1995 if (!(np->features & FE_C10))
1996 sval = (sval & ~0xe0) | (fak << 5);
1997 else {
1998 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1999 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2000 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2001 }
2002 }
2003
2004 /*
2005 * Set the bus width.
2006 */
2007 wval = wval & ~EWS;
2008 if (wide != 0)
2009 wval |= EWS;
2010
2011 /*
2012 * Set misc. ultra enable bits.
2013 */
2014 if (np->features & FE_C10) {
2015 uval = uval & ~(U3EN|AIPCKEN);
2016 if (dt) {
2017 assert(np->features & FE_U3EN);
2018 uval |= U3EN;
2019 }
2020 }
2021 else {
2022 wval = wval & ~ULTRA;
2023 if (per <= 12) wval |= ULTRA;
2024 }
2025
2026 /*
2027 * Stop there if sync parameters are unchanged.
2028 */
2029 if (tp->head.sval == sval &&
2030 tp->head.wval == wval &&
2031 tp->head.uval == uval)
2032 return;
2033 tp->head.sval = sval;
2034 tp->head.wval = wval;
2035 tp->head.uval = uval;
2036
2037 /*
2038 * Disable extended Sreq/Sack filtering if per < 50.
2039 * Not supported on the C1010.
2040 */
2041 if (per < 50 && !(np->features & FE_C10))
2042 OUTOFFB (nc_stest2, EXT);
2043
2044 /*
2045 * set actual value and sync_status
2046 */
2047 OUTB (nc_sxfer, tp->head.sval);
2048 OUTB (nc_scntl3, tp->head.wval);
2049
2050 if (np->features & FE_C10) {
2051 OUTB (nc_scntl4, tp->head.uval);
2052 }
2053
2054 /*
2055 * patch ALL busy ccbs of this target.
2056 */
2057 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2058 ccb_p cp;
2059 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2060 if (cp->target != target)
2061 continue;
2062 cp->phys.select.sel_scntl3 = tp->head.wval;
2063 cp->phys.select.sel_sxfer = tp->head.sval;
2064 if (np->features & FE_C10) {
2065 cp->phys.select.sel_scntl4 = tp->head.uval;
2066 }
2067 }
2068 }
2069
2070 /*
2071 * We received a WDTR.
2072 * Let everything be aware of the changes.
2073 */
2074 static void sym_setwide(hcb_p np, int target, u_char wide)
2075 {
2076 tcb_p tp = &np->target[target];
2077
2078 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2079
2080 tp->tinfo.goal.width = tp->tinfo.curr.width = wide;
2081 tp->tinfo.curr.offset = 0;
2082 tp->tinfo.curr.period = 0;
2083 tp->tinfo.curr.options = 0;
2084
2085 sym_xpt_async_nego_wide(np, target);
2086 }
2087
2088 /*
2089 * We received a SDTR.
2090 * Let everything be aware of the changes.
2091 */
2092 static void
2093 sym_setsync(hcb_p np, int target,
2094 u_char ofs, u_char per, u_char div, u_char fak)
2095 {
2096 tcb_p tp = &np->target[target];
2097 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2098
2099 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2100
2101 tp->tinfo.goal.period = tp->tinfo.curr.period = per;
2102 tp->tinfo.goal.offset = tp->tinfo.curr.offset = ofs;
2103 tp->tinfo.goal.options = tp->tinfo.curr.options = 0;
2104
2105 sym_xpt_async_nego_sync(np, target);
2106 }
2107
2108 /*
2109 * We received a PPR.
2110 * Let everything be aware of the changes.
2111 */
2112 static void
2113 sym_setpprot(hcb_p np, int target, u_char dt, u_char ofs,
2114 u_char per, u_char wide, u_char div, u_char fak)
2115 {
2116 tcb_p tp = &np->target[target];
2117
2118 sym_settrans(np, target, dt, ofs, per, wide, div, fak);
2119
2120 tp->tinfo.goal.width = tp->tinfo.curr.width = wide;
2121 tp->tinfo.goal.period = tp->tinfo.curr.period = per;
2122 tp->tinfo.goal.offset = tp->tinfo.curr.offset = ofs;
2123 tp->tinfo.goal.options = tp->tinfo.curr.options = dt;
2124
2125 sym_xpt_async_nego_ppr(np, target);
2126 }
2127
2128 /*
2129 * generic recovery from scsi interrupt
2130 *
2131 * The doc says that when the chip gets an SCSI interrupt,
2132 * it tries to stop in an orderly fashion, by completing
2133 * an instruction fetch that had started or by flushing
2134 * the DMA fifo for a write to memory that was executing.
2135 * Such a fashion is not enough to know if the instruction
2136 * that was just before the current DSP value has been
2137 * executed or not.
2138 *
2139 * There are some small SCRIPTS sections that deal with
2140 * the start queue and the done queue that may break any
2141 * assomption from the C code if we are interrupted
2142 * inside, so we reset if this happens. Btw, since these
2143 * SCRIPTS sections are executed while the SCRIPTS hasn't
2144 * started SCSI operations, it is very unlikely to happen.
2145 *
2146 * All the driver data structures are supposed to be
2147 * allocated from the same 4 GB memory window, so there
2148 * is a 1 to 1 relationship between DSA and driver data
2149 * structures. Since we are careful :) to invalidate the
2150 * DSA when we complete a command or when the SCRIPTS
2151 * pushes a DSA into a queue, we can trust it when it
2152 * points to a CCB.
2153 */
2154 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
2155 {
2156 u32 dsp = INL (nc_dsp);
2157 u32 dsa = INL (nc_dsa);
2158 ccb_p cp = sym_ccb_from_dsa(np, dsa);
2159
2160 /*
2161 * If we haven't been interrupted inside the SCRIPTS
2162 * critical pathes, we can safely restart the SCRIPTS
2163 * and trust the DSA value if it matches a CCB.
2164 */
2165 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
2166 dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
2167 (!(dsp > SCRIPTA_BA (np, ungetjob) &&
2168 dsp < SCRIPTA_BA (np, reselect) + 1)) &&
2169 (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
2170 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
2171 (!(dsp > SCRIPTA_BA (np, done) &&
2172 dsp < SCRIPTA_BA (np, done_end) + 1))) {
2173 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2174 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
2175 /*
2176 * If we have a CCB, let the SCRIPTS call us back for
2177 * the handling of the error with SCRATCHA filled with
2178 * STARTPOS. This way, we will be able to freeze the
2179 * device queue and requeue awaiting IOs.
2180 */
2181 if (cp) {
2182 cp->host_status = hsts;
2183 OUTL_DSP (SCRIPTA_BA (np, complete_error));
2184 }
2185 /*
2186 * Otherwise just restart the SCRIPTS.
2187 */
2188 else {
2189 OUTL (nc_dsa, 0xffffff);
2190 OUTL_DSP (SCRIPTA_BA (np, start));
2191 }
2192 }
2193 else
2194 goto reset_all;
2195
2196 return;
2197
2198 reset_all:
2199 sym_start_reset(np);
2200 }
2201
2202 /*
2203 * chip exception handler for selection timeout
2204 */
2205 static void sym_int_sto (hcb_p np)
2206 {
2207 u32 dsp = INL (nc_dsp);
2208
2209 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2210
2211 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
2212 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2213 else
2214 sym_start_reset(np);
2215 }
2216
2217 /*
2218 * chip exception handler for unexpected disconnect
2219 */
2220 static void sym_int_udc (hcb_p np)
2221 {
2222 printf ("%s: unexpected disconnect\n", sym_name(np));
2223 sym_recover_scsi_int(np, HS_UNEXPECTED);
2224 }
2225
2226 /*
2227 * chip exception handler for SCSI bus mode change
2228 *
2229 * spi2-r12 11.2.3 says a transceiver mode change must
2230 * generate a reset event and a device that detects a reset
2231 * event shall initiate a hard reset. It says also that a
2232 * device that detects a mode change shall set data transfer
2233 * mode to eight bit asynchronous, etc...
2234 * So, just reinitializing all except chip should be enough.
2235 */
2236 static void sym_int_sbmc (hcb_p np)
2237 {
2238 u_char scsi_mode = INB (nc_stest4) & SMODE;
2239
2240 /*
2241 * Notify user.
2242 */
2243 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2244 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2245
2246 /*
2247 * Should suspend command processing for a few seconds and
2248 * reinitialize all except the chip.
2249 */
2250 sym_start_up (np, 2);
2251 }
2252
2253 /*
2254 * chip exception handler for SCSI parity error.
2255 *
2256 * When the chip detects a SCSI parity error and is
2257 * currently executing a (CH)MOV instruction, it does
2258 * not interrupt immediately, but tries to finish the
2259 * transfer of the current scatter entry before
2260 * interrupting. The following situations may occur:
2261 *
2262 * - The complete scatter entry has been transferred
2263 * without the device having changed phase.
2264 * The chip will then interrupt with the DSP pointing
2265 * to the instruction that follows the MOV.
2266 *
2267 * - A phase mismatch occurs before the MOV finished
2268 * and phase errors are to be handled by the C code.
2269 * The chip will then interrupt with both PAR and MA
2270 * conditions set.
2271 *
2272 * - A phase mismatch occurs before the MOV finished and
2273 * phase errors are to be handled by SCRIPTS.
2274 * The chip will load the DSP with the phase mismatch
2275 * JUMP address and interrupt the host processor.
2276 */
2277 static void sym_int_par (hcb_p np, u_short sist)
2278 {
2279 u_char hsts = INB (HS_PRT);
2280 u32 dsp = INL (nc_dsp);
2281 u32 dbc = INL (nc_dbc);
2282 u32 dsa = INL (nc_dsa);
2283 u_char sbcl = INB (nc_sbcl);
2284 u_char cmd = dbc >> 24;
2285 int phase = cmd & 7;
2286 ccb_p cp = sym_ccb_from_dsa(np, dsa);
2287
2288 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2289 sym_name(np), hsts, dbc, sbcl);
2290
2291 /*
2292 * Check that the chip is connected to the SCSI BUS.
2293 */
2294 if (!(INB (nc_scntl1) & ISCON)) {
2295 sym_recover_scsi_int(np, HS_UNEXPECTED);
2296 return;
2297 }
2298
2299 /*
2300 * If the nexus is not clearly identified, reset the bus.
2301 * We will try to do better later.
2302 */
2303 if (!cp)
2304 goto reset_all;
2305
2306 /*
2307 * Check instruction was a MOV, direction was INPUT and
2308 * ATN is asserted.
2309 */
2310 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2311 goto reset_all;
2312
2313 /*
2314 * Keep track of the parity error.
2315 */
2316 OUTONB (HF_PRT, HF_EXT_ERR);
2317 cp->xerr_status |= XE_PARITY_ERR;
2318
2319 /*
2320 * Prepare the message to send to the device.
2321 */
2322 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2323
2324 /*
2325 * If the old phase was DATA IN phase, we have to deal with
2326 * the 3 situations described above.
2327 * For other input phases (MSG IN and STATUS), the device
2328 * must resend the whole thing that failed parity checking
2329 * or signal error. So, jumping to dispatcher should be OK.
2330 */
2331 if (phase == 1 || phase == 5) {
2332 /* Phase mismatch handled by SCRIPTS */
2333 if (dsp == SCRIPTB_BA (np, pm_handle))
2334 OUTL_DSP (dsp);
2335 /* Phase mismatch handled by the C code */
2336 else if (sist & MA)
2337 sym_int_ma (np);
2338 /* No phase mismatch occurred */
2339 else {
2340 sym_set_script_dp (np, cp, dsp);
2341 OUTL_DSP (SCRIPTA_BA (np, dispatch));
2342 }
2343 }
2344 else if (phase == 7) /* We definitely cannot handle parity errors */
2345 #if 1 /* in message-in phase due to the relection */
2346 goto reset_all; /* path and various message anticipations. */
2347 #else
2348 OUTL_DSP (SCRIPTA_BA (np, clrack));
2349 #endif
2350 else
2351 OUTL_DSP (SCRIPTA_BA (np, dispatch));
2352 return;
2353
2354 reset_all:
2355 sym_start_reset(np);
2356 return;
2357 }
2358
2359 /*
2360 * chip exception handler for phase errors.
2361 *
2362 * We have to construct a new transfer descriptor,
2363 * to transfer the rest of the current block.
2364 */
2365 static void sym_int_ma (hcb_p np)
2366 {
2367 u32 dbc;
2368 u32 rest;
2369 u32 dsp;
2370 u32 dsa;
2371 u32 nxtdsp;
2372 u32 *vdsp;
2373 u32 oadr, olen;
2374 u32 *tblp;
2375 u32 newcmd;
2376 u_int delta;
2377 u_char cmd;
2378 u_char hflags, hflags0;
2379 struct sym_pmc *pm;
2380 ccb_p cp;
2381
2382 dsp = INL (nc_dsp);
2383 dbc = INL (nc_dbc);
2384 dsa = INL (nc_dsa);
2385
2386 cmd = dbc >> 24;
2387 rest = dbc & 0xffffff;
2388 delta = 0;
2389
2390 /*
2391 * locate matching cp if any.
2392 */
2393 cp = sym_ccb_from_dsa(np, dsa);
2394
2395 /*
2396 * Donnot take into account dma fifo and various buffers in
2397 * INPUT phase since the chip flushes everything before
2398 * raising the MA interrupt for interrupted INPUT phases.
2399 * For DATA IN phase, we will check for the SWIDE later.
2400 */
2401 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2402 u_char ss0, ss2;
2403
2404 if (np->features & FE_DFBC)
2405 delta = INW (nc_dfbc);
2406 else {
2407 u32 dfifo;
2408
2409 /*
2410 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2411 */
2412 dfifo = INL(nc_dfifo);
2413
2414 /*
2415 * Calculate remaining bytes in DMA fifo.
2416 * (CTEST5 = dfifo >> 16)
2417 */
2418 if (dfifo & (DFS << 16))
2419 delta = ((((dfifo >> 8) & 0x300) |
2420 (dfifo & 0xff)) - rest) & 0x3ff;
2421 else
2422 delta = ((dfifo & 0xff) - rest) & 0x7f;
2423 }
2424
2425 /*
2426 * The data in the dma fifo has not been transfered to
2427 * the target -> add the amount to the rest
2428 * and clear the data.
2429 * Check the sstat2 register in case of wide transfer.
2430 */
2431 rest += delta;
2432 ss0 = INB (nc_sstat0);
2433 if (ss0 & OLF) rest++;
2434 if (!(np->features & FE_C10))
2435 if (ss0 & ORF) rest++;
2436 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2437 ss2 = INB (nc_sstat2);
2438 if (ss2 & OLF1) rest++;
2439 if (!(np->features & FE_C10))
2440 if (ss2 & ORF1) rest++;
2441 };
2442
2443 /*
2444 * Clear fifos.
2445 */
2446 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2447 OUTB (nc_stest3, TE|CSF); /* scsi fifo */
2448 }
2449
2450 /*
2451 * log the information
2452 */
2453 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2454 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
2455 (unsigned) rest, (unsigned) delta);
2456
2457 /*
2458 * try to find the interrupted script command,
2459 * and the address at which to continue.
2460 */
2461 vdsp = 0;
2462 nxtdsp = 0;
2463 if (dsp > np->scripta_ba &&
2464 dsp <= np->scripta_ba + np->scripta_sz) {
2465 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2466 nxtdsp = dsp;
2467 }
2468 else if (dsp > np->scriptb_ba &&
2469 dsp <= np->scriptb_ba + np->scriptb_sz) {
2470 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2471 nxtdsp = dsp;
2472 }
2473
2474 /*
2475 * log the information
2476 */
2477 if (DEBUG_FLAGS & DEBUG_PHASE) {
2478 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2479 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2480 };
2481
2482 if (!vdsp) {
2483 printf ("%s: interrupted SCRIPT address not found.\n",
2484 sym_name (np));
2485 goto reset_all;
2486 }
2487
2488 if (!cp) {
2489 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2490 sym_name (np));
2491 goto reset_all;
2492 }
2493
2494 /*
2495 * get old startaddress and old length.
2496 */
2497 oadr = scr_to_cpu(vdsp[1]);
2498
2499 if (cmd & 0x10) { /* Table indirect */
2500 tblp = (u32 *) ((char*) &cp->phys + oadr);
2501 olen = scr_to_cpu(tblp[0]);
2502 oadr = scr_to_cpu(tblp[1]);
2503 } else {
2504 tblp = (u32 *) 0;
2505 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2506 };
2507
2508 if (DEBUG_FLAGS & DEBUG_PHASE) {
2509 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2510 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2511 tblp,
2512 (unsigned) olen,
2513 (unsigned) oadr);
2514 };
2515
2516 /*
2517 * check cmd against assumed interrupted script command.
2518 * If dt data phase, the MOVE instruction hasn't bit 4 of
2519 * the phase.
2520 */
2521 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2522 PRINT_ADDR(cp);
2523 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2524 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
2525
2526 goto reset_all;
2527 };
2528
2529 /*
2530 * if old phase not dataphase, leave here.
2531 */
2532 if (cmd & 2) {
2533 PRINT_ADDR(cp);
2534 printf ("phase change %x-%x %d@%08x resid=%d.\n",
2535 cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
2536 (unsigned)oadr, (unsigned)rest);
2537 goto unexpected_phase;
2538 };
2539
2540 /*
2541 * Choose the correct PM save area.
2542 *
2543 * Look at the PM_SAVE SCRIPT if you want to understand
2544 * this stuff. The equivalent code is implemented in
2545 * SCRIPTS for the 895A, 896 and 1010 that are able to
2546 * handle PM from the SCRIPTS processor.
2547 */
2548 hflags0 = INB (HF_PRT);
2549 hflags = hflags0;
2550
2551 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2552 if (hflags & HF_IN_PM0)
2553 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2554 else if (hflags & HF_IN_PM1)
2555 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2556
2557 if (hflags & HF_DP_SAVED)
2558 hflags ^= HF_ACT_PM;
2559 }
2560
2561 if (!(hflags & HF_ACT_PM)) {
2562 pm = &cp->phys.pm0;
2563 newcmd = SCRIPTA_BA (np, pm0_data);
2564 }
2565 else {
2566 pm = &cp->phys.pm1;
2567 newcmd = SCRIPTA_BA (np, pm1_data);
2568 }
2569
2570 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2571 if (hflags != hflags0)
2572 OUTB (HF_PRT, hflags);
2573
2574 /*
2575 * fillin the phase mismatch context
2576 */
2577 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2578 pm->sg.size = cpu_to_scr(rest);
2579 pm->ret = cpu_to_scr(nxtdsp);
2580
2581 /*
2582 * If we have a SWIDE,
2583 * - prepare the address to write the SWIDE from SCRIPTS,
2584 * - compute the SCRIPTS address to restart from,
2585 * - move current data pointer context by one byte.
2586 */
2587 nxtdsp = SCRIPTA_BA (np, dispatch);
2588 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2589 (INB (nc_scntl2) & WSR)) {
2590 u32 tmp;
2591
2592 /*
2593 * Set up the table indirect for the MOVE
2594 * of the residual byte and adjust the data
2595 * pointer context.
2596 */
2597 tmp = scr_to_cpu(pm->sg.addr);
2598 cp->phys.wresid.addr = cpu_to_scr(tmp);
2599 pm->sg.addr = cpu_to_scr(tmp + 1);
2600 tmp = scr_to_cpu(pm->sg.size);
2601 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2602 pm->sg.size = cpu_to_scr(tmp - 1);
2603
2604 /*
2605 * If only the residual byte is to be moved,
2606 * no PM context is needed.
2607 */
2608 if ((tmp&0xffffff) == 1)
2609 newcmd = pm->ret;
2610
2611 /*
2612 * Prepare the address of SCRIPTS that will
2613 * move the residual byte to memory.
2614 */
2615 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
2616 }
2617
2618 if (DEBUG_FLAGS & DEBUG_PHASE) {
2619 PRINT_ADDR(cp);
2620 printf ("PM %x %x %x / %x %x %x.\n",
2621 hflags0, hflags, newcmd,
2622 (unsigned)scr_to_cpu(pm->sg.addr),
2623 (unsigned)scr_to_cpu(pm->sg.size),
2624 (unsigned)scr_to_cpu(pm->ret));
2625 }
2626
2627 /*
2628 * Restart the SCRIPTS processor.
2629 */
2630 sym_set_script_dp (np, cp, newcmd);
2631 OUTL_DSP (nxtdsp);
2632 return;
2633
2634 /*
2635 * Unexpected phase changes that occurs when the current phase
2636 * is not a DATA IN or DATA OUT phase are due to error conditions.
2637 * Such event may only happen when the SCRIPTS is using a
2638 * multibyte SCSI MOVE.
2639 *
2640 * Phase change Some possible cause
2641 *
2642 * COMMAND --> MSG IN SCSI parity error detected by target.
2643 * COMMAND --> STATUS Bad command or refused by target.
2644 * MSG OUT --> MSG IN Message rejected by target.
2645 * MSG OUT --> COMMAND Bogus target that discards extended
2646 * negotiation messages.
2647 *
2648 * The code below does not care of the new phase and so
2649 * trusts the target. Why to annoy it ?
2650 * If the interrupted phase is COMMAND phase, we restart at
2651 * dispatcher.
2652 * If a target does not get all the messages after selection,
2653 * the code assumes blindly that the target discards extended
2654 * messages and clears the negotiation status.
2655 * If the target does not want all our response to negotiation,
2656 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2657 * bloat for such a should_not_happen situation).
2658 * In all other situation, we reset the BUS.
2659 * Are these assumptions reasonnable ? (Wait and see ...)
2660 */
2661 unexpected_phase:
2662 dsp -= 8;
2663 nxtdsp = 0;
2664
2665 switch (cmd & 7) {
2666 case 2: /* COMMAND phase */
2667 nxtdsp = SCRIPTA_BA (np, dispatch);
2668 break;
2669 #if 0
2670 case 3: /* STATUS phase */
2671 nxtdsp = SCRIPTA_BA (np, dispatch);
2672 break;
2673 #endif
2674 case 6: /* MSG OUT phase */
2675 /*
2676 * If the device may want to use untagged when we want
2677 * tagged, we prepare an IDENTIFY without disc. granted,
2678 * since we will not be able to handle reselect.
2679 * Otherwise, we just don't care.
2680 */
2681 if (dsp == SCRIPTA_BA (np, send_ident)) {
2682 if (cp->tag != NO_TAG && olen - rest <= 3) {
2683 cp->host_status = HS_BUSY;
2684 np->msgout[0] = M_IDENTIFY | cp->lun;
2685 nxtdsp = SCRIPTB_BA (np, ident_break_atn);
2686 }
2687 else
2688 nxtdsp = SCRIPTB_BA (np, ident_break);
2689 }
2690 else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
2691 dsp == SCRIPTB_BA (np, send_sdtr) ||
2692 dsp == SCRIPTB_BA (np, send_ppr)) {
2693 nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
2694 }
2695 break;
2696 #if 0
2697 case 7: /* MSG IN phase */
2698 nxtdsp = SCRIPTA_BA (np, clrack);
2699 break;
2700 #endif
2701 }
2702
2703 if (nxtdsp) {
2704 OUTL_DSP (nxtdsp);
2705 return;
2706 }
2707
2708 reset_all:
2709 sym_start_reset(np);
2710 }
2711
2712 /*
2713 * chip interrupt handler
2714 *
2715 * In normal situations, interrupt conditions occur one at
2716 * a time. But when something bad happens on the SCSI BUS,
2717 * the chip may raise several interrupt flags before
2718 * stopping and interrupting the CPU. The additionnal
2719 * interrupt flags are stacked in some extra registers
2720 * after the SIP and/or DIP flag has been raised in the
2721 * ISTAT. After the CPU has read the interrupt condition
2722 * flag from SIST or DSTAT, the chip unstacks the other
2723 * interrupt flags and sets the corresponding bits in
2724 * SIST or DSTAT. Since the chip starts stacking once the
2725 * SIP or DIP flag is set, there is a small window of time
2726 * where the stacking does not occur.
2727 *
2728 * Typically, multiple interrupt conditions may happen in
2729 * the following situations:
2730 *
2731 * - SCSI parity error + Phase mismatch (PAR|MA)
2732 * When an parity error is detected in input phase
2733 * and the device switches to msg-in phase inside a
2734 * block MOV.
2735 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2736 * When a stupid device does not want to handle the
2737 * recovery of an SCSI parity error.
2738 * - Some combinations of STO, PAR, UDC, ...
2739 * When using non compliant SCSI stuff, when user is
2740 * doing non compliant hot tampering on the BUS, when
2741 * something really bad happens to a device, etc ...
2742 *
2743 * The heuristic suggested by SYMBIOS to handle
2744 * multiple interrupts is to try unstacking all
2745 * interrupts conditions and to handle them on some
2746 * priority based on error severity.
2747 * This will work when the unstacking has been
2748 * successful, but we cannot be 100 % sure of that,
2749 * since the CPU may have been faster to unstack than
2750 * the chip is able to stack. Hmmm ... But it seems that
2751 * such a situation is very unlikely to happen.
2752 *
2753 * If this happen, for example STO caught by the CPU
2754 * then UDC happenning before the CPU have restarted
2755 * the SCRIPTS, the driver may wrongly complete the
2756 * same command on UDC, since the SCRIPTS didn't restart
2757 * and the DSA still points to the same command.
2758 * We avoid this situation by setting the DSA to an
2759 * invalid value when the CCB is completed and before
2760 * restarting the SCRIPTS.
2761 *
2762 * Another issue is that we need some section of our
2763 * recovery procedures to be somehow uninterruptible but
2764 * the SCRIPTS processor does not provides such a
2765 * feature. For this reason, we handle recovery preferently
2766 * from the C code and check against some SCRIPTS critical
2767 * sections from the C code.
2768 *
2769 * Hopefully, the interrupt handling of the driver is now
2770 * able to resist to weird BUS error conditions, but donnot
2771 * ask me for any guarantee that it will never fail. :-)
2772 * Use at your own decision and risk.
2773 */
2774
2775 void sym_interrupt (hcb_p np)
2776 {
2777 u_char istat, istatc;
2778 u_char dstat;
2779 u_short sist;
2780
2781 /*
2782 * interrupt on the fly ?
2783 * (SCRIPTS may still be running)
2784 *
2785 * A `dummy read' is needed to ensure that the
2786 * clear of the INTF flag reaches the device
2787 * and that posted writes are flushed to memory
2788 * before the scanning of the DONE queue.
2789 * Note that SCRIPTS also (dummy) read to memory
2790 * prior to deliver the INTF interrupt condition.
2791 */
2792 istat = INB (nc_istat);
2793 if (istat & INTF) {
2794 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2795 istat = INB (nc_istat); /* DUMMY READ */
2796 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2797 (void)sym_wakeup_done (np);
2798 };
2799
2800 if (!(istat & (SIP|DIP)))
2801 return;
2802
2803 #if 0 /* We should never get this one */
2804 if (istat & CABRT)
2805 OUTB (nc_istat, CABRT);
2806 #endif
2807
2808 /*
2809 * PAR and MA interrupts may occur at the same time,
2810 * and we need to know of both in order to handle
2811 * this situation properly. We try to unstack SCSI
2812 * interrupts for that reason. BTW, I dislike a LOT
2813 * such a loop inside the interrupt routine.
2814 * Even if DMA interrupt stacking is very unlikely to
2815 * happen, we also try unstacking these ones, since
2816 * this has no performance impact.
2817 */
2818 sist = 0;
2819 dstat = 0;
2820 istatc = istat;
2821 do {
2822 if (istatc & SIP)
2823 sist |= INW (nc_sist);
2824 if (istatc & DIP)
2825 dstat |= INB (nc_dstat);
2826 istatc = INB (nc_istat);
2827 istat |= istatc;
2828 } while (istatc & (SIP|DIP));
2829
2830 if (DEBUG_FLAGS & DEBUG_TINY)
2831 printf ("<%d|%x:%x|%x:%x>",
2832 (int)INB(nc_scr0),
2833 dstat,sist,
2834 (unsigned)INL(nc_dsp),
2835 (unsigned)INL(nc_dbc));
2836 /*
2837 * On paper, a memory read barrier may be needed here to
2838 * prevent out of order LOADs by the CPU from having
2839 * prefetched stale data prior to DMA having occurred.
2840 * And since we are paranoid ... :)
2841 */
2842 MEMORY_READ_BARRIER();
2843
2844 /*
2845 * First, interrupts we want to service cleanly.
2846 *
2847 * Phase mismatch (MA) is the most frequent interrupt
2848 * for chip earlier than the 896 and so we have to service
2849 * it as quickly as possible.
2850 * A SCSI parity error (PAR) may be combined with a phase
2851 * mismatch condition (MA).
2852 * Programmed interrupts (SIR) are used to call the C code
2853 * from SCRIPTS.
2854 * The single step interrupt (SSI) is not used in this
2855 * driver.
2856 */
2857 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2858 !(dstat & (MDPE|BF|ABRT|IID))) {
2859 if (sist & PAR) sym_int_par (np, sist);
2860 else if (sist & MA) sym_int_ma (np);
2861 else if (dstat & SIR) sym_int_sir (np);
2862 else if (dstat & SSI) OUTONB_STD ();
2863 else goto unknown_int;
2864 return;
2865 };
2866
2867 /*
2868 * Now, interrupts that donnot happen in normal
2869 * situations and that we may need to recover from.
2870 *
2871 * On SCSI RESET (RST), we reset everything.
2872 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2873 * active CCBs with RESET status, prepare all devices
2874 * for negotiating again and restart the SCRIPTS.
2875 * On STO and UDC, we complete the CCB with the corres-
2876 * ponding status and restart the SCRIPTS.
2877 */
2878 if (sist & RST) {
2879 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2880 sym_start_up (np, 1);
2881 return;
2882 };
2883
2884 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2885 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
2886
2887 if (!(sist & (GEN|HTH|SGE)) &&
2888 !(dstat & (MDPE|BF|ABRT|IID))) {
2889 if (sist & SBMC) sym_int_sbmc (np);
2890 else if (sist & STO) sym_int_sto (np);
2891 else if (sist & UDC) sym_int_udc (np);
2892 else goto unknown_int;
2893 return;
2894 };
2895
2896 /*
2897 * Now, interrupts we are not able to recover cleanly.
2898 *
2899 * Log message for hard errors.
2900 * Reset everything.
2901 */
2902
2903 sym_log_hard_error(np, sist, dstat);
2904
2905 if ((sist & (GEN|HTH|SGE)) ||
2906 (dstat & (MDPE|BF|ABRT|IID))) {
2907 sym_start_reset(np);
2908 return;
2909 };
2910
2911 unknown_int:
2912 /*
2913 * We just miss the cause of the interrupt. :(
2914 * Print a message. The timeout will do the real work.
2915 */
2916 printf( "%s: unknown interrupt(s) ignored, "
2917 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2918 sym_name(np), istat, dstat, sist);
2919 }
2920
2921 /*
2922 * Dequeue from the START queue all CCBs that match
2923 * a given target/lun/task condition (-1 means all),
2924 * and move them from the BUSY queue to the COMP queue
2925 * with CAM_REQUEUE_REQ status condition.
2926 * This function is used during error handling/recovery.
2927 * It is called with SCRIPTS not running.
2928 */
2929 static int
2930 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
2931 {
2932 int j;
2933 ccb_p cp;
2934
2935 /*
2936 * Make sure the starting index is within range.
2937 */
2938 assert((i >= 0) && (i < 2*MAX_QUEUE));
2939
2940 /*
2941 * Walk until end of START queue and dequeue every job
2942 * that matches the target/lun/task condition.
2943 */
2944 j = i;
2945 while (i != np->squeueput) {
2946 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2947 assert(cp);
2948 #ifdef SYM_CONF_IARB_SUPPORT
2949 /* Forget hints for IARB, they may be no longer relevant */
2950 cp->host_flags &= ~HF_HINT_IARB;
2951 #endif
2952 if ((target == -1 || cp->target == target) &&
2953 (lun == -1 || cp->lun == lun) &&
2954 (task == -1 || cp->tag == task)) {
2955 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
2956 sym_remque(&cp->link_ccbq);
2957 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2958 }
2959 else {
2960 if (i != j)
2961 np->squeue[j] = np->squeue[i];
2962 if ((j += 2) >= MAX_QUEUE*2) j = 0;
2963 }
2964 if ((i += 2) >= MAX_QUEUE*2) i = 0;
2965 }
2966 if (i != j) /* Copy back the idle task if needed */
2967 np->squeue[j] = np->squeue[i];
2968 np->squeueput = j; /* Update our current start queue pointer */
2969
2970 return (i - j) / 2;
2971 }
2972
2973 /*
2974 * Complete all CCBs queued to the COMP queue.
2975 *
2976 * These CCBs are assumed:
2977 * - Not to be referenced either by devices or
2978 * SCRIPTS-related queues and datas.
2979 * - To have to be completed with an error condition
2980 * or requeued.
2981 *
2982 * The device queue freeze count is incremented
2983 * for each CCB that does not prevent this.
2984 * This function is called when all CCBs involved
2985 * in error handling/recovery have been reaped.
2986 */
2987 void sym_flush_comp_queue(hcb_p np, int cam_status)
2988 {
2989 SYM_QUEHEAD *qp;
2990 ccb_p cp;
2991
2992 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
2993 cam_ccb_p ccb;
2994 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2995 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
2996 /* Leave quiet CCBs waiting for resources */
2997 if (cp->host_status == HS_WAIT)
2998 continue;
2999 ccb = cp->cam_ccb;
3000 if (cam_status)
3001 sym_set_cam_status(ccb, cam_status);
3002 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
3003 if (sym_get_cam_status(ccb) == CAM_REQUEUE_REQ) {
3004 tcb_p tp = &np->target[cp->target];
3005 lcb_p lp = sym_lp(np, tp, cp->lun);
3006 if (lp) {
3007 sym_remque(&cp->link2_ccbq);
3008 sym_insque_tail(&cp->link2_ccbq,
3009 &lp->waiting_ccbq);
3010 if (cp->started) {
3011 if (cp->tag != NO_TAG)
3012 --lp->started_tags;
3013 else
3014 --lp->started_no_tag;
3015 }
3016 }
3017 cp->started = 0;
3018 continue;
3019 }
3020 #endif
3021 sym_free_ccb(np, cp);
3022 sym_freeze_cam_ccb(ccb);
3023 sym_xpt_done(np, ccb);
3024 }
3025 }
3026
3027 /*
3028 * chip handler for bad SCSI status condition
3029 *
3030 * In case of bad SCSI status, we unqueue all the tasks
3031 * currently queued to the controller but not yet started
3032 * and then restart the SCRIPTS processor immediately.
3033 *
3034 * QUEUE FULL and BUSY conditions are handled the same way.
3035 * Basically all the not yet started tasks are requeued in
3036 * device queue and the queue is frozen until a completion.
3037 *
3038 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3039 * the CCB of the failed command to prepare a REQUEST SENSE
3040 * SCSI command and queue it to the controller queue.
3041 *
3042 * SCRATCHA is assumed to have been loaded with STARTPOS
3043 * before the SCRIPTS called the C code.
3044 */
3045 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
3046 {
3047 tcb_p tp = &np->target[cp->target];
3048 u32 startp;
3049 u_char s_status = cp->ssss_status;
3050 u_char h_flags = cp->host_flags;
3051 int msglen;
3052 int nego;
3053 int i;
3054
3055 /*
3056 * Compute the index of the next job to start from SCRIPTS.
3057 */
3058 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
3059
3060 /*
3061 * The last CCB queued used for IARB hint may be
3062 * no longer relevant. Forget it.
3063 */
3064 #ifdef SYM_CONF_IARB_SUPPORT
3065 if (np->last_cp)
3066 np->last_cp = 0;
3067 #endif
3068
3069 /*
3070 * Now deal with the SCSI status.
3071 */
3072 switch(s_status) {
3073 case S_BUSY:
3074 case S_QUEUE_FULL:
3075 if (sym_verbose >= 2) {
3076 PRINT_ADDR(cp);
3077 printf ("%s\n",
3078 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3079 }
3080 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3081 sym_complete_error (np, cp);
3082 break;
3083 case S_TERMINATED:
3084 case S_CHECK_COND:
3085 /*
3086 * If we get an SCSI error when requesting sense, give up.
3087 */
3088 if (h_flags & HF_SENSE) {
3089 sym_complete_error (np, cp);
3090 break;
3091 }
3092
3093 /*
3094 * Dequeue all queued CCBs for that device not yet started,
3095 * and restart the SCRIPTS processor immediately.
3096 */
3097 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3098 OUTL_DSP (SCRIPTA_BA (np, start));
3099
3100 /*
3101 * Save some info of the actual IO.
3102 * Compute the data residual.
3103 */
3104 cp->sv_scsi_status = cp->ssss_status;
3105 cp->sv_xerr_status = cp->xerr_status;
3106 cp->sv_resid = sym_compute_residual(np, cp);
3107
3108 /*
3109 * Prepare all needed data structures for
3110 * requesting sense data.
3111 */
3112
3113 /*
3114 * identify message
3115 */
3116 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
3117 msglen = 1;
3118
3119 /*
3120 * If we are currently using anything different from
3121 * async. 8 bit data transfers with that target,
3122 * start a negotiation, since the device may want
3123 * to report us a UNIT ATTENTION condition due to
3124 * a cause we currently ignore, and we donnot want
3125 * to be stuck with WIDE and/or SYNC data transfer.
3126 *
3127 * cp->nego_status is filled by sym_prepare_nego().
3128 */
3129 cp->nego_status = 0;
3130 nego = 0;
3131 if (tp->tinfo.curr.options & PPR_OPT_MASK)
3132 nego = NS_PPR;
3133 else if (tp->tinfo.curr.width != BUS_8_BIT)
3134 nego = NS_WIDE;
3135 else if (tp->tinfo.curr.offset != 0)
3136 nego = NS_SYNC;
3137 if (nego)
3138 msglen +=
3139 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
3140 /*
3141 * Message table indirect structure.
3142 */
3143 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
3144 cp->phys.smsg.size = cpu_to_scr(msglen);
3145
3146 /*
3147 * sense command
3148 */
3149 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
3150 cp->phys.cmd.size = cpu_to_scr(6);
3151
3152 /*
3153 * patch requested size into sense command
3154 */
3155 cp->sensecmd[0] = 0x03;
3156 cp->sensecmd[1] = 0;
3157 if (tp->tinfo.curr.scsi_version <= 2 && cp->lun <= 7)
3158 cp->sensecmd[1] = cp->lun << 5;
3159 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3160 cp->data_len = SYM_SNS_BBUF_LEN;
3161
3162 /*
3163 * sense data
3164 */
3165 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
3166 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
3167 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3168
3169 /*
3170 * requeue the command.
3171 */
3172 startp = SCRIPTB_BA (np, sdata_in);
3173
3174 cp->phys.head.savep = cpu_to_scr(startp);
3175 cp->phys.head.lastp = cpu_to_scr(startp);
3176 cp->startp = cpu_to_scr(startp);
3177 cp->goalp = cpu_to_scr(startp + 16);
3178
3179 cp->host_xflags = 0;
3180 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3181 cp->ssss_status = S_ILLEGAL;
3182 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3183 cp->xerr_status = 0;
3184 cp->extra_bytes = 0;
3185
3186 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
3187
3188 /*
3189 * Requeue the command.
3190 */
3191 sym_put_start_queue(np, cp);
3192
3193 /*
3194 * Give back to upper layer everything we have dequeued.
3195 */
3196 sym_flush_comp_queue(np, 0);
3197 break;
3198 }
3199 }
3200
3201 /*
3202 * After a device has accepted some management message
3203 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3204 * a device signals a UNIT ATTENTION condition, some
3205 * tasks are thrown away by the device. We are required
3206 * to reflect that on our tasks list since the device
3207 * will never complete these tasks.
3208 *
3209 * This function move from the BUSY queue to the COMP
3210 * queue all disconnected CCBs for a given target that
3211 * match the following criteria:
3212 * - lun=-1 means any logical UNIT otherwise a given one.
3213 * - task=-1 means any task, otherwise a given one.
3214 */
3215 int sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
3216 {
3217 SYM_QUEHEAD qtmp, *qp;
3218 int i = 0;
3219 ccb_p cp;
3220
3221 /*
3222 * Move the entire BUSY queue to our temporary queue.
3223 */
3224 sym_que_init(&qtmp);
3225 sym_que_splice(&np->busy_ccbq, &qtmp);
3226 sym_que_init(&np->busy_ccbq);
3227
3228 /*
3229 * Put all CCBs that matches our criteria into
3230 * the COMP queue and put back other ones into
3231 * the BUSY queue.
3232 */
3233 while ((qp = sym_remque_head(&qtmp)) != 0) {
3234 cam_ccb_p ccb;
3235 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3236 ccb = cp->cam_ccb;
3237 if (cp->host_status != HS_DISCONNECT ||
3238 cp->target != target ||
3239 (lun != -1 && cp->lun != lun) ||
3240 (task != -1 &&
3241 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3242 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3243 continue;
3244 }
3245 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3246
3247 /* Preserve the software timeout condition */
3248 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
3249 sym_set_cam_status(ccb, cam_status);
3250 ++i;
3251 #if 0
3252 printf("XXXX TASK @%p CLEARED\n", cp);
3253 #endif
3254 }
3255 return i;
3256 }
3257
3258 /*
3259 * chip handler for TASKS recovery
3260 *
3261 * We cannot safely abort a command, while the SCRIPTS
3262 * processor is running, since we just would be in race
3263 * with it.
3264 *
3265 * As long as we have tasks to abort, we keep the SEM
3266 * bit set in the ISTAT. When this bit is set, the
3267 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3268 * each time it enters the scheduler.
3269 *
3270 * If we have to reset a target, clear tasks of a unit,
3271 * or to perform the abort of a disconnected job, we
3272 * restart the SCRIPTS for selecting the target. Once
3273 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3274 * If it loses arbitration, the SCRIPTS will interrupt again
3275 * the next time it will enter its scheduler, and so on ...
3276 *
3277 * On SIR_TARGET_SELECTED, we scan for the more
3278 * appropriate thing to do:
3279 *
3280 * - If nothing, we just sent a M_ABORT message to the
3281 * target to get rid of the useless SCSI bus ownership.
3282 * According to the specs, no tasks shall be affected.
3283 * - If the target is to be reset, we send it a M_RESET
3284 * message.
3285 * - If a logical UNIT is to be cleared , we send the
3286 * IDENTIFY(lun) + M_ABORT.
3287 * - If an untagged task is to be aborted, we send the
3288 * IDENTIFY(lun) + M_ABORT.
3289 * - If a tagged task is to be aborted, we send the
3290 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3291 *
3292 * Once our 'kiss of death' :) message has been accepted
3293 * by the target, the SCRIPTS interrupts again
3294 * (SIR_ABORT_SENT). On this interrupt, we complete
3295 * all the CCBs that should have been aborted by the
3296 * target according to our message.
3297 */
3298 static void sym_sir_task_recovery(hcb_p np, int num)
3299 {
3300 SYM_QUEHEAD *qp;
3301 ccb_p cp;
3302 tcb_p tp;
3303 int target=-1, lun=-1, task;
3304 int i, k;
3305
3306 switch(num) {
3307 /*
3308 * The SCRIPTS processor stopped before starting
3309 * the next command in order to allow us to perform
3310 * some task recovery.
3311 */
3312 case SIR_SCRIPT_STOPPED:
3313 /*
3314 * Do we have any target to reset or unit to clear ?
3315 */
3316 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3317 tp = &np->target[i];
3318 if (tp->to_reset ||
3319 (tp->lun0p && tp->lun0p->to_clear)) {
3320 target = i;
3321 break;
3322 }
3323 if (!tp->lunmp)
3324 continue;
3325 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3326 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3327 target = i;
3328 break;
3329 }
3330 }
3331 if (target != -1)
3332 break;
3333 }
3334
3335 /*
3336 * If not, walk the busy queue for any
3337 * disconnected CCB to be aborted.
3338 */
3339 if (target == -1) {
3340 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3341 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3342 if (cp->host_status != HS_DISCONNECT)
3343 continue;
3344 if (cp->to_abort) {
3345 target = cp->target;
3346 break;
3347 }
3348 }
3349 }
3350
3351 /*
3352 * If some target is to be selected,
3353 * prepare and start the selection.
3354 */
3355 if (target != -1) {
3356 tp = &np->target[target];
3357 np->abrt_sel.sel_id = target;
3358 np->abrt_sel.sel_scntl3 = tp->head.wval;
3359 np->abrt_sel.sel_sxfer = tp->head.sval;
3360 OUTL(nc_dsa, np->hcb_ba);
3361 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
3362 return;
3363 }
3364
3365 /*
3366 * Now look for a CCB to abort that haven't started yet.
3367 * Btw, the SCRIPTS processor is still stopped, so
3368 * we are not in race.
3369 */
3370 i = 0;
3371 cp = 0;
3372 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3373 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3374 if (cp->host_status != HS_BUSY &&
3375 cp->host_status != HS_NEGOTIATE)
3376 continue;
3377 if (!cp->to_abort)
3378 continue;
3379 #ifdef SYM_CONF_IARB_SUPPORT
3380 /*
3381 * If we are using IMMEDIATE ARBITRATION, we donnot
3382 * want to cancel the last queued CCB, since the
3383 * SCRIPTS may have anticipated the selection.
3384 */
3385 if (cp == np->last_cp) {
3386 cp->to_abort = 0;
3387 continue;
3388 }
3389 #endif
3390 i = 1; /* Means we have found some */
3391 break;
3392 }
3393 if (!i) {
3394 /*
3395 * We are done, so we donnot need
3396 * to synchronize with the SCRIPTS anylonger.
3397 * Remove the SEM flag from the ISTAT.
3398 */
3399 np->istat_sem = 0;
3400 OUTB (nc_istat, SIGP);
3401 break;
3402 }
3403 /*
3404 * Compute index of next position in the start
3405 * queue the SCRIPTS intends to start and dequeue
3406 * all CCBs for that device that haven't been started.
3407 */
3408 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
3409 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3410
3411 /*
3412 * Make sure at least our IO to abort has been dequeued.
3413 */
3414 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3415 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
3416 #else
3417 sym_remque(&cp->link_ccbq);
3418 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3419 #endif
3420 /*
3421 * Keep track in cam status of the reason of the abort.
3422 */
3423 if (cp->to_abort == 2)
3424 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
3425 else
3426 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
3427
3428 /*
3429 * Complete with error everything that we have dequeued.
3430 */
3431 sym_flush_comp_queue(np, 0);
3432 break;
3433 /*
3434 * The SCRIPTS processor has selected a target
3435 * we may have some manual recovery to perform for.
3436 */
3437 case SIR_TARGET_SELECTED:
3438 target = (INB (nc_sdid) & 0xf);
3439 tp = &np->target[target];
3440
3441 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3442
3443 /*
3444 * If the target is to be reset, prepare a
3445 * M_RESET message and clear the to_reset flag
3446 * since we donnot expect this operation to fail.
3447 */
3448 if (tp->to_reset) {
3449 np->abrt_msg[0] = M_RESET;
3450 np->abrt_tbl.size = 1;
3451 tp->to_reset = 0;
3452 break;
3453 }
3454
3455 /*
3456 * Otherwise, look for some logical unit to be cleared.
3457 */
3458 if (tp->lun0p && tp->lun0p->to_clear)
3459 lun = 0;
3460 else if (tp->lunmp) {
3461 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3462 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3463 lun = k;
3464 break;
3465 }
3466 }
3467 }
3468
3469 /*
3470 * If a logical unit is to be cleared, prepare
3471 * an IDENTIFY(lun) + ABORT MESSAGE.
3472 */
3473 if (lun != -1) {
3474 lcb_p lp = sym_lp(np, tp, lun);
3475 lp->to_clear = 0; /* We donnot expect to fail here */
3476 np->abrt_msg[0] = M_IDENTIFY | lun;
3477 np->abrt_msg[1] = M_ABORT;
3478 np->abrt_tbl.size = 2;
3479 break;
3480 }
3481
3482 /*
3483 * Otherwise, look for some disconnected job to
3484 * abort for this target.
3485 */
3486 i = 0;
3487 cp = 0;
3488 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3489 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3490 if (cp->host_status != HS_DISCONNECT)
3491 continue;
3492 if (cp->target != target)
3493 continue;
3494 if (!cp->to_abort)
3495 continue;
3496 i = 1; /* Means we have some */
3497 break;
3498 }
3499
3500 /*
3501 * If we have none, probably since the device has
3502 * completed the command before we won abitration,
3503 * send a M_ABORT message without IDENTIFY.
3504 * According to the specs, the device must just
3505 * disconnect the BUS and not abort any task.
3506 */
3507 if (!i) {
3508 np->abrt_msg[0] = M_ABORT;
3509 np->abrt_tbl.size = 1;
3510 break;
3511 }
3512
3513 /*
3514 * We have some task to abort.
3515 * Set the IDENTIFY(lun)
3516 */
3517 np->abrt_msg[0] = M_IDENTIFY | cp->lun;
3518
3519 /*
3520 * If we want to abort an untagged command, we
3521 * will send a IDENTIFY + M_ABORT.
3522 * Otherwise (tagged command), we will send
3523 * a IDENTITFY + task attributes + ABORT TAG.
3524 */
3525 if (cp->tag == NO_TAG) {
3526 np->abrt_msg[1] = M_ABORT;
3527 np->abrt_tbl.size = 2;
3528 }
3529 else {
3530 np->abrt_msg[1] = cp->scsi_smsg[1];
3531 np->abrt_msg[2] = cp->scsi_smsg[2];
3532 np->abrt_msg[3] = M_ABORT_TAG;
3533 np->abrt_tbl.size = 4;
3534 }
3535 /*
3536 * Keep track of software timeout condition, since the
3537 * peripheral driver may not count retries on abort
3538 * conditions not due to timeout.
3539 */
3540 if (cp->to_abort == 2)
3541 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
3542 cp->to_abort = 0; /* We donnot expect to fail here */
3543 break;
3544
3545 /*
3546 * The target has accepted our message and switched
3547 * to BUS FREE phase as we expected.
3548 */
3549 case SIR_ABORT_SENT:
3550 target = (INB (nc_sdid) & 0xf);
3551 tp = &np->target[target];
3552
3553 /*
3554 ** If we didn't abort anything, leave here.
3555 */
3556 if (np->abrt_msg[0] == M_ABORT)
3557 break;
3558
3559 /*
3560 * If we sent a M_RESET, then a hardware reset has
3561 * been performed by the target.
3562 * - Reset everything to async 8 bit
3563 * - Tell ourself to negotiate next time :-)
3564 * - Prepare to clear all disconnected CCBs for
3565 * this target from our task list (lun=task=-1)
3566 */
3567 lun = -1;
3568 task = -1;
3569 if (np->abrt_msg[0] == M_RESET) {
3570 tp->head.sval = 0;
3571 tp->head.wval = np->rv_scntl3;
3572 tp->head.uval = 0;
3573 tp->tinfo.curr.period = 0;
3574 tp->tinfo.curr.offset = 0;
3575 tp->tinfo.curr.width = BUS_8_BIT;
3576 tp->tinfo.curr.options = 0;
3577 }
3578
3579 /*
3580 * Otherwise, check for the LUN and TASK(s)
3581 * concerned by the cancelation.
3582 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3583 * or an ABORT message :-)
3584 */
3585 else {
3586 lun = np->abrt_msg[0] & 0x3f;
3587 if (np->abrt_msg[1] == M_ABORT_TAG)
3588 task = np->abrt_msg[2];
3589 }
3590
3591 /*
3592 * Complete all the CCBs the device should have
3593 * aborted due to our 'kiss of death' message.
3594 */
3595 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
3596 (void) sym_dequeue_from_squeue(np, i, target, lun, -1);
3597 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
3598 sym_flush_comp_queue(np, 0);
3599
3600 /*
3601 * If we sent a BDR, make upper layer aware of that.
3602 */
3603 if (np->abrt_msg[0] == M_RESET)
3604 sym_xpt_async_sent_bdr(np, target);
3605 break;
3606 }
3607
3608 /*
3609 * Print to the log the message we intend to send.
3610 */
3611 if (num == SIR_TARGET_SELECTED) {
3612 PRINT_TARGET(np, target);
3613 sym_printl_hex("control msgout:", np->abrt_msg,
3614 np->abrt_tbl.size);
3615 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3616 }
3617
3618 /*
3619 * Let the SCRIPTS processor continue.
3620 */
3621 OUTONB_STD ();
3622 }
3623
3624 /*
3625 * Gerard's alchemy:) that deals with with the data
3626 * pointer for both MDP and the residual calculation.
3627 *
3628 * I didn't want to bloat the code by more than 200
3629 * lignes for the handling of both MDP and the residual.
3630 * This has been achieved by using a data pointer
3631 * representation consisting in an index in the data
3632 * array (dp_sg) and a negative offset (dp_ofs) that
3633 * have the following meaning:
3634 *
3635 * - dp_sg = SYM_CONF_MAX_SG
3636 * we are at the end of the data script.
3637 * - dp_sg < SYM_CONF_MAX_SG
3638 * dp_sg points to the next entry of the scatter array
3639 * we want to transfer.
3640 * - dp_ofs < 0
3641 * dp_ofs represents the residual of bytes of the
3642 * previous entry scatter entry we will send first.
3643 * - dp_ofs = 0
3644 * no residual to send first.
3645 *
3646 * The function sym_evaluate_dp() accepts an arbitray
3647 * offset (basically from the MDP message) and returns
3648 * the corresponding values of dp_sg and dp_ofs.
3649 */
3650
3651 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
3652 {
3653 u32 dp_scr;
3654 int dp_ofs, dp_sg, dp_sgmin;
3655 int tmp;
3656 struct sym_pmc *pm;
3657
3658 /*
3659 * Compute the resulted data pointer in term of a script
3660 * address within some DATA script and a signed byte offset.
3661 */
3662 dp_scr = scr;
3663 dp_ofs = *ofs;
3664 if (dp_scr == SCRIPTA_BA (np, pm0_data))
3665 pm = &cp->phys.pm0;
3666 else if (dp_scr == SCRIPTA_BA (np, pm1_data))
3667 pm = &cp->phys.pm1;
3668 else
3669 pm = 0;
3670
3671 if (pm) {
3672 dp_scr = scr_to_cpu(pm->ret);
3673 dp_ofs -= scr_to_cpu(pm->sg.size);
3674 }
3675
3676 /*
3677 * If we are auto-sensing, then we are done.
3678 */
3679 if (cp->host_flags & HF_SENSE) {
3680 *ofs = dp_ofs;
3681 return 0;
3682 }
3683
3684 /*
3685 * Deduce the index of the sg entry.
3686 * Keep track of the index of the first valid entry.
3687 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3688 * end of the data.
3689 */
3690 tmp = scr_to_cpu(sym_goalp(cp));
3691 dp_sg = SYM_CONF_MAX_SG;
3692 if (dp_scr != tmp)
3693 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3694 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3695
3696 /*
3697 * Move to the sg entry the data pointer belongs to.
3698 *
3699 * If we are inside the data area, we expect result to be:
3700 *
3701 * Either,
3702 * dp_ofs = 0 and dp_sg is the index of the sg entry
3703 * the data pointer belongs to (or the end of the data)
3704 * Or,
3705 * dp_ofs < 0 and dp_sg is the index of the sg entry
3706 * the data pointer belongs to + 1.
3707 */
3708 if (dp_ofs < 0) {
3709 int n;
3710 while (dp_sg > dp_sgmin) {
3711 --dp_sg;
3712 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3713 n = dp_ofs + (tmp & 0xffffff);
3714 if (n > 0) {
3715 ++dp_sg;
3716 break;
3717 }
3718 dp_ofs = n;
3719 }
3720 }
3721 else if (dp_ofs > 0) {
3722 while (dp_sg < SYM_CONF_MAX_SG) {
3723 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3724 dp_ofs -= (tmp & 0xffffff);
3725 ++dp_sg;
3726 if (dp_ofs <= 0)
3727 break;
3728 }
3729 }
3730
3731 /*
3732 * Make sure the data pointer is inside the data area.
3733 * If not, return some error.
3734 */
3735 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3736 goto out_err;
3737 else if (dp_sg > SYM_CONF_MAX_SG ||
3738 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3739 goto out_err;
3740
3741 /*
3742 * Save the extreme pointer if needed.
3743 */
3744 if (dp_sg > cp->ext_sg ||
3745 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3746 cp->ext_sg = dp_sg;
3747 cp->ext_ofs = dp_ofs;
3748 }
3749
3750 /*
3751 * Return data.
3752 */
3753 *ofs = dp_ofs;
3754 return dp_sg;
3755
3756 out_err:
3757 return -1;
3758 }
3759
3760 /*
3761 * chip handler for MODIFY DATA POINTER MESSAGE
3762 *
3763 * We also call this function on IGNORE WIDE RESIDUE
3764 * messages that do not match a SWIDE full condition.
3765 * Btw, we assume in that situation that such a message
3766 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3767 */
3768
3769 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
3770 {
3771 int dp_ofs = ofs;
3772 u32 dp_scr = sym_get_script_dp (np, cp);
3773 u32 dp_ret;
3774 u32 tmp;
3775 u_char hflags;
3776 int dp_sg;
3777 struct sym_pmc *pm;
3778
3779 /*
3780 * Not supported for auto-sense.
3781 */
3782 if (cp->host_flags & HF_SENSE)
3783 goto out_reject;
3784
3785 /*
3786 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3787 * to the resulted data pointer.
3788 */
3789 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3790 if (dp_sg < 0)
3791 goto out_reject;
3792
3793 /*
3794 * And our alchemy:) allows to easily calculate the data
3795 * script address we want to return for the next data phase.
3796 */
3797 dp_ret = cpu_to_scr(sym_goalp(cp));
3798 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3799
3800 /*
3801 * If offset / scatter entry is zero we donnot need
3802 * a context for the new current data pointer.
3803 */
3804 if (dp_ofs == 0) {
3805 dp_scr = dp_ret;
3806 goto out_ok;
3807 }
3808
3809 /*
3810 * Get a context for the new current data pointer.
3811 */
3812 hflags = INB (HF_PRT);
3813
3814 if (hflags & HF_DP_SAVED)
3815 hflags ^= HF_ACT_PM;
3816
3817 if (!(hflags & HF_ACT_PM)) {
3818 pm = &cp->phys.pm0;
3819 dp_scr = SCRIPTA_BA (np, pm0_data);
3820 }
3821 else {
3822 pm = &cp->phys.pm1;
3823 dp_scr = SCRIPTA_BA (np, pm1_data);
3824 }
3825
3826 hflags &= ~(HF_DP_SAVED);
3827
3828 OUTB (HF_PRT, hflags);
3829
3830 /*
3831 * Set up the new current data pointer.
3832 * ofs < 0 there, and for the next data phase, we
3833 * want to transfer part of the data of the sg entry
3834 * corresponding to index dp_sg-1 prior to returning
3835 * to the main data script.
3836 */
3837 pm->ret = cpu_to_scr(dp_ret);
3838 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3839 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3840 pm->sg.addr = cpu_to_scr(tmp);
3841 pm->sg.size = cpu_to_scr(-dp_ofs);
3842
3843 out_ok:
3844 sym_set_script_dp (np, cp, dp_scr);
3845 OUTL_DSP (SCRIPTA_BA (np, clrack));
3846 return;
3847
3848 out_reject:
3849 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
3850 }
3851
3852
3853 /*
3854 * chip calculation of the data residual.
3855 *
3856 * As I used to say, the requirement of data residual
3857 * in SCSI is broken, useless and cannot be achieved
3858 * without huge complexity.
3859 * But most OSes and even the official CAM require it.
3860 * When stupidity happens to be so widely spread inside
3861 * a community, it gets hard to convince.
3862 *
3863 * Anyway, I don't care, since I am not going to use
3864 * any software that considers this data residual as
3865 * a relevant information. :)
3866 */
3867
3868 int sym_compute_residual(hcb_p np, ccb_p cp)
3869 {
3870 int dp_sg, dp_sgmin, resid = 0;
3871 int dp_ofs = 0;
3872
3873 /*
3874 * Check for some data lost or just thrown away.
3875 * We are not required to be quite accurate in this
3876 * situation. Btw, if we are odd for output and the
3877 * device claims some more data, it may well happen
3878 * than our residual be zero. :-)
3879 */
3880 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3881 if (cp->xerr_status & XE_EXTRA_DATA)
3882 resid -= cp->extra_bytes;
3883 if (cp->xerr_status & XE_SODL_UNRUN)
3884 ++resid;
3885 if (cp->xerr_status & XE_SWIDE_OVRUN)
3886 --resid;
3887 }
3888
3889 /*
3890 * If all data has been transferred,
3891 * there is no residual.
3892 */
3893 if (cp->phys.head.lastp == sym_goalp(cp))
3894 return resid;
3895
3896 /*
3897 * If no data transfer occurs, or if the data
3898 * pointer is weird, return full residual.
3899 */
3900 if (cp->startp == cp->phys.head.lastp ||
3901 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3902 &dp_ofs) < 0) {
3903 return cp->data_len;
3904 }
3905
3906 /*
3907 * If we were auto-sensing, then we are done.
3908 */
3909 if (cp->host_flags & HF_SENSE) {
3910 return -dp_ofs;
3911 }
3912
3913 /*
3914 * We are now full comfortable in the computation
3915 * of the data residual (2's complement).
3916 */
3917 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3918 resid = -cp->ext_ofs;
3919 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3920 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3921 resid += (tmp & 0xffffff);
3922 }
3923
3924 /*
3925 * Hopefully, the result is not too wrong.
3926 */
3927 return resid;
3928 }
3929
3930 /*
3931 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3932 *
3933 * When we try to negotiate, we append the negotiation message
3934 * to the identify and (maybe) simple tag message.
3935 * The host status field is set to HS_NEGOTIATE to mark this
3936 * situation.
3937 *
3938 * If the target doesn't answer this message immediately
3939 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3940 * will be raised eventually.
3941 * The handler removes the HS_NEGOTIATE status, and sets the
3942 * negotiated value to the default (async / nowide).
3943 *
3944 * If we receive a matching answer immediately, we check it
3945 * for validity, and set the values.
3946 *
3947 * If we receive a Reject message immediately, we assume the
3948 * negotiation has failed, and fall back to standard values.
3949 *
3950 * If we receive a negotiation message while not in HS_NEGOTIATE
3951 * state, it's a target initiated negotiation. We prepare a
3952 * (hopefully) valid answer, set our parameters, and send back
3953 * this answer to the target.
3954 *
3955 * If the target doesn't fetch the answer (no message out phase),
3956 * we assume the negotiation has failed, and fall back to default
3957 * settings (SIR_NEGO_PROTO interrupt).
3958 *
3959 * When we set the values, we adjust them in all ccbs belonging
3960 * to this target, in the controller's register, and in the "phys"
3961 * field of the controller's struct sym_hcb.
3962 */
3963
3964 /*
3965 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3966 */
3967 static int
3968 sym_sync_nego_check(hcb_p np, int req, int target)
3969 {
3970 tcb_p tp = &np->target[target];
3971 u_char chg, ofs, per, fak, div;
3972
3973 if (DEBUG_FLAGS & DEBUG_NEGO) {
3974 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3975 };
3976
3977 /*
3978 * Get requested values.
3979 */
3980 chg = 0;
3981 per = np->msgin[3];
3982 ofs = np->msgin[4];
3983
3984 /*
3985 * Check values against our limits.
3986 */
3987 if (ofs) {
3988 if (ofs > np->maxoffs)
3989 {chg = 1; ofs = np->maxoffs;}
3990 if (req) {
3991 if (ofs > tp->tinfo.user.offset)
3992 {chg = 1; ofs = tp->tinfo.user.offset;}
3993 }
3994 }
3995
3996 if (ofs) {
3997 if (per < np->minsync)
3998 {chg = 1; per = np->minsync;}
3999 if (req) {
4000 if (per < tp->tinfo.user.period)
4001 {chg = 1; per = tp->tinfo.user.period;}
4002 }
4003 }
4004
4005 /*
4006 * Get new chip synchronous parameters value.
4007 */
4008 div = fak = 0;
4009 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
4010 goto reject_it;
4011
4012 if (DEBUG_FLAGS & DEBUG_NEGO) {
4013 PRINT_TARGET(np, target);
4014 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
4015 ofs, per, div, fak, chg);
4016 }
4017
4018 /*
4019 * If it was an answer we want to change,
4020 * then it isn't acceptable. Reject it.
4021 */
4022 if (!req && chg)
4023 goto reject_it;
4024
4025 /*
4026 * Apply new values.
4027 */
4028 sym_setsync (np, target, ofs, per, div, fak);
4029
4030 /*
4031 * It was an answer. We are done.
4032 */
4033 if (!req)
4034 return 0;
4035
4036 /*
4037 * It was a request. Prepare an answer message.
4038 */
4039 np->msgout[0] = M_EXTENDED;
4040 np->msgout[1] = 3;
4041 np->msgout[2] = M_X_SYNC_REQ;
4042 np->msgout[3] = per;
4043 np->msgout[4] = ofs;
4044
4045 if (DEBUG_FLAGS & DEBUG_NEGO) {
4046 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4047 }
4048
4049 np->msgin [0] = M_NOOP;
4050
4051 return 0;
4052
4053 reject_it:
4054 sym_setsync (np, target, 0, 0, 0, 0);
4055 return -1;
4056 }
4057
4058 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
4059 {
4060 int req = 1;
4061 int result;
4062
4063 /*
4064 * Request or answer ?
4065 */
4066 if (INB (HS_PRT) == HS_NEGOTIATE) {
4067 OUTB (HS_PRT, HS_BUSY);
4068 if (cp->nego_status && cp->nego_status != NS_SYNC)
4069 goto reject_it;
4070 req = 0;
4071 }
4072
4073 /*
4074 * Check and apply new values.
4075 */
4076 result = sym_sync_nego_check(np, req, cp->target);
4077 if (result) /* Not acceptable, reject it */
4078 goto reject_it;
4079 if (req) { /* Was a request, send response. */
4080 cp->nego_status = NS_SYNC;
4081 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
4082 }
4083 else /* Was a response, we are done. */
4084 OUTL_DSP (SCRIPTA_BA (np, clrack));
4085 return;
4086
4087 reject_it:
4088 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4089 }
4090
4091 /*
4092 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4093 */
4094 static int
4095 sym_ppr_nego_check(hcb_p np, int req, int target)
4096 {
4097 tcb_p tp = &np->target[target];
4098 u_char chg, ofs, per, fak, dt, div, wide;
4099
4100 if (DEBUG_FLAGS & DEBUG_NEGO) {
4101 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4102 };
4103
4104 /*
4105 * Get requested values.
4106 */
4107 chg = 0;
4108 per = np->msgin[3];
4109 ofs = np->msgin[5];
4110 wide = np->msgin[6];
4111 dt = np->msgin[7] & PPR_OPT_DT;
4112
4113 /*
4114 * Check values against our limits.
4115 */
4116 if (wide > np->maxwide)
4117 {chg = 1; wide = np->maxwide;}
4118 if (!wide || !(np->features & FE_ULTRA3))
4119 dt &= ~PPR_OPT_DT;
4120 if (req) {
4121 if (wide > tp->tinfo.user.width)
4122 {chg = 1; wide = tp->tinfo.user.width;}
4123 }
4124
4125 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
4126 dt &= ~PPR_OPT_DT;
4127
4128 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
4129
4130 if (ofs) {
4131 if (dt) {
4132 if (ofs > np->maxoffs_dt)
4133 {chg = 1; ofs = np->maxoffs_dt;}
4134 }
4135 else if (ofs > np->maxoffs)
4136 {chg = 1; ofs = np->maxoffs;}
4137 if (req) {
4138 if (ofs > tp->tinfo.user.offset)
4139 {chg = 1; ofs = tp->tinfo.user.offset;}
4140 }
4141 }
4142
4143 if (ofs) {
4144 if (dt) {
4145 if (per < np->minsync_dt)
4146 {chg = 1; per = np->minsync_dt;}
4147 }
4148 else if (per < np->minsync)
4149 {chg = 1; per = np->minsync;}
4150 if (req) {
4151 if (per < tp->tinfo.user.period)
4152 {chg = 1; per = tp->tinfo.user.period;}
4153 }
4154 }
4155
4156 /*
4157 * Get new chip synchronous parameters value.
4158 */
4159 div = fak = 0;
4160 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4161 goto reject_it;
4162
4163 /*
4164 * If it was an answer we want to change,
4165 * then it isn't acceptable. Reject it.
4166 */
4167 if (!req && chg)
4168 goto reject_it;
4169
4170 /*
4171 * Apply new values.
4172 */
4173 sym_setpprot (np, target, dt, ofs, per, wide, div, fak);
4174
4175 /*
4176 * It was an answer. We are done.
4177 */
4178 if (!req)
4179 return 0;
4180
4181 /*
4182 * It was a request. Prepare an answer message.
4183 */
4184 np->msgout[0] = M_EXTENDED;
4185 np->msgout[1] = 6;
4186 np->msgout[2] = M_X_PPR_REQ;
4187 np->msgout[3] = per;
4188 np->msgout[4] = 0;
4189 np->msgout[5] = ofs;
4190 np->msgout[6] = wide;
4191 np->msgout[7] = dt;
4192
4193 if (DEBUG_FLAGS & DEBUG_NEGO) {
4194 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4195 }
4196
4197 np->msgin [0] = M_NOOP;
4198
4199 return 0;
4200
4201 reject_it:
4202 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4203 /*
4204 * If it is a device response that should result in
4205 * ST, we may want to try a legacy negotiation later.
4206 */
4207 if (!req && !dt) {
4208 tp->tinfo.goal.options = 0;
4209 tp->tinfo.goal.width = wide;
4210 tp->tinfo.goal.period = per;
4211 tp->tinfo.goal.offset = ofs;
4212 }
4213 return -1;
4214 }
4215
4216 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
4217 {
4218 int req = 1;
4219 int result;
4220
4221 /*
4222 * Request or answer ?
4223 */
4224 if (INB (HS_PRT) == HS_NEGOTIATE) {
4225 OUTB (HS_PRT, HS_BUSY);
4226 if (cp->nego_status && cp->nego_status != NS_PPR)
4227 goto reject_it;
4228 req = 0;
4229 }
4230
4231 /*
4232 * Check and apply new values.
4233 */
4234 result = sym_ppr_nego_check(np, req, cp->target);
4235 if (result) /* Not acceptable, reject it */
4236 goto reject_it;
4237 if (req) { /* Was a request, send response. */
4238 cp->nego_status = NS_PPR;
4239 OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
4240 }
4241 else /* Was a response, we are done. */
4242 OUTL_DSP (SCRIPTA_BA (np, clrack));
4243 return;
4244
4245 reject_it:
4246 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4247 }
4248
4249 /*
4250 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4251 */
4252 static int
4253 sym_wide_nego_check(hcb_p np, int req, int target)
4254 {
4255 tcb_p tp = &np->target[target];
4256 u_char chg, wide;
4257
4258 if (DEBUG_FLAGS & DEBUG_NEGO) {
4259 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4260 };
4261
4262 /*
4263 * Get requested values.
4264 */
4265 chg = 0;
4266 wide = np->msgin[3];
4267
4268 /*
4269 * Check values against our limits.
4270 */
4271 if (wide > np->maxwide)
4272 {chg = 1; wide = np->maxwide;}
4273 if (req) {
4274 if (wide > tp->tinfo.user.width)
4275 {chg = 1; wide = tp->tinfo.user.width;}
4276 }
4277
4278 if (DEBUG_FLAGS & DEBUG_NEGO) {
4279 PRINT_TARGET(np, target);
4280 printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
4281 }
4282
4283 /*
4284 * If it was an answer we want to change,
4285 * then it isn't acceptable. Reject it.
4286 */
4287 if (!req && chg)
4288 goto reject_it;
4289
4290 /*
4291 * Apply new values.
4292 */
4293 sym_setwide (np, target, wide);
4294
4295 /*
4296 * It was an answer. We are done.
4297 */
4298 if (!req)
4299 return 0;
4300
4301 /*
4302 * It was a request. Prepare an answer message.
4303 */
4304 np->msgout[0] = M_EXTENDED;
4305 np->msgout[1] = 2;
4306 np->msgout[2] = M_X_WIDE_REQ;
4307 np->msgout[3] = wide;
4308
4309 np->msgin [0] = M_NOOP;
4310
4311 if (DEBUG_FLAGS & DEBUG_NEGO) {
4312 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4313 }
4314
4315 return 0;
4316
4317 reject_it:
4318 return -1;
4319 }
4320
4321 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
4322 {
4323 int req = 1;
4324 int result;
4325
4326 /*
4327 * Request or answer ?
4328 */
4329 if (INB (HS_PRT) == HS_NEGOTIATE) {
4330 OUTB (HS_PRT, HS_BUSY);
4331 if (cp->nego_status && cp->nego_status != NS_WIDE)
4332 goto reject_it;
4333 req = 0;
4334 }
4335
4336 /*
4337 * Check and apply new values.
4338 */
4339 result = sym_wide_nego_check(np, req, cp->target);
4340 if (result) /* Not acceptable, reject it */
4341 goto reject_it;
4342 if (req) { /* Was a request, send response. */
4343 cp->nego_status = NS_WIDE;
4344 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
4345 }
4346 else { /* Was a response. */
4347 /*
4348 * Negotiate for SYNC immediately after WIDE response.
4349 * This allows to negotiate for both WIDE and SYNC on
4350 * a single SCSI command (Suggested by Justin Gibbs).
4351 */
4352 if (tp->tinfo.goal.offset) {
4353 np->msgout[0] = M_EXTENDED;
4354 np->msgout[1] = 3;
4355 np->msgout[2] = M_X_SYNC_REQ;
4356 np->msgout[3] = tp->tinfo.goal.period;
4357 np->msgout[4] = tp->tinfo.goal.offset;
4358
4359 if (DEBUG_FLAGS & DEBUG_NEGO) {
4360 sym_print_nego_msg(np, cp->target,
4361 "sync msgout", np->msgout);
4362 }
4363
4364 cp->nego_status = NS_SYNC;
4365 OUTB (HS_PRT, HS_NEGOTIATE);
4366 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
4367 return;
4368 }
4369 else
4370 OUTL_DSP (SCRIPTA_BA (np, clrack));
4371 };
4372
4373 return;
4374
4375 reject_it:
4376 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4377 }
4378
4379 /*
4380 * Reset DT, SYNC or WIDE to default settings.
4381 *
4382 * Called when a negotiation does not succeed either
4383 * on rejection or on protocol error.
4384 *
4385 * A target that understands a PPR message should never
4386 * reject it, and messing with it is very unlikely.
4387 * So, if a PPR makes problems, we may just want to
4388 * try a legacy negotiation later.
4389 */
4390 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
4391 {
4392 switch (cp->nego_status) {
4393 case NS_PPR:
4394 #if 0
4395 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4396 #else
4397 tp->tinfo.goal.options = 0;
4398 if (tp->tinfo.goal.period < np->minsync)
4399 tp->tinfo.goal.period = np->minsync;
4400 if (tp->tinfo.goal.offset > np->maxoffs)
4401 tp->tinfo.goal.offset = np->maxoffs;
4402 #endif
4403 break;
4404 case NS_SYNC:
4405 sym_setsync (np, cp->target, 0, 0, 0, 0);
4406 break;
4407 case NS_WIDE:
4408 sym_setwide (np, cp->target, 0);
4409 break;
4410 };
4411 np->msgin [0] = M_NOOP;
4412 np->msgout[0] = M_NOOP;
4413 cp->nego_status = 0;
4414 }
4415
4416 /*
4417 * chip handler for MESSAGE REJECT received in response to
4418 * PPR, WIDE or SYNCHRONOUS negotiation.
4419 */
4420 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
4421 {
4422 sym_nego_default(np, tp, cp);
4423 OUTB (HS_PRT, HS_BUSY);
4424 }
4425
4426 /*
4427 * chip exception handler for programmed interrupts.
4428 */
4429 static void sym_int_sir (hcb_p np)
4430 {
4431 u_char num = INB (nc_dsps);
4432 u32 dsa = INL (nc_dsa);
4433 ccb_p cp = sym_ccb_from_dsa(np, dsa);
4434 u_char target = INB (nc_sdid) & 0x0f;
4435 tcb_p tp = &np->target[target];
4436 int tmp;
4437
4438 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4439
4440 switch (num) {
4441 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4442 /*
4443 * SCRIPTS tell us that we may have to update
4444 * 64 bit DMA segment registers.
4445 */
4446 case SIR_DMAP_DIRTY:
4447 sym_update_dmap_regs(np);
4448 goto out;
4449 #endif
4450 /*
4451 * Command has been completed with error condition
4452 * or has been auto-sensed.
4453 */
4454 case SIR_COMPLETE_ERROR:
4455 sym_complete_error(np, cp);
4456 return;
4457 /*
4458 * The C code is currently trying to recover from something.
4459 * Typically, user want to abort some command.
4460 */
4461 case SIR_SCRIPT_STOPPED:
4462 case SIR_TARGET_SELECTED:
4463 case SIR_ABORT_SENT:
4464 sym_sir_task_recovery(np, num);
4465 return;
4466 /*
4467 * The device didn't go to MSG OUT phase after having
4468 * been selected with ATN. We donnot want to handle
4469 * that.
4470 */
4471 case SIR_SEL_ATN_NO_MSG_OUT:
4472 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4473 sym_name (np), target);
4474 goto out_stuck;
4475 /*
4476 * The device didn't switch to MSG IN phase after
4477 * having reseleted the initiator.
4478 */
4479 case SIR_RESEL_NO_MSG_IN:
4480 printf ("%s:%d: No MSG IN phase after reselection.\n",
4481 sym_name (np), target);
4482 goto out_stuck;
4483 /*
4484 * After reselection, the device sent a message that wasn't
4485 * an IDENTIFY.
4486 */
4487 case SIR_RESEL_NO_IDENTIFY:
4488 printf ("%s:%d: No IDENTIFY after reselection.\n",
4489 sym_name (np), target);
4490 goto out_stuck;
4491 /*
4492 * The device reselected a LUN we donnot know about.
4493 */
4494 case SIR_RESEL_BAD_LUN:
4495 np->msgout[0] = M_RESET;
4496 goto out;
4497 /*
4498 * The device reselected for an untagged nexus and we
4499 * haven't any.
4500 */
4501 case SIR_RESEL_BAD_I_T_L:
4502 np->msgout[0] = M_ABORT;
4503 goto out;
4504 /*
4505 * The device reselected for a tagged nexus that we donnot
4506 * have.
4507 */
4508 case SIR_RESEL_BAD_I_T_L_Q:
4509 np->msgout[0] = M_ABORT_TAG;
4510 goto out;
4511 /*
4512 * The SCRIPTS let us know that the device has grabbed
4513 * our message and will abort the job.
4514 */
4515 case SIR_RESEL_ABORTED:
4516 np->lastmsg = np->msgout[0];
4517 np->msgout[0] = M_NOOP;
4518 printf ("%s:%d: message %x sent on bad reselection.\n",
4519 sym_name (np), target, np->lastmsg);
4520 goto out;
4521 /*
4522 * The SCRIPTS let us know that a message has been
4523 * successfully sent to the device.
4524 */
4525 case SIR_MSG_OUT_DONE:
4526 np->lastmsg = np->msgout[0];
4527 np->msgout[0] = M_NOOP;
4528 /* Should we really care of that */
4529 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4530 if (cp) {
4531 cp->xerr_status &= ~XE_PARITY_ERR;
4532 if (!cp->xerr_status)
4533 OUTOFFB (HF_PRT, HF_EXT_ERR);
4534 }
4535 }
4536 goto out;
4537 /*
4538 * The device didn't send a GOOD SCSI status.
4539 * We may have some work to do prior to allow
4540 * the SCRIPTS processor to continue.
4541 */
4542 case SIR_BAD_SCSI_STATUS:
4543 if (!cp)
4544 goto out;
4545 sym_sir_bad_scsi_status(np, num, cp);
4546 return;
4547 /*
4548 * We are asked by the SCRIPTS to prepare a
4549 * REJECT message.
4550 */
4551 case SIR_REJECT_TO_SEND:
4552 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4553 np->msgout[0] = M_REJECT;
4554 goto out;
4555 /*
4556 * We have been ODD at the end of a DATA IN
4557 * transfer and the device didn't send a
4558 * IGNORE WIDE RESIDUE message.
4559 * It is a data overrun condition.
4560 */
4561 case SIR_SWIDE_OVERRUN:
4562 if (cp) {
4563 OUTONB (HF_PRT, HF_EXT_ERR);
4564 cp->xerr_status |= XE_SWIDE_OVRUN;
4565 }
4566 goto out;
4567 /*
4568 * We have been ODD at the end of a DATA OUT
4569 * transfer.
4570 * It is a data underrun condition.
4571 */
4572 case SIR_SODL_UNDERRUN:
4573 if (cp) {
4574 OUTONB (HF_PRT, HF_EXT_ERR);
4575 cp->xerr_status |= XE_SODL_UNRUN;
4576 }
4577 goto out;
4578 /*
4579 * The device wants us to tranfer more data than
4580 * expected or in the wrong direction.
4581 * The number of extra bytes is in scratcha.
4582 * It is a data overrun condition.
4583 */
4584 case SIR_DATA_OVERRUN:
4585 if (cp) {
4586 OUTONB (HF_PRT, HF_EXT_ERR);
4587 cp->xerr_status |= XE_EXTRA_DATA;
4588 cp->extra_bytes += INL (nc_scratcha);
4589 }
4590 goto out;
4591 /*
4592 * The device switched to an illegal phase (4/5).
4593 */
4594 case SIR_BAD_PHASE:
4595 if (cp) {
4596 OUTONB (HF_PRT, HF_EXT_ERR);
4597 cp->xerr_status |= XE_BAD_PHASE;
4598 }
4599 goto out;
4600 /*
4601 * We received a message.
4602 */
4603 case SIR_MSG_RECEIVED:
4604 if (!cp)
4605 goto out_stuck;
4606 switch (np->msgin [0]) {
4607 /*
4608 * We received an extended message.
4609 * We handle MODIFY DATA POINTER, SDTR, WDTR
4610 * and reject all other extended messages.
4611 */
4612 case M_EXTENDED:
4613 switch (np->msgin [2]) {
4614 case M_X_MODIFY_DP:
4615 if (DEBUG_FLAGS & DEBUG_POINTER)
4616 sym_print_msg(cp,"modify DP",np->msgin);
4617 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4618 (np->msgin[5]<<8) + (np->msgin[6]);
4619 sym_modify_dp(np, tp, cp, tmp);
4620 return;
4621 case M_X_SYNC_REQ:
4622 sym_sync_nego(np, tp, cp);
4623 return;
4624 case M_X_PPR_REQ:
4625 sym_ppr_nego(np, tp, cp);
4626 return;
4627 case M_X_WIDE_REQ:
4628 sym_wide_nego(np, tp, cp);
4629 return;
4630 default:
4631 goto out_reject;
4632 }
4633 break;
4634 /*
4635 * We received a 1/2 byte message not handled from SCRIPTS.
4636 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4637 * RESIDUE messages that haven't been anticipated by
4638 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4639 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4640 */
4641 case M_IGN_RESIDUE:
4642 if (DEBUG_FLAGS & DEBUG_POINTER)
4643 sym_print_msg(cp,"ign wide residue", np->msgin);
4644 if (cp->host_flags & HF_SENSE)
4645 OUTL_DSP (SCRIPTA_BA (np, clrack));
4646 else
4647 sym_modify_dp(np, tp, cp, -1);
4648 return;
4649 case M_REJECT:
4650 if (INB (HS_PRT) == HS_NEGOTIATE)
4651 sym_nego_rejected(np, tp, cp);
4652 else {
4653 PRINT_ADDR(cp);
4654 printf ("M_REJECT received (%x:%x).\n",
4655 scr_to_cpu(np->lastmsg), np->msgout[0]);
4656 }
4657 goto out_clrack;
4658 break;
4659 default:
4660 goto out_reject;
4661 }
4662 break;
4663 /*
4664 * We received an unknown message.
4665 * Ignore all MSG IN phases and reject it.
4666 */
4667 case SIR_MSG_WEIRD:
4668 sym_print_msg(cp, "WEIRD message received", np->msgin);
4669 OUTL_DSP (SCRIPTB_BA (np, msg_weird));
4670 return;
4671 /*
4672 * Negotiation failed.
4673 * Target does not send us the reply.
4674 * Remove the HS_NEGOTIATE status.
4675 */
4676 case SIR_NEGO_FAILED:
4677 OUTB (HS_PRT, HS_BUSY);
4678 /*
4679 * Negotiation failed.
4680 * Target does not want answer message.
4681 */
4682 case SIR_NEGO_PROTO:
4683 sym_nego_default(np, tp, cp);
4684 goto out;
4685 };
4686
4687 out:
4688 OUTONB_STD ();
4689 return;
4690 out_reject:
4691 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4692 return;
4693 out_clrack:
4694 OUTL_DSP (SCRIPTA_BA (np, clrack));
4695 return;
4696 out_stuck:
4697 return;
4698 }
4699
4700 /*
4701 * Acquire a control block
4702 */
4703 ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
4704 {
4705 tcb_p tp = &np->target[tn];
4706 lcb_p lp = sym_lp(np, tp, ln);
4707 u_short tag = NO_TAG;
4708 SYM_QUEHEAD *qp;
4709 ccb_p cp = (ccb_p) 0;
4710
4711 /*
4712 * Look for a free CCB
4713 */
4714 if (sym_que_empty(&np->free_ccbq))
4715 (void) sym_alloc_ccb(np);
4716 qp = sym_remque_head(&np->free_ccbq);
4717 if (!qp)
4718 goto out;
4719 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4720
4721 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4722 /*
4723 * If the LCB is not yet available and the LUN
4724 * has been probed ok, try to allocate the LCB.
4725 */
4726 if (!lp && sym_is_bit(tp->lun_map, ln)) {
4727 lp = sym_alloc_lcb(np, tn, ln);
4728 if (!lp)
4729 goto out_free;
4730 }
4731 #endif
4732
4733 /*
4734 * If the LCB is not available here, then the
4735 * logical unit is not yet discovered. For those
4736 * ones only accept 1 SCSI IO per logical unit,
4737 * since we cannot allow disconnections.
4738 */
4739 if (!lp) {
4740 if (!sym_is_bit(tp->busy0_map, ln))
4741 sym_set_bit(tp->busy0_map, ln);
4742 else
4743 goto out_free;
4744 } else {
4745 /*
4746 * If we have been asked for a tagged command.
4747 */
4748 if (tag_order) {
4749 /*
4750 * Debugging purpose.
4751 */
4752 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4753 assert(lp->busy_itl == 0);
4754 #endif
4755 /*
4756 * Allocate resources for tags if not yet.
4757 */
4758 if (!lp->cb_tags) {
4759 sym_alloc_lcb_tags(np, tn, ln);
4760 if (!lp->cb_tags)
4761 goto out_free;
4762 }
4763 /*
4764 * Get a tag for this SCSI IO and set up
4765 * the CCB bus address for reselection,
4766 * and count it for this LUN.
4767 * Toggle reselect path to tagged.
4768 */
4769 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4770 tag = lp->cb_tags[lp->ia_tag];
4771 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4772 lp->ia_tag = 0;
4773 ++lp->busy_itlq;
4774 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4775 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4776 lp->head.resel_sa =
4777 cpu_to_scr(SCRIPTA_BA (np, resel_tag));
4778 #endif
4779 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4780 cp->tags_si = lp->tags_si;
4781 ++lp->tags_sum[cp->tags_si];
4782 ++lp->tags_since;
4783 #endif
4784 }
4785 else
4786 goto out_free;
4787 }
4788 /*
4789 * This command will not be tagged.
4790 * If we already have either a tagged or untagged
4791 * one, refuse to overlap this untagged one.
4792 */
4793 else {
4794 /*
4795 * Debugging purpose.
4796 */
4797 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4798 assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4799 #endif
4800 /*
4801 * Count this nexus for this LUN.
4802 * Set up the CCB bus address for reselection.
4803 * Toggle reselect path to untagged.
4804 */
4805 ++lp->busy_itl;
4806 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4807 if (lp->busy_itl == 1) {
4808 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4809 lp->head.resel_sa =
4810 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
4811 }
4812 else
4813 goto out_free;
4814 #endif
4815 }
4816 }
4817 /*
4818 * Put the CCB into the busy queue.
4819 */
4820 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4821 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4822 if (lp) {
4823 sym_remque(&cp->link2_ccbq);
4824 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4825 }
4826
4827 #endif
4828 /*
4829 * Remember all informations needed to free this CCB.
4830 */
4831 cp->to_abort = 0;
4832 cp->tag = tag;
4833 cp->order = tag_order;
4834 cp->target = tn;
4835 cp->lun = ln;
4836
4837 if (DEBUG_FLAGS & DEBUG_TAGS) {
4838 PRINT_LUN(np, tn, ln);
4839 printf ("ccb @%p using tag %d.\n", cp, tag);
4840 }
4841
4842 out:
4843 return cp;
4844 out_free:
4845 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4846 return (ccb_p) 0;
4847 }
4848
4849 /*
4850 * Release one control block
4851 */
4852 void sym_free_ccb (hcb_p np, ccb_p cp)
4853 {
4854 tcb_p tp = &np->target[cp->target];
4855 lcb_p lp = sym_lp(np, tp, cp->lun);
4856
4857 if (DEBUG_FLAGS & DEBUG_TAGS) {
4858 PRINT_LUN(np, cp->target, cp->lun);
4859 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
4860 }
4861
4862 /*
4863 * If LCB available,
4864 */
4865 if (lp) {
4866 /*
4867 * If tagged, release the tag, set the relect path
4868 */
4869 if (cp->tag != NO_TAG) {
4870 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4871 --lp->tags_sum[cp->tags_si];
4872 #endif
4873 /*
4874 * Free the tag value.
4875 */
4876 lp->cb_tags[lp->if_tag] = cp->tag;
4877 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4878 lp->if_tag = 0;
4879 /*
4880 * Make the reselect path invalid,
4881 * and uncount this CCB.
4882 */
4883 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4884 --lp->busy_itlq;
4885 } else { /* Untagged */
4886 /*
4887 * Make the reselect path invalid,
4888 * and uncount this CCB.
4889 */
4890 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4891 --lp->busy_itl;
4892 }
4893 /*
4894 * If no JOB active, make the LUN reselect path invalid.
4895 */
4896 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4897 lp->head.resel_sa =
4898 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
4899 }
4900 /*
4901 * Otherwise, we only accept 1 IO per LUN.
4902 * Clear the bit that keeps track of this IO.
4903 */
4904 else
4905 sym_clr_bit(tp->busy0_map, cp->lun);
4906
4907 /*
4908 * We donnot queue more than 1 ccb per target
4909 * with negotiation at any time. If this ccb was
4910 * used for negotiation, clear this info in the tcb.
4911 */
4912 if (cp == tp->nego_cp)
4913 tp->nego_cp = 0;
4914
4915 #ifdef SYM_CONF_IARB_SUPPORT
4916 /*
4917 * If we just complete the last queued CCB,
4918 * clear this info that is no longer relevant.
4919 */
4920 if (cp == np->last_cp)
4921 np->last_cp = 0;
4922 #endif
4923
4924 /*
4925 * Unmap user data from DMA map if needed.
4926 */
4927 sym_data_dmamap_unload(np, cp);
4928
4929 /*
4930 * Make this CCB available.
4931 */
4932 cp->cam_ccb = 0;
4933 cp->host_status = HS_IDLE;
4934 sym_remque(&cp->link_ccbq);
4935 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4936
4937 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
4938 /*
4939 * Cancel any pending timeout condition.
4940 */
4941 sym_untimeout_ccb(np, cp);
4942 #endif
4943
4944 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4945 if (lp) {
4946 sym_remque(&cp->link2_ccbq);
4947 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4948 if (cp->started) {
4949 if (cp->tag != NO_TAG)
4950 --lp->started_tags;
4951 else
4952 --lp->started_no_tag;
4953 }
4954 }
4955 cp->started = 0;
4956 #endif
4957 }
4958
4959 /*
4960 * Allocate a CCB from memory and initialize its fixed part.
4961 */
4962 static ccb_p sym_alloc_ccb(hcb_p np)
4963 {
4964 ccb_p cp = 0;
4965 int hcode;
4966
4967 /*
4968 * Prevent from allocating more CCBs than we can
4969 * queue to the controller.
4970 */
4971 if (np->actccbs >= SYM_CONF_MAX_START)
4972 return 0;
4973
4974 /*
4975 * Allocate memory for this CCB.
4976 */
4977 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4978 if (!cp)
4979 goto out_free;
4980
4981 /*
4982 * Allocate a bounce buffer for sense data.
4983 */
4984 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
4985 if (!cp->sns_bbuf)
4986 goto out_free;
4987
4988 /*
4989 * Allocate a map for the DMA of user data.
4990 */
4991 if (sym_data_dmamap_create(np, cp))
4992 goto out_free;
4993
4994 /*
4995 * Count it.
4996 */
4997 np->actccbs++;
4998
4999 /*
5000 * Compute the bus address of this ccb.
5001 */
5002 cp->ccb_ba = vtobus(cp);
5003
5004 /*
5005 * Insert this ccb into the hashed list.
5006 */
5007 hcode = CCB_HASH_CODE(cp->ccb_ba);
5008 cp->link_ccbh = np->ccbh[hcode];
5009 np->ccbh[hcode] = cp;
5010
5011 /*
5012 * Initialyze the start and restart actions.
5013 */
5014 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5015 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5016
5017 /*
5018 * Initilialyze some other fields.
5019 */
5020 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
5021
5022 /*
5023 * Chain into free ccb queue.
5024 */
5025 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
5026
5027 /*
5028 * Chain into optionnal lists.
5029 */
5030 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5031 sym_insque_head(&cp->tmo_linkq, &np->tmo0_ccbq);
5032 #endif
5033 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5034 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
5035 #endif
5036 return cp;
5037 out_free:
5038 if (cp) {
5039 if (cp->sns_bbuf)
5040 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
5041 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5042 }
5043 return 0;
5044 }
5045
5046 /*
5047 * Look up a CCB from a DSA value.
5048 */
5049 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
5050 {
5051 int hcode;
5052 ccb_p cp;
5053
5054 hcode = CCB_HASH_CODE(dsa);
5055 cp = np->ccbh[hcode];
5056 while (cp) {
5057 if (cp->ccb_ba == dsa)
5058 break;
5059 cp = cp->link_ccbh;
5060 }
5061
5062 return cp;
5063 }
5064
5065 /*
5066 * Target control block initialisation.
5067 * Nothing important to do at the moment.
5068 */
5069 static void sym_init_tcb (hcb_p np, u_char tn)
5070 {
5071 #if 0 /* Hmmm... this checking looks paranoid. */
5072 /*
5073 * Check some alignments required by the chip.
5074 */
5075 assert (((offsetof(struct sym_reg, nc_sxfer) ^
5076 offsetof(struct sym_tcb, head.sval)) &3) == 0);
5077 assert (((offsetof(struct sym_reg, nc_scntl3) ^
5078 offsetof(struct sym_tcb, head.wval)) &3) == 0);
5079 #endif
5080 }
5081
5082 /*
5083 * Lun control block allocation and initialization.
5084 */
5085 lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
5086 {
5087 tcb_p tp = &np->target[tn];
5088 lcb_p lp = sym_lp(np, tp, ln);
5089
5090 /*
5091 * Already done, just return.
5092 */
5093 if (lp)
5094 return lp;
5095
5096 /*
5097 * Donnot allow LUN control block
5098 * allocation for not probed LUNs.
5099 */
5100 if (!sym_is_bit(tp->lun_map, ln))
5101 return 0;
5102
5103 /*
5104 * Initialize the target control block if not yet.
5105 */
5106 sym_init_tcb (np, tn);
5107
5108 /*
5109 * Allocate the LCB bus address array.
5110 * Compute the bus address of this table.
5111 */
5112 if (ln && !tp->luntbl) {
5113 int i;
5114
5115 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5116 if (!tp->luntbl)
5117 goto fail;
5118 for (i = 0 ; i < 64 ; i++)
5119 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5120 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5121 }
5122
5123 /*
5124 * Allocate the table of pointers for LUN(s) > 0, if needed.
5125 */
5126 if (ln && !tp->lunmp) {
5127 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
5128 "LUNMP");
5129 if (!tp->lunmp)
5130 goto fail;
5131 }
5132
5133 /*
5134 * Allocate the lcb.
5135 * Make it available to the chip.
5136 */
5137 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5138 if (!lp)
5139 goto fail;
5140 if (ln) {
5141 tp->lunmp[ln] = lp;
5142 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5143 }
5144 else {
5145 tp->lun0p = lp;
5146 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5147 }
5148
5149 /*
5150 * Let the itl task point to error handling.
5151 */
5152 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5153
5154 /*
5155 * Set the reselect pattern to our default. :)
5156 */
5157 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
5158
5159 /*
5160 * Set user capabilities.
5161 */
5162 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5163
5164 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5165 /*
5166 * Initialize device queueing.
5167 */
5168 sym_que_init(&lp->waiting_ccbq);
5169 sym_que_init(&lp->started_ccbq);
5170 lp->started_max = SYM_CONF_MAX_TASK;
5171 lp->started_limit = SYM_CONF_MAX_TASK;
5172 #endif
5173 /*
5174 * If we are busy, count the IO.
5175 */
5176 if (sym_is_bit(tp->busy0_map, ln)) {
5177 lp->busy_itl = 1;
5178 sym_clr_bit(tp->busy0_map, ln);
5179 }
5180 fail:
5181 return lp;
5182 }
5183
5184 /*
5185 * Allocate LCB resources for tagged command queuing.
5186 */
5187 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
5188 {
5189 tcb_p tp = &np->target[tn];
5190 lcb_p lp = sym_lp(np, tp, ln);
5191 int i;
5192
5193 /*
5194 * If LCB not available, try to allocate it.
5195 */
5196 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5197 goto fail;
5198
5199 /*
5200 * Allocate the task table and and the tag allocation
5201 * circular buffer. We want both or none.
5202 */
5203 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5204 if (!lp->itlq_tbl)
5205 goto fail;
5206 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
5207 if (!lp->cb_tags) {
5208 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5209 lp->itlq_tbl = 0;
5210 goto fail;
5211 }
5212
5213 /*
5214 * Initialize the task table with invalid entries.
5215 */
5216 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5217 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5218
5219 /*
5220 * Fill up the tag buffer with tag numbers.
5221 */
5222 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5223 lp->cb_tags[i] = i;
5224
5225 /*
5226 * Make the task table available to SCRIPTS,
5227 * And accept tagged commands now.
5228 */
5229 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5230
5231 return;
5232 fail:
5233 return;
5234 }
5235
5236 /*
5237 * Queue a SCSI IO to the controller.
5238 */
5239 int sym_queue_scsiio(hcb_p np, cam_scsiio_p csio, ccb_p cp)
5240 {
5241 tcb_p tp;
5242 lcb_p lp;
5243 u_char idmsg, *msgptr;
5244 u_int msglen;
5245
5246 /*
5247 * Keep track of the IO in our CCB.
5248 */
5249 cp->cam_ccb = (cam_ccb_p) csio;
5250
5251 /*
5252 * Retreive the target descriptor.
5253 */
5254 tp = &np->target[cp->target];
5255
5256 /*
5257 * Retreive the lun descriptor.
5258 */
5259 lp = sym_lp(np, tp, cp->lun);
5260
5261 /*
5262 * Build the IDENTIFY message.
5263 */
5264 idmsg = M_IDENTIFY | cp->lun;
5265 if (cp->tag != NO_TAG || (lp && (lp->curr_flags & SYM_DISC_ENABLED)))
5266 idmsg |= 0x40;
5267
5268 msgptr = cp->scsi_smsg;
5269 msglen = 0;
5270 msgptr[msglen++] = idmsg;
5271
5272 /*
5273 * Build the tag message if present.
5274 */
5275 if (cp->tag != NO_TAG) {
5276 u_char order = cp->order;
5277
5278 switch(order) {
5279 case M_ORDERED_TAG:
5280 break;
5281 case M_HEAD_TAG:
5282 break;
5283 default:
5284 order = M_SIMPLE_TAG;
5285 }
5286 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5287 /*
5288 * Avoid too much reordering of SCSI commands.
5289 * The algorithm tries to prevent completion of any
5290 * tagged command from being delayed against more
5291 * than 3 times the max number of queued commands.
5292 */
5293 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5294 lp->tags_si = !(lp->tags_si);
5295 if (lp->tags_sum[lp->tags_si]) {
5296 order = M_ORDERED_TAG;
5297 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5298 PRINT_ADDR(cp);
5299 printf("ordered tag forced.\n");
5300 }
5301 }
5302 lp->tags_since = 0;
5303 }
5304 #endif
5305 msgptr[msglen++] = order;
5306
5307 /*
5308 * For less than 128 tags, actual tags are numbered
5309 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5310 * with devices that have problems with #TAG 0 or too
5311 * great #TAG numbers. For more tags (up to 256),
5312 * we use directly our tag number.
5313 */
5314 #if SYM_CONF_MAX_TASK > (512/4)
5315 msgptr[msglen++] = cp->tag;
5316 #else
5317 msgptr[msglen++] = (cp->tag << 1) + 1;
5318 #endif
5319 }
5320
5321 /*
5322 * Build a negotiation message if needed.
5323 * (nego_status is filled by sym_prepare_nego())
5324 */
5325 cp->nego_status = 0;
5326 if (tp->tinfo.curr.width != tp->tinfo.goal.width ||
5327 tp->tinfo.curr.period != tp->tinfo.goal.period ||
5328 tp->tinfo.curr.offset != tp->tinfo.goal.offset ||
5329 tp->tinfo.curr.options != tp->tinfo.goal.options) {
5330 if (!tp->nego_cp && lp)
5331 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
5332 }
5333
5334 /*
5335 * Startqueue
5336 */
5337 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
5338 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
5339
5340 /*
5341 * select
5342 */
5343 cp->phys.select.sel_id = cp->target;
5344 cp->phys.select.sel_scntl3 = tp->head.wval;
5345 cp->phys.select.sel_sxfer = tp->head.sval;
5346 cp->phys.select.sel_scntl4 = tp->head.uval;
5347
5348 /*
5349 * message
5350 */
5351 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
5352 cp->phys.smsg.size = cpu_to_scr(msglen);
5353
5354 /*
5355 * status
5356 */
5357 cp->host_xflags = 0;
5358 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5359 cp->ssss_status = S_ILLEGAL;
5360 cp->xerr_status = 0;
5361 cp->host_flags = 0;
5362 cp->extra_bytes = 0;
5363
5364 /*
5365 * extreme data pointer.
5366 * shall be positive, so -1 is lower than lowest.:)
5367 */
5368 cp->ext_sg = -1;
5369 cp->ext_ofs = 0;
5370
5371 /*
5372 * Build the CDB and DATA descriptor block
5373 * and start the IO.
5374 */
5375 return sym_setup_data_and_start(np, csio, cp);
5376 }
5377
5378 /*
5379 * Reset a SCSI target (all LUNs of this target).
5380 */
5381 int sym_reset_scsi_target(hcb_p np, int target)
5382 {
5383 tcb_p tp;
5384
5385 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5386 return -1;
5387
5388 tp = &np->target[target];
5389 tp->to_reset = 1;
5390
5391 np->istat_sem = SEM;
5392 OUTB (nc_istat, SIGP|SEM);
5393
5394 return 0;
5395 }
5396
5397 /*
5398 * Abort a SCSI IO.
5399 */
5400 int sym_abort_ccb(hcb_p np, ccb_p cp, int timed_out)
5401 {
5402 /*
5403 * Check that the IO is active.
5404 */
5405 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5406 return -1;
5407
5408 /*
5409 * If a previous abort didn't succeed in time,
5410 * perform a BUS reset.
5411 */
5412 if (cp->to_abort) {
5413 sym_reset_scsi_bus(np, 1);
5414 return 0;
5415 }
5416
5417 /*
5418 * Mark the CCB for abort and allow time for.
5419 */
5420 cp->to_abort = timed_out ? 2 : 1;
5421
5422 /*
5423 * Tell the SCRIPTS processor to stop and synchronize with us.
5424 */
5425 np->istat_sem = SEM;
5426 OUTB (nc_istat, SIGP|SEM);
5427 return 0;
5428 }
5429
5430 int sym_abort_scsiio(hcb_p np, cam_ccb_p ccb, int timed_out)
5431 {
5432 ccb_p cp;
5433 SYM_QUEHEAD *qp;
5434
5435 /*
5436 * Look up our CCB control block.
5437 */
5438 cp = 0;
5439 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5440 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5441 if (cp2->cam_ccb == ccb) {
5442 cp = cp2;
5443 break;
5444 }
5445 }
5446
5447 return sym_abort_ccb(np, cp, timed_out);
5448 }
5449
5450 /*
5451 * Complete execution of a SCSI command with extented
5452 * error, SCSI status error, or having been auto-sensed.
5453 *
5454 * The SCRIPTS processor is not running there, so we
5455 * can safely access IO registers and remove JOBs from
5456 * the START queue.
5457 * SCRATCHA is assumed to have been loaded with STARTPOS
5458 * before the SCRIPTS called the C code.
5459 */
5460 void sym_complete_error (hcb_p np, ccb_p cp)
5461 {
5462 tcb_p tp;
5463 lcb_p lp;
5464 int resid;
5465 int i;
5466
5467 /*
5468 * Paranoid check. :)
5469 */
5470 if (!cp || !cp->cam_ccb)
5471 return;
5472
5473 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5474 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
5475 cp->host_status, cp->ssss_status, cp->host_flags,
5476 cp->target, cp->lun);
5477 MDELAY(100);
5478 }
5479
5480 /*
5481 * Get target and lun pointers.
5482 */
5483 tp = &np->target[cp->target];
5484 lp = sym_lp(np, tp, cp->lun);
5485
5486 /*
5487 * Check for extended errors.
5488 */
5489 if (cp->xerr_status) {
5490 if (sym_verbose)
5491 sym_print_xerr(cp, cp->xerr_status);
5492 if (cp->host_status == HS_COMPLETE)
5493 cp->host_status = HS_COMP_ERR;
5494 }
5495
5496 /*
5497 * Calculate the residual.
5498 */
5499 resid = sym_compute_residual(np, cp);
5500
5501 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5502 resid = 0; /* throw them away. :) */
5503 cp->sv_resid = 0;
5504 }
5505 #ifdef DEBUG_2_0_X
5506 if (resid)
5507 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5508 #endif
5509
5510 /*
5511 * Dequeue all queued CCBs for that device
5512 * not yet started by SCRIPTS.
5513 */
5514 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5515 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5516
5517 /*
5518 * Restart the SCRIPTS processor.
5519 */
5520 OUTL_DSP (SCRIPTA_BA (np, start));
5521
5522 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5523 if (cp->host_status == HS_COMPLETE &&
5524 cp->ssss_status == S_QUEUE_FULL) {
5525 if (!lp || lp->started_tags - i < 2)
5526 goto weirdness;
5527 /*
5528 * Decrease queue depth as needed.
5529 */
5530 lp->started_max = lp->started_tags - i - 1;
5531 lp->num_sgood = 0;
5532
5533 if (sym_verbose >= 2) {
5534 PRINT_LUN(np, cp->target, cp->lun);
5535 printf(" queue depth is now %d\n", lp->started_max);
5536 }
5537
5538 /*
5539 * Repair the CCB.
5540 */
5541 cp->host_status = HS_BUSY;
5542 cp->ssss_status = S_ILLEGAL;
5543
5544 /*
5545 * Let's requeue it to device.
5546 */
5547 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
5548 goto finish;
5549 }
5550 weirdness:
5551 #endif
5552 /*
5553 * Synchronize DMA map if needed.
5554 */
5555 sym_data_dmamap_postsync(np, cp);
5556
5557 /*
5558 * Build result in CAM ccb.
5559 */
5560 sym_set_cam_result_error(np, cp, resid);
5561
5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5563 finish:
5564 #endif
5565 /*
5566 * Add this one to the COMP queue.
5567 */
5568 sym_remque(&cp->link_ccbq);
5569 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5570
5571 /*
5572 * Complete all those commands with either error
5573 * or requeue condition.
5574 */
5575 sym_flush_comp_queue(np, 0);
5576
5577 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5578 /*
5579 * Donnot start more than 1 command after an error.
5580 */
5581 if (lp)
5582 sym_start_next_ccbs(np, lp, 1);
5583 #endif
5584 }
5585
5586 /*
5587 * Complete execution of a successful SCSI command.
5588 *
5589 * Only successful commands go to the DONE queue,
5590 * since we need to have the SCRIPTS processor
5591 * stopped on any error condition.
5592 * The SCRIPTS processor is running while we are
5593 * completing successful commands.
5594 */
5595 void sym_complete_ok (hcb_p np, ccb_p cp)
5596 {
5597 tcb_p tp;
5598 lcb_p lp;
5599 cam_ccb_p ccb;
5600 int resid;
5601
5602 /*
5603 * Paranoid check. :)
5604 */
5605 if (!cp || !cp->cam_ccb)
5606 return;
5607 assert (cp->host_status == HS_COMPLETE);
5608
5609 /*
5610 * Get user command.
5611 */
5612 ccb = cp->cam_ccb;
5613
5614 /*
5615 * Get target and lun pointers.
5616 */
5617 tp = &np->target[cp->target];
5618 lp = sym_lp(np, tp, cp->lun);
5619
5620 /*
5621 * Assume device discovered on first success.
5622 */
5623 if (!lp)
5624 sym_set_bit(tp->lun_map, cp->lun);
5625
5626 /*
5627 * If all data have been transferred, given than no
5628 * extended error did occur, there is no residual.
5629 */
5630 resid = 0;
5631 if (cp->phys.head.lastp != sym_goalp(cp))
5632 resid = sym_compute_residual(np, cp);
5633
5634 /*
5635 * Wrong transfer residuals may be worse than just always
5636 * returning zero. User can disable this feature from
5637 * sym_conf.h. Residual support is enabled by default.
5638 */
5639 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5640 resid = 0;
5641 #ifdef DEBUG_2_0_X
5642 if (resid)
5643 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5644 #endif
5645
5646 /*
5647 * Synchronize DMA map if needed.
5648 */
5649 sym_data_dmamap_postsync(np, cp);
5650
5651 /*
5652 * Build result in CAM ccb.
5653 */
5654 sym_set_cam_result_ok(np, cp, resid);
5655
5656 #ifdef SYM_OPT_SNIFF_INQUIRY
5657 /*
5658 * On standard INQUIRY response (EVPD and CmDt
5659 * not set), sniff out device capabilities.
5660 */
5661 if (cp->cdb_buf[0] == 0x12 && !(cp->cdb_buf[1] & 0x3))
5662 sym_sniff_inquiry(np, cp->cam_ccb, resid);
5663 #endif
5664
5665 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5666 /*
5667 * If max number of started ccbs had been reduced,
5668 * increase it if 200 good status received.
5669 */
5670 if (lp && lp->started_max < lp->started_limit) {
5671 ++lp->num_sgood;
5672 if (lp->num_sgood >= 200) {
5673 lp->num_sgood = 0;
5674 ++lp->started_max;
5675 if (sym_verbose >= 2) {
5676 PRINT_LUN(np, cp->target, cp->lun);
5677 printf(" queue depth is now %d\n",
5678 lp->started_max);
5679 }
5680 }
5681 }
5682 #endif
5683
5684 /*
5685 * Free our CCB.
5686 */
5687 sym_free_ccb (np, cp);
5688
5689 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5690 /*
5691 * Requeue a couple of awaiting scsi commands.
5692 */
5693 if (lp && !sym_que_empty(&lp->waiting_ccbq))
5694 sym_start_next_ccbs(np, lp, 2);
5695 #endif
5696 /*
5697 * Complete the command.
5698 */
5699 sym_xpt_done(np, ccb);
5700 }
5701
5702 /*
5703 * Soft-attach the controller.
5704 */
5705 #ifdef SYM_OPT_NVRAM_PRE_READ
5706 int sym_hcb_attach(hcb_p np, struct sym_fw *fw, struct sym_nvram *nvram)
5707 #else
5708 int sym_hcb_attach(hcb_p np, struct sym_fw *fw)
5709 #endif
5710 {
5711 #ifndef SYM_OPT_NVRAM_PRE_READ
5712 struct sym_nvram nvram_buf, *nvram = &nvram_buf;
5713 #endif
5714 int i;
5715
5716 /*
5717 * Get some info about the firmware.
5718 */
5719 np->scripta_sz = fw->a_size;
5720 np->scriptb_sz = fw->b_size;
5721 np->scriptz_sz = fw->z_size;
5722 np->fw_setup = fw->setup;
5723 np->fw_patch = fw->patch;
5724 np->fw_name = fw->name;
5725
5726 /*
5727 * Save setting of some IO registers, so we will
5728 * be able to probe specific implementations.
5729 */
5730 sym_save_initial_setting (np);
5731
5732 /*
5733 * Reset the chip now, since it has been reported
5734 * that SCSI clock calibration may not work properly
5735 * if the chip is currently active.
5736 */
5737 sym_chip_reset (np);
5738
5739 /*
5740 * Try to read the user set-up.
5741 */
5742 #ifndef SYM_OPT_NVRAM_PRE_READ
5743 (void) sym_read_nvram(np, nvram);
5744 #endif
5745
5746 /*
5747 * Prepare controller and devices settings, according
5748 * to chip features, user set-up and driver set-up.
5749 */
5750 (void) sym_prepare_setting(np, nvram);
5751
5752 /*
5753 * Check the PCI clock frequency.
5754 * Must be performed after prepare_setting since it destroys
5755 * STEST1 that is used to probe for the clock doubler.
5756 */
5757 i = sym_getpciclock(np);
5758 if (i > 37000 && !(np->features & FE_66MHZ))
5759 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5760 sym_name(np), i);
5761
5762 /*
5763 * Allocate the start queue.
5764 */
5765 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5766 if (!np->squeue)
5767 goto attach_failed;
5768 np->squeue_ba = vtobus(np->squeue);
5769
5770 /*
5771 * Allocate the done queue.
5772 */
5773 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5774 if (!np->dqueue)
5775 goto attach_failed;
5776 np->dqueue_ba = vtobus(np->dqueue);
5777
5778 /*
5779 * Allocate the target bus address array.
5780 */
5781 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
5782 if (!np->targtbl)
5783 goto attach_failed;
5784 np->targtbl_ba = vtobus(np->targtbl);
5785
5786 /*
5787 * Allocate SCRIPTS areas.
5788 */
5789 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5790 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5791 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5792 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5793 goto attach_failed;
5794
5795 /*
5796 * Allocate the array of lists of CCBs hashed by DSA.
5797 */
5798 np->ccbh = sym_calloc(sizeof(ccb_p *)*CCB_HASH_SIZE, "CCBH");
5799 if (!np->ccbh)
5800 goto attach_failed;
5801
5802 /*
5803 * Initialyze the CCB free and busy queues.
5804 */
5805 sym_que_init(&np->free_ccbq);
5806 sym_que_init(&np->busy_ccbq);
5807 sym_que_init(&np->comp_ccbq);
5808
5809 /*
5810 * Initializations for optional handling
5811 * of IO timeouts and device queueing.
5812 */
5813 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5814 sym_que_init(&np->tmo0_ccbq);
5815 np->tmo_ccbq =
5816 sym_calloc(2*SYM_CONF_TIMEOUT_ORDER_MAX*sizeof(SYM_QUEHEAD),
5817 "TMO_CCBQ");
5818 for (i = 0 ; i < 2*SYM_CONF_TIMEOUT_ORDER_MAX ; i++)
5819 sym_que_init(&np->tmo_ccbq[i]);
5820 #endif
5821 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5822 sym_que_init(&np->dummy_ccbq);
5823 #endif
5824 /*
5825 * Allocate some CCB. We need at least ONE.
5826 */
5827 if (!sym_alloc_ccb(np))
5828 goto attach_failed;
5829
5830 /*
5831 * Calculate BUS addresses where we are going
5832 * to load the SCRIPTS.
5833 */
5834 np->scripta_ba = vtobus(np->scripta0);
5835 np->scriptb_ba = vtobus(np->scriptb0);
5836 np->scriptz_ba = vtobus(np->scriptz0);
5837
5838 if (np->ram_ba) {
5839 np->scripta_ba = np->ram_ba;
5840 if (np->features & FE_RAM8K) {
5841 np->ram_ws = 8192;
5842 np->scriptb_ba = np->scripta_ba + 4096;
5843 #if 0 /* May get useful for 64 BIT PCI addressing */
5844 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5845 #endif
5846 }
5847 else
5848 np->ram_ws = 4096;
5849 }
5850
5851 /*
5852 * Copy scripts to controller instance.
5853 */
5854 bcopy(fw->a_base, np->scripta0, np->scripta_sz);
5855 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
5856 bcopy(fw->z_base, np->scriptz0, np->scriptz_sz);
5857
5858 /*
5859 * Setup variable parts in scripts and compute
5860 * scripts bus addresses used from the C code.
5861 */
5862 np->fw_setup(np, fw);
5863
5864 /*
5865 * Bind SCRIPTS with physical addresses usable by the
5866 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5867 */
5868 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5869 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5870 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5871
5872 #ifdef SYM_CONF_IARB_SUPPORT
5873 /*
5874 * If user wants IARB to be set when we win arbitration
5875 * and have other jobs, compute the max number of consecutive
5876 * settings of IARB hints before we leave devices a chance to
5877 * arbitrate for reselection.
5878 */
5879 #ifdef SYM_SETUP_IARB_MAX
5880 np->iarb_max = SYM_SETUP_IARB_MAX;
5881 #else
5882 np->iarb_max = 4;
5883 #endif
5884 #endif
5885
5886 /*
5887 * Prepare the idle and invalid task actions.
5888 */
5889 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5890 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5891 np->idletask_ba = vtobus(&np->idletask);
5892
5893 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5894 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5895 np->notask_ba = vtobus(&np->notask);
5896
5897 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5898 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5899 np->bad_itl_ba = vtobus(&np->bad_itl);
5900
5901 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5902 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
5903 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5904
5905 /*
5906 * Allocate and prepare the lun JUMP table that is used
5907 * for a target prior the probing of devices (bad lun table).
5908 * A private table will be allocated for the target on the
5909 * first INQUIRY response received.
5910 */
5911 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5912 if (!np->badluntbl)
5913 goto attach_failed;
5914
5915 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
5916 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5917 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5918
5919 /*
5920 * Prepare the bus address array that contains the bus
5921 * address of each target control block.
5922 * For now, assume all logical units are wrong. :)
5923 */
5924 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5925 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5926 np->target[i].head.luntbl_sa =
5927 cpu_to_scr(vtobus(np->badluntbl));
5928 np->target[i].head.lun0_sa =
5929 cpu_to_scr(vtobus(&np->badlun_sa));
5930 }
5931
5932 /*
5933 * Now check the cache handling of the pci chipset.
5934 */
5935 if (sym_snooptest (np)) {
5936 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5937 goto attach_failed;
5938 };
5939
5940 /*
5941 * Sigh! we are done.
5942 */
5943 return 0;
5944
5945 /*
5946 * We have failed.
5947 * We will try to free all the resources we have
5948 * allocated, but if we are a boot device, this
5949 * will not help that much.;)
5950 */
5951 attach_failed:
5952 sym_hcb_free(np);
5953 return -ENXIO;
5954 }
5955
5956 /*
5957 * Free everything that has been allocated for this device.
5958 */
5959 void sym_hcb_free(hcb_p np)
5960 {
5961 SYM_QUEHEAD *qp;
5962 ccb_p cp;
5963 tcb_p tp;
5964 lcb_p lp;
5965 int target, lun;
5966
5967 if (np->scriptz0)
5968 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5969 if (np->scriptb0)
5970 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5971 if (np->scripta0)
5972 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5973 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5974 if (np->tmo_ccbq)
5975 sym_mfree(np->tmo_ccbq,
5976 2*SYM_CONF_TIMEOUT_ORDER_MAX*sizeof(SYM_QUEHEAD),
5977 "TMO_CCBQ");
5978 #endif
5979 if (np->squeue)
5980 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5981 if (np->dqueue)
5982 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5983
5984 if (np->actccbs) {
5985 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5986 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5987 sym_data_dmamap_destroy(np, cp);
5988 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN,
5989 "SNS_BBUF");
5990 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5991 }
5992 }
5993 if (np->ccbh)
5994 sym_mfree(np->ccbh, sizeof(ccb_p *)*CCB_HASH_SIZE, "CCBH");
5995
5996 if (np->badluntbl)
5997 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5998
5999 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
6000 tp = &np->target[target];
6001 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
6002 lp = sym_lp(np, tp, lun);
6003 if (!lp)
6004 continue;
6005 if (lp->itlq_tbl)
6006 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
6007 "ITLQ_TBL");
6008 if (lp->cb_tags)
6009 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
6010 "CB_TAGS");
6011 sym_mfree_dma(lp, sizeof(*lp), "LCB");
6012 }
6013 #if SYM_CONF_MAX_LUN > 1
6014 if (tp->lunmp)
6015 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
6016 "LUNMP");
6017 #endif
6018 }
6019 if (np->targtbl)
6020 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
6021 }
6022