1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2  * bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <asm/oplib.h>
11 #include <asm/ebus.h>
12 #define __KERNEL_SYSCALLS__
13 static int errno;
14 #include <asm/unistd.h>
15 
16 #include "bbc_i2c.h"
17 #include "max1617.h"
18 
19 #undef ENVCTRL_TRACE
20 
21 /* WARNING: Making changes to this driver is very dangerous.
22  *          If you misprogram the sensor chips they can
23  *          cut the power on you instantly.
24  */
25 
26 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
27  * Both are implemented using max1617 i2c devices.  Each max1617
28  * monitors 2 temperatures, one for one of the cpu dies and the other
29  * for the ambient temperature.
30  *
31  * The max1617 is capable of being programmed with power-off
32  * temperature values, one low limit and one high limit.  These
33  * can be controlled independantly for the cpu or ambient temperature.
34  * If a limit is violated, the power is simply shut off.  The frequency
35  * with which the max1617 does temperature sampling can be controlled
36  * as well.
37  *
38  * Three fans exist inside the machine, all three are controlled with
39  * an i2c digital to analog converter.  There is a fan directed at the
40  * two processor slots, another for the rest of the enclosure, and the
41  * third is for the power supply.  The first two fans may be speed
42  * controlled by changing the voltage fed to them.  The third fan may
43  * only be completely off or on.  The third fan is meant to only be
44  * disabled/enabled when entering/exiting the lowest power-saving
45  * mode of the machine.
46  *
47  * An environmental control kernel thread periodically monitors all
48  * temperature sensors.  Based upon the samples it will adjust the
49  * fan speeds to try and keep the system within a certain temperature
50  * range (the goal being to make the fans as quiet as possible without
51  * allowing the system to get too hot).
52  *
53  * If the temperature begins to rise/fall outside of the acceptable
54  * operating range, a periodic warning will be sent to the kernel log.
55  * The fans will be put on full blast to attempt to deal with this
56  * situation.  After exceeding the acceptable operating range by a
57  * certain threshold, the kernel thread will shut down the system.
58  * Here, the thread is attempting to shut the machine down cleanly
59  * before the hardware based power-off event is triggered.
60  */
61 
62 /* These settings are in Celsius.  We use these defaults only
63  * if we cannot interrogate the cpu-fru SEEPROM.
64  */
65 struct temp_limits {
66 	s8 high_pwroff, high_shutdown, high_warn;
67 	s8 low_warn, low_shutdown, low_pwroff;
68 };
69 
70 static struct temp_limits cpu_temp_limits[2] = {
71 	{ 100, 85, 80, 5, -5, -10 },
72 	{ 100, 85, 80, 5, -5, -10 },
73 };
74 
75 static struct temp_limits amb_temp_limits[2] = {
76 	{ 65, 55, 40, 5, -5, -10 },
77 	{ 65, 55, 40, 5, -5, -10 },
78 };
79 
80 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
81 
82 struct bbc_cpu_temperature {
83 	struct bbc_cpu_temperature	*next;
84 
85 	struct bbc_i2c_client		*client;
86 	int				index;
87 
88 	/* Current readings, and history. */
89 	s8				curr_cpu_temp;
90 	s8				curr_amb_temp;
91 	s8				prev_cpu_temp;
92 	s8				prev_amb_temp;
93 	s8				avg_cpu_temp;
94 	s8				avg_amb_temp;
95 
96 	int				sample_tick;
97 
98 	enum fan_action			fan_todo[2];
99 #define FAN_AMBIENT	0
100 #define FAN_CPU		1
101 };
102 
103 struct bbc_cpu_temperature *all_bbc_temps;
104 
105 struct bbc_fan_control {
106 	struct bbc_fan_control 	*next;
107 
108 	struct bbc_i2c_client 	*client;
109 	int 			index;
110 
111 	int			psupply_fan_on;
112 	int			cpu_fan_speed;
113 	int			system_fan_speed;
114 };
115 
116 struct bbc_fan_control *all_bbc_fans;
117 
118 #define CPU_FAN_REG	0xf0
119 #define SYS_FAN_REG	0xf2
120 #define PSUPPLY_FAN_REG	0xf4
121 
122 #define FAN_SPEED_MIN	0x0c
123 #define FAN_SPEED_MAX	0x3f
124 
125 #define PSUPPLY_FAN_ON	0x1f
126 #define PSUPPLY_FAN_OFF	0x00
127 
set_fan_speeds(struct bbc_fan_control * fp)128 static void set_fan_speeds(struct bbc_fan_control *fp)
129 {
130 	/* Put temperatures into range so we don't mis-program
131 	 * the hardware.
132 	 */
133 	if (fp->cpu_fan_speed < FAN_SPEED_MIN)
134 		fp->cpu_fan_speed = FAN_SPEED_MIN;
135 	if (fp->cpu_fan_speed > FAN_SPEED_MAX)
136 		fp->cpu_fan_speed = FAN_SPEED_MAX;
137 	if (fp->system_fan_speed < FAN_SPEED_MIN)
138 		fp->system_fan_speed = FAN_SPEED_MIN;
139 	if (fp->system_fan_speed > FAN_SPEED_MAX)
140 		fp->system_fan_speed = FAN_SPEED_MAX;
141 #ifdef ENVCTRL_TRACE
142 	printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
143 	       fp->index,
144 	       fp->cpu_fan_speed, fp->system_fan_speed);
145 #endif
146 
147 	bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
148 	bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
149 	bbc_i2c_writeb(fp->client,
150 		       (fp->psupply_fan_on ?
151 			PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
152 		       PSUPPLY_FAN_REG);
153 }
154 
get_current_temps(struct bbc_cpu_temperature * tp)155 static void get_current_temps(struct bbc_cpu_temperature *tp)
156 {
157 	tp->prev_amb_temp = tp->curr_amb_temp;
158 	bbc_i2c_readb(tp->client,
159 		      (unsigned char *) &tp->curr_amb_temp,
160 		      MAX1617_AMB_TEMP);
161 	tp->prev_cpu_temp = tp->curr_cpu_temp;
162 	bbc_i2c_readb(tp->client,
163 		      (unsigned char *) &tp->curr_cpu_temp,
164 		      MAX1617_CPU_TEMP);
165 #ifdef ENVCTRL_TRACE
166 	printk("temp%d: cpu(%d C) amb(%d C)\n",
167 	       tp->index,
168 	       (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
169 #endif
170 }
171 
172 
do_envctrl_shutdown(struct bbc_cpu_temperature * tp)173 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
174 {
175 	static int shutting_down = 0;
176 	static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
177 	char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
178 	char *type = "???";
179 	s8 val = -1;
180 
181 	if (shutting_down != 0)
182 		return;
183 
184 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
185 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
186 		type = "ambient";
187 		val = tp->curr_amb_temp;
188 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
189 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
190 		type = "CPU";
191 		val = tp->curr_cpu_temp;
192 	}
193 
194 	printk(KERN_CRIT "temp%d: Outside of safe %s "
195 	       "operating temperature, %d C.\n",
196 	       tp->index, type, val);
197 
198 	printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
199 
200 	shutting_down = 1;
201 	if (execve("/sbin/shutdown", argv, envp) < 0)
202 		printk(KERN_CRIT "envctrl: shutdown execution failed\n");
203 }
204 
205 #define WARN_INTERVAL	(30 * HZ)
206 
analyze_ambient_temp(struct bbc_cpu_temperature * tp,unsigned long * last_warn,int tick)207 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
208 {
209 	int ret = 0;
210 
211 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
212 		if (tp->curr_amb_temp >=
213 		    amb_temp_limits[tp->index].high_warn) {
214 			printk(KERN_WARNING "temp%d: "
215 			       "Above safe ambient operating temperature, %d C.\n",
216 			       tp->index, (int) tp->curr_amb_temp);
217 			ret = 1;
218 		} else if (tp->curr_amb_temp <
219 			   amb_temp_limits[tp->index].low_warn) {
220 			printk(KERN_WARNING "temp%d: "
221 			       "Below safe ambient operating temperature, %d C.\n",
222 			       tp->index, (int) tp->curr_amb_temp);
223 			ret = 1;
224 		}
225 		if (ret)
226 			*last_warn = jiffies;
227 	} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
228 		   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
229 		ret = 1;
230 
231 	/* Now check the shutdown limits. */
232 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
233 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
234 		do_envctrl_shutdown(tp);
235 		ret = 1;
236 	}
237 
238 	if (ret) {
239 		tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
240 	} else if ((tick & (8 - 1)) == 0) {
241 		s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
242 		s8 amb_goal_lo;
243 
244 		amb_goal_lo = amb_goal_hi - 3;
245 
246 		/* We do not try to avoid 'too cold' events.  Basically we
247 		 * only try to deal with over-heating and fan noise reduction.
248 		 */
249 		if (tp->avg_amb_temp < amb_goal_hi) {
250 			if (tp->avg_amb_temp >= amb_goal_lo)
251 				tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
252 			else
253 				tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
254 		} else {
255 			tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
256 		}
257 	} else {
258 		tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
259 	}
260 }
261 
analyze_cpu_temp(struct bbc_cpu_temperature * tp,unsigned long * last_warn,int tick)262 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
263 {
264 	int ret = 0;
265 
266 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
267 		if (tp->curr_cpu_temp >=
268 		    cpu_temp_limits[tp->index].high_warn) {
269 			printk(KERN_WARNING "temp%d: "
270 			       "Above safe CPU operating temperature, %d C.\n",
271 			       tp->index, (int) tp->curr_cpu_temp);
272 			ret = 1;
273 		} else if (tp->curr_cpu_temp <
274 			   cpu_temp_limits[tp->index].low_warn) {
275 			printk(KERN_WARNING "temp%d: "
276 			       "Below safe CPU operating temperature, %d C.\n",
277 			       tp->index, (int) tp->curr_cpu_temp);
278 			ret = 1;
279 		}
280 		if (ret)
281 			*last_warn = jiffies;
282 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
283 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
284 		ret = 1;
285 
286 	/* Now check the shutdown limits. */
287 	if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
288 	    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
289 		do_envctrl_shutdown(tp);
290 		ret = 1;
291 	}
292 
293 	if (ret) {
294 		tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
295 	} else if ((tick & (8 - 1)) == 0) {
296 		s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
297 		s8 cpu_goal_lo;
298 
299 		cpu_goal_lo = cpu_goal_hi - 3;
300 
301 		/* We do not try to avoid 'too cold' events.  Basically we
302 		 * only try to deal with over-heating and fan noise reduction.
303 		 */
304 		if (tp->avg_cpu_temp < cpu_goal_hi) {
305 			if (tp->avg_cpu_temp >= cpu_goal_lo)
306 				tp->fan_todo[FAN_CPU] = FAN_SAME;
307 			else
308 				tp->fan_todo[FAN_CPU] = FAN_SLOWER;
309 		} else {
310 			tp->fan_todo[FAN_CPU] = FAN_FASTER;
311 		}
312 	} else {
313 		tp->fan_todo[FAN_CPU] = FAN_SAME;
314 	}
315 }
316 
analyze_temps(struct bbc_cpu_temperature * tp,unsigned long * last_warn)317 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
318 {
319 	tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
320 	tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
321 
322 	analyze_ambient_temp(tp, last_warn, tp->sample_tick);
323 	analyze_cpu_temp(tp, last_warn, tp->sample_tick);
324 
325 	tp->sample_tick++;
326 }
327 
prioritize_fan_action(int which_fan)328 static enum fan_action prioritize_fan_action(int which_fan)
329 {
330 	struct bbc_cpu_temperature *tp;
331 	enum fan_action decision = FAN_STATE_MAX;
332 
333 	/* Basically, prioritize what the temperature sensors
334 	 * recommend we do, and perform that action on all the
335 	 * fans.
336 	 */
337 	for (tp = all_bbc_temps; tp; tp = tp->next) {
338 		if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
339 			decision = FAN_FULLBLAST;
340 			break;
341 		}
342 		if (tp->fan_todo[which_fan] == FAN_SAME &&
343 		    decision != FAN_FASTER)
344 			decision = FAN_SAME;
345 		else if (tp->fan_todo[which_fan] == FAN_FASTER)
346 			decision = FAN_FASTER;
347 		else if (decision != FAN_FASTER &&
348 			 decision != FAN_SAME &&
349 			 tp->fan_todo[which_fan] == FAN_SLOWER)
350 			decision = FAN_SLOWER;
351 	}
352 	if (decision == FAN_STATE_MAX)
353 		decision = FAN_SAME;
354 
355 	return decision;
356 }
357 
maybe_new_ambient_fan_speed(struct bbc_fan_control * fp)358 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
359 {
360 	enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
361 	int ret;
362 
363 	if (decision == FAN_SAME)
364 		return 0;
365 
366 	ret = 1;
367 	if (decision == FAN_FULLBLAST) {
368 		if (fp->system_fan_speed >= FAN_SPEED_MAX)
369 			ret = 0;
370 		else
371 			fp->system_fan_speed = FAN_SPEED_MAX;
372 	} else {
373 		if (decision == FAN_FASTER) {
374 			if (fp->system_fan_speed >= FAN_SPEED_MAX)
375 				ret = 0;
376 			else
377 				fp->system_fan_speed += 2;
378 		} else {
379 			int orig_speed = fp->system_fan_speed;
380 
381 			if (orig_speed <= FAN_SPEED_MIN ||
382 			    orig_speed <= (fp->cpu_fan_speed - 3))
383 				ret = 0;
384 			else
385 				fp->system_fan_speed -= 1;
386 		}
387 	}
388 
389 	return ret;
390 }
391 
maybe_new_cpu_fan_speed(struct bbc_fan_control * fp)392 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
393 {
394 	enum fan_action decision = prioritize_fan_action(FAN_CPU);
395 	int ret;
396 
397 	if (decision == FAN_SAME)
398 		return 0;
399 
400 	ret = 1;
401 	if (decision == FAN_FULLBLAST) {
402 		if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
403 			ret = 0;
404 		else
405 			fp->cpu_fan_speed = FAN_SPEED_MAX;
406 	} else {
407 		if (decision == FAN_FASTER) {
408 			if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
409 				ret = 0;
410 			else {
411 				fp->cpu_fan_speed += 2;
412 				if (fp->system_fan_speed <
413 				    (fp->cpu_fan_speed - 3))
414 					fp->system_fan_speed =
415 						fp->cpu_fan_speed - 3;
416 			}
417 		} else {
418 			if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
419 				ret = 0;
420 			else
421 				fp->cpu_fan_speed -= 1;
422 		}
423 	}
424 
425 	return ret;
426 }
427 
maybe_new_fan_speeds(struct bbc_fan_control * fp)428 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
429 {
430 	int new;
431 
432 	new  = maybe_new_ambient_fan_speed(fp);
433 	new |= maybe_new_cpu_fan_speed(fp);
434 
435 	if (new)
436 		set_fan_speeds(fp);
437 }
438 
fans_full_blast(void)439 static void fans_full_blast(void)
440 {
441 	struct bbc_fan_control *fp;
442 
443 	/* Since we will not be monitoring things anymore, put
444 	 * the fans on full blast.
445 	 */
446 	for (fp = all_bbc_fans; fp; fp = fp->next) {
447 		fp->cpu_fan_speed = FAN_SPEED_MAX;
448 		fp->system_fan_speed = FAN_SPEED_MAX;
449 		fp->psupply_fan_on = 1;
450 		set_fan_speeds(fp);
451 	}
452 }
453 
454 #define POLL_INTERVAL	(5 * HZ)
455 static unsigned long last_warning_jiffies;
456 static struct task_struct *kenvctrld_task;
457 
kenvctrld(void * __unused)458 static int kenvctrld(void *__unused)
459 {
460 	daemonize();
461 	strcpy(current->comm, "kenvctrld");
462 	kenvctrld_task = current;
463 
464 	printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
465 	last_warning_jiffies = jiffies - WARN_INTERVAL;
466 	for (;;) {
467 		struct bbc_cpu_temperature *tp;
468 		struct bbc_fan_control *fp;
469 
470 		current->state = TASK_INTERRUPTIBLE;
471 		schedule_timeout(POLL_INTERVAL);
472 		current->state = TASK_RUNNING;
473 		if (signal_pending(current))
474 			break;
475 
476 		for (tp = all_bbc_temps; tp; tp = tp->next) {
477 			get_current_temps(tp);
478 			analyze_temps(tp, &last_warning_jiffies);
479 		}
480 		for (fp = all_bbc_fans; fp; fp = fp->next)
481 			maybe_new_fan_speeds(fp);
482 	}
483 	printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
484 
485 	fans_full_blast();
486 
487 	return 0;
488 }
489 
attach_one_temp(struct linux_ebus_child * echild,int temp_idx)490 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
491 {
492 	struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
493 
494 	if (!tp)
495 		return;
496 	memset(tp, 0, sizeof(*tp));
497 	tp->client = bbc_i2c_attach(echild);
498 	if (!tp->client) {
499 		kfree(tp);
500 		return;
501 	}
502 
503 	tp->index = temp_idx;
504 	{
505 		struct bbc_cpu_temperature **tpp = &all_bbc_temps;
506 		while (*tpp)
507 			tpp = &((*tpp)->next);
508 		tp->next = NULL;
509 		*tpp = tp;
510 	}
511 
512 	/* Tell it to convert once every 5 seconds, clear all cfg
513 	 * bits.
514 	 */
515 	bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
516 	bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
517 
518 	/* Program the hard temperature limits into the chip. */
519 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
520 		       MAX1617_WR_AMB_HIGHLIM);
521 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
522 		       MAX1617_WR_AMB_LOWLIM);
523 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
524 		       MAX1617_WR_CPU_HIGHLIM);
525 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
526 		       MAX1617_WR_CPU_LOWLIM);
527 
528 	get_current_temps(tp);
529 	tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
530 	tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
531 
532 	tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
533 	tp->fan_todo[FAN_CPU] = FAN_SAME;
534 }
535 
attach_one_fan(struct linux_ebus_child * echild,int fan_idx)536 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
537 {
538 	struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
539 
540 	if (!fp)
541 		return;
542 	memset(fp, 0, sizeof(*fp));
543 	fp->client = bbc_i2c_attach(echild);
544 	if (!fp->client) {
545 		kfree(fp);
546 		return;
547 	}
548 
549 	fp->index = fan_idx;
550 
551 	{
552 		struct bbc_fan_control **fpp = &all_bbc_fans;
553 		while (*fpp)
554 			fpp = &((*fpp)->next);
555 		fp->next = NULL;
556 		*fpp = fp;
557 	}
558 
559 	/* The i2c device controlling the fans is write-only.
560 	 * So the only way to keep track of the current power
561 	 * level fed to the fans is via software.  Choose half
562 	 * power for cpu/system and 'on' fo the powersupply fan
563 	 * and set it now.
564 	 */
565 	fp->psupply_fan_on = 1;
566 	fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
567 	fp->cpu_fan_speed += FAN_SPEED_MIN;
568 	fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
569 	fp->system_fan_speed += FAN_SPEED_MIN;
570 
571 	set_fan_speeds(fp);
572 }
573 
bbc_envctrl_init(void)574 int bbc_envctrl_init(void)
575 {
576 	struct linux_ebus_child *echild;
577 	int temp_index = 0;
578 	int fan_index = 0;
579 	int devidx = 0;
580 	int err = 0;
581 
582 	while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
583 		if (!strcmp(echild->prom_name, "temperature"))
584 			attach_one_temp(echild, temp_index++);
585 		if (!strcmp(echild->prom_name, "fan-control"))
586 			attach_one_fan(echild, fan_index++);
587 	}
588 	if (temp_index != 0 && fan_index != 0)
589 		err = kernel_thread(kenvctrld, NULL, CLONE_FS | CLONE_FILES);
590 	return err;
591 }
592 
destroy_one_temp(struct bbc_cpu_temperature * tp)593 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
594 {
595 	bbc_i2c_detach(tp->client);
596 	kfree(tp);
597 }
598 
destroy_one_fan(struct bbc_fan_control * fp)599 static void destroy_one_fan(struct bbc_fan_control *fp)
600 {
601 	bbc_i2c_detach(fp->client);
602 	kfree(fp);
603 }
604 
bbc_envctrl_cleanup(void)605 void bbc_envctrl_cleanup(void)
606 {
607 	struct bbc_cpu_temperature *tp;
608 	struct bbc_fan_control *fp;
609 
610 	if (kenvctrld_task != NULL) {
611 		force_sig(SIGKILL, kenvctrld_task);
612 		for (;;) {
613 			struct task_struct *p;
614 			int found = 0;
615 
616 			read_lock(&tasklist_lock);
617 			for_each_task(p) {
618 				if (p == kenvctrld_task) {
619 					found = 1;
620 					break;
621 				}
622 			}
623 			read_unlock(&tasklist_lock);
624 			if (!found)
625 				break;
626 			current->state = TASK_INTERRUPTIBLE;
627 			schedule_timeout(HZ);
628 			current->state = TASK_RUNNING;
629 		}
630 		kenvctrld_task = NULL;
631 	}
632 
633 	tp = all_bbc_temps;
634 	while (tp != NULL) {
635 		struct bbc_cpu_temperature *next = tp->next;
636 		destroy_one_temp(tp);
637 		tp = next;
638 	}
639 	all_bbc_temps = NULL;
640 
641 	fp = all_bbc_fans;
642 	while (fp != NULL) {
643 		struct bbc_fan_control *next = fp->next;
644 		destroy_one_fan(fp);
645 		fp = next;
646 	}
647 	all_bbc_fans = NULL;
648 }
649