1 /******************************************************************************
2  *
3  *	(C)Copyright 1998,1999 SysKonnect,
4  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5  *
6  *	See the file "skfddi.c" for further information.
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  *
13  *	The information in this file is provided "AS IS" without warranty.
14  *
15  ******************************************************************************/
16 
17 /*
18  * FBI board dependent Driver for SMT and LLC
19  */
20 
21 #include "h/types.h"
22 #include "h/fddi.h"
23 #include "h/smc.h"
24 #include "h/supern_2.h"
25 #include "h/skfbiinc.h"
26 
27 #ifndef	lint
28 static const char ID_sccs[] = "@(#)drvfbi.c	1.63 99/02/11 (C) SK " ;
29 #endif
30 
31 /*
32  * PCM active state
33  */
34 #define PC8_ACTIVE	8
35 
36 #define	LED_Y_ON	0x11	/* Used for ring up/down indication */
37 #define	LED_Y_OFF	0x10
38 
39 
40 #define MS2BCLK(x)	((x)*12500L)
41 
42 /*
43  * valid configuration values are:
44  */
45 #ifdef	ISA
46 const int opt_ints[] = {8,	3, 4, 5, 9, 10, 11, 12, 15} ;
47 const int opt_iops[] = {8,
48 	0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
49 const int opt_dmas[] = {4,	3, 5, 6, 7} ;
50 const int opt_eproms[] = {15,	0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
51 			0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
52 #endif
53 #ifdef	EISA
54 const int opt_ints[] = {5, 9, 10, 11} ;
55 const int opt_dmas[] = {0, 5, 6, 7} ;
56 const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
57 				0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
58 #endif
59 
60 #ifdef	MCA
61 int	opt_ints[] = {3, 11, 10, 9} ;			/* FM1 */
62 int	opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
63 #endif	/* MCA */
64 
65 /*
66  *	xPOS_ID:xxxx
67  *	|	\  /
68  *	|	 \/
69  *	|	  --------------------- the patched POS_ID of the Adapter
70  *	|				xxxx = (Vendor ID low byte,
71  *	|					Vendor ID high byte,
72  *	|					Device ID low byte,
73  *	|					Device ID high byte)
74  *	+------------------------------ the patched oem_id must be
75  *					'S' for SK or 'I' for IBM
76  *					this is a short id for the driver.
77  */
78 #ifndef MULT_OEM
79 #ifndef	OEM_CONCEPT
80 #ifndef MCA
81 const u_char oem_id[] = "xPOS_ID:xxxx" ;
82 #else
83 const u_char oem_id[] = "xPOSID1:xxxx" ;	/* FM1 card id. */
84 #endif
85 #else	/* OEM_CONCEPT */
86 #ifndef MCA
87 const u_char oem_id[] = OEM_ID ;
88 #else
89 const u_char oem_id[] = OEM_ID1 ;	/* FM1 card id. */
90 #endif	/* MCA */
91 #endif	/* OEM_CONCEPT */
92 #define	ID_BYTE0	8
93 #define	OEMID(smc,i)	oem_id[ID_BYTE0 + i]
94 #else	/* MULT_OEM */
95 const struct s_oem_ids oem_ids[] = {
96 #include "oemids.h"
97 {0}
98 };
99 #define	OEMID(smc,i)	smc->hw.oem_id->oi_id[i]
100 #endif	/* MULT_OEM */
101 
102 /* Prototypes of external functions */
103 extern void hwt_restart() ;
104 #ifdef AIX
105 extern int AIX_vpdReadByte() ;
106 #endif
107 
108 
109 /* Prototypes of local functions. */
110 void smt_stop_watchdog() ;
111 
112 #ifdef MCA
113 static int read_card_id() ;
114 static void DisableSlotAccess() ;
115 static void EnableSlotAccess() ;
116 #ifdef AIX
117 extern int attach_POS_addr() ;
118 extern int detach_POS_addr() ;
119 extern u_char read_POS() ;
120 extern void write_POS() ;
121 extern int AIX_vpdReadByte() ;
122 #else
123 #define	read_POS(smc,a1,a2)	((u_char) inp(a1))
124 #define	write_POS(smc,a1,a2,a3)	outp((a1),(a3))
125 #endif
126 #endif	/* MCA */
127 
128 
129 /*
130  * FDDI card reset
131  */
card_start(smc)132 static void card_start(smc)
133 struct s_smc *smc ;
134 {
135 	int i ;
136 #ifdef	PCI
137 	u_char	rev_id ;
138 	u_short word;
139 #endif
140 
141 	smt_stop_watchdog(smc) ;
142 
143 #ifdef	ISA
144 	outpw(CSR_A,0) ;			/* reset for all chips */
145 	for (i = 10 ; i ; i--)			/* delay for PLC's */
146 		(void)inpw(ISR_A) ;
147 	OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
148 					/* counter 2, mode 2 */
149 	OUT_82c54_TIMER(2,97) ;		/* LSB */
150 	OUT_82c54_TIMER(2,0) ;		/* MSB ( 15.6 us ) */
151 	outpw(CSR_A,CS_CRESET) ;
152 #endif
153 #ifdef	EISA
154 	outpw(CSR_A,0) ;			/* reset for all chips */
155 	for (i = 10 ; i ; i--)			/* delay for PLC's */
156 		(void)inpw(ISR_A) ;
157 	outpw(CSR_A,CS_CRESET) ;
158 	smc->hw.led = (2<<6) ;
159 	outpw(CSR_A,CS_CRESET | smc->hw.led) ;
160 #endif
161 #ifdef	MCA
162 	outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */
163 	for (i = 10 ; i ; i--)			/* delay for PLC's */
164 		(void)inpw(ISR_A) ;
165 	outp(ADDR(CARD_EN),0) ;
166 	/* first I/O after reset must not be a access to FORMAC or PLC */
167 
168 	/*
169 	 * bus timeout (MCA)
170 	 */
171 	OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
172 					/* counter 2, mode 3 */
173 	OUT_82c54_TIMER(2,(2*24)) ;	/* 3.9 us * 2 square wave */
174 	OUT_82c54_TIMER(2,0) ;		/* MSB */
175 
176 	/* POS 102 indicated an activ Check Line or Buss Error monitoring */
177 	if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
178 		outp(ADDR(IRQ_CHCK_EN),0) ;
179 	}
180 
181 	if (!((i = inpw(CSR_A)) & CS_SAS)) {
182 		if (!(i & CS_BYSTAT)) {
183 			outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
184 		}
185 	}
186 	outpw(LEDR_A,LED_1) ;	/* yellow */
187 #endif	/* MCA */
188 #ifdef	PCI
189 	/*
190 	 * make sure no transfer activity is pending
191 	 */
192 	outpw(FM_A(FM_MDREG1),FM_MINIT) ;
193 	outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
194 	hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
195 	/*
196 	 * now reset everything
197 	 */
198 	outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */
199 	i = (int) inp(ADDR(B0_CTRL)) ;		/* do dummy read */
200 	SK_UNUSED(i) ;				/* Make LINT happy. */
201 	outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
202 
203 	/*
204 	 * Reset all bits in the PCI STATUS register
205 	 */
206 	outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ;	/* enable for writes */
207 	word = inpw(PCI_C(PCI_STATUS)) ;
208 	outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
209 	outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ;	/* disable writes */
210 
211 	/*
212 	 * Release the reset of all the State machines
213 	 * Release Master_Reset
214 	 * Release HPI_SM_Reset
215 	 */
216 	outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
217 
218 	/*
219 	 * determine the adapter type
220 	 * Note: Do it here, because some drivers may call card_start() once
221 	 *	 at very first before any other initialization functions is
222 	 *	 executed.
223 	 */
224 	rev_id = inp(PCI_C(PCI_REV_ID)) ;
225 	if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
226 		smc->hw.hw_is_64bit = TRUE ;
227 	} else {
228 		smc->hw.hw_is_64bit = FALSE ;
229 	}
230 
231 	/*
232 	 * Watermark initialization
233 	 */
234 	if (!smc->hw.hw_is_64bit) {
235 		outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
236 		outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
237 		outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
238 	}
239 
240 	outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* clear the reset chips */
241 	outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
242 
243 	/* init the timer value for the watch dog 2,5 minutes */
244 	outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
245 
246 	/* initialize the ISR mask */
247 	smc->hw.is_imask = ISR_MASK ;
248 	smc->hw.hw_state = STOPPED ;
249 #endif
250 	GET_PAGE(0) ;		/* necessary for BOOT */
251 }
252 
card_stop(smc)253 void card_stop(smc)
254 struct s_smc *smc ;
255 {
256 	smt_stop_watchdog(smc) ;
257 	smc->hw.mac_ring_is_up = 0 ;		/* ring down */
258 #ifdef	ISA
259 	outpw(CSR_A,0) ;			/* reset for all chips */
260 #endif
261 #ifdef	EISA
262 	outpw(CSR_A,0) ;			/* reset for all chips */
263 #endif
264 #ifdef	MCA
265 	outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */
266 #endif
267 #ifdef	PCI
268 	/*
269 	 * make sure no transfer activity is pending
270 	 */
271 	outpw(FM_A(FM_MDREG1),FM_MINIT) ;
272 	outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
273 	hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
274 	/*
275 	 * now reset everything
276 	 */
277 	outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */
278 	outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* reset for all chips */
279 	outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
280 	smc->hw.hw_state = STOPPED ;
281 #endif
282 }
283 /*--------------------------- ISR handling ----------------------------------*/
284 
285 #ifndef PCI
mac1_irq(smc,stu,stl)286 void mac1_irq(smc,stu, stl)
287 struct s_smc *smc ;
288 u_short stu;
289 u_short stl;
290 {
291 	int	restart_tx = 0 ;
292 again:
293 #ifndef ISA
294 /*
295  * FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
296  */
297 	if (stl & (FM_SPCEPDS  |	/* parit/coding err. syn.q.*/
298 		   FM_SPCEPDA0 |	/* parit/coding err. a.q.0 */
299 		   FM_SPCEPDA1 |	/* parit/coding err. a.q.1 */
300 		   FM_SPCEPDA2)) {	/* parit/coding err. a.q.2 */
301 		SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
302 	}
303 	if (stl & (FM_STBURS  |	/* tx buffer underrun syn.q.*/
304 		   FM_STBURA0 |	/* tx buffer underrun a.q.0 */
305 		   FM_STBURA1 |	/* tx buffer underrun a.q.1 */
306 		   FM_STBURA2)) {	/* tx buffer underrun a.q.2 */
307 		SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
308 	}
309 #endif
310 	if ( (stu & (FM_SXMTABT |		/* transmit abort */
311 #ifdef	SYNC
312 		     FM_STXABRS |	/* syn. tx abort */
313 #endif	/* SYNC */
314 		     FM_STXABRA0)) ||	/* asyn. tx abort */
315 	     (stl & (FM_SQLCKS |		/* lock for syn. q. */
316 		     FM_SQLCKA0)) ) {	/* lock for asyn. q. */
317 		formac_tx_restart(smc) ;		/* init tx */
318 		restart_tx = 1 ;
319 		stu = inpw(FM_A(FM_ST1U)) ;
320 		stl = inpw(FM_A(FM_ST1L)) ;
321 		stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
322 		if (stu || stl)
323 			goto again ;
324 	}
325 
326 #ifndef	SYNC
327 	if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
328 		   FM_STEFRMA0)) { /* end of frame asyn tx */
329 		/* free tx_queue */
330 		smc->hw.n_a_send = 0 ;
331 		if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
332 			start_next_send(smc);
333 		}
334 		restart_tx = 1 ;
335 	}
336 #else	/* SYNC */
337 	if (stu & (FM_STEFRMA0 |	/* end of asyn tx */
338 		    FM_STEFRMS)) {	/* end of sync tx */
339 		restart_tx = 1 ;
340 	}
341 #endif	/* SYNC */
342 	if (restart_tx)
343 		llc_restart_tx(smc) ;
344 }
345 #else	/* PCI */
346 
mac1_irq(smc,stu,stl)347 void mac1_irq(smc,stu, stl)
348 struct s_smc *smc ;
349 u_short stu;
350 u_short stl;
351 {
352 	int	restart_tx = 0 ;
353 again:
354 
355 	/*
356 	 * parity error: note encoding error is not possible in tag mode
357 	 */
358 	if (stl & (FM_SPCEPDS  |	/* parity err. syn.q.*/
359 		   FM_SPCEPDA0 |	/* parity err. a.q.0 */
360 		   FM_SPCEPDA1)) {	/* parity err. a.q.1 */
361 		SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
362 	}
363 	/*
364 	 * buffer underrun: can only occur if a tx threshold is specified
365 	 */
366 	if (stl & (FM_STBURS  |		/* tx buffer underrun syn.q.*/
367 		   FM_STBURA0 |		/* tx buffer underrun a.q.0 */
368 		   FM_STBURA1)) {	/* tx buffer underrun a.q.2 */
369 		SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
370 	}
371 
372 	if ( (stu & (FM_SXMTABT |		/* transmit abort */
373 		     FM_STXABRS |		/* syn. tx abort */
374 		     FM_STXABRA0)) ||		/* asyn. tx abort */
375 	     (stl & (FM_SQLCKS |		/* lock for syn. q. */
376 		     FM_SQLCKA0)) ) {		/* lock for asyn. q. */
377 		formac_tx_restart(smc) ;	/* init tx */
378 		restart_tx = 1 ;
379 		stu = inpw(FM_A(FM_ST1U)) ;
380 		stl = inpw(FM_A(FM_ST1L)) ;
381 		stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
382 		if (stu || stl)
383 			goto again ;
384 	}
385 
386 	if (stu & (FM_STEFRMA0 |	/* end of asyn tx */
387 		    FM_STEFRMS)) {	/* end of sync tx */
388 		restart_tx = 1 ;
389 	}
390 
391 	if (restart_tx)
392 		llc_restart_tx(smc) ;
393 }
394 #endif	/* PCI */
395 /*
396  * interrupt source= plc1
397  * this function is called in nwfbisr.asm
398  */
plc1_irq(smc)399 void plc1_irq(smc)
400 struct s_smc *smc ;
401 {
402 	u_short	st = inpw(PLC(PB,PL_INTR_EVENT)) ;
403 
404 #if	(defined(ISA) || defined(EISA))
405 	/* reset PLC Int. bits */
406 	outpw(PLC1_I,inpw(PLC1_I)) ;
407 #endif
408 	plc_irq(smc,PB,st) ;
409 }
410 
411 /*
412  * interrupt source= plc2
413  * this function is called in nwfbisr.asm
414  */
plc2_irq(smc)415 void plc2_irq(smc)
416 struct s_smc *smc ;
417 {
418 	u_short	st = inpw(PLC(PA,PL_INTR_EVENT)) ;
419 
420 #if	(defined(ISA) || defined(EISA))
421 	/* reset PLC Int. bits */
422 	outpw(PLC2_I,inpw(PLC2_I)) ;
423 #endif
424 	plc_irq(smc,PA,st) ;
425 }
426 
427 
428 /*
429  * interrupt source= timer
430  */
timer_irq(smc)431 void timer_irq(smc)
432 struct s_smc *smc ;
433 {
434 	hwt_restart(smc);
435 	smc->hw.t_stop = smc->hw.t_start;
436 	smt_timer_done(smc) ;
437 }
438 
439 /*
440  * return S-port (PA or PB)
441  */
pcm_get_s_port(smc)442 int pcm_get_s_port(smc)
443 struct s_smc *smc ;
444 {
445 	SK_UNUSED(smc) ;
446 	return(PS) ;
447 }
448 
449 /*
450  * Station Label = "FDDI-XYZ" where
451  *
452  *	X = connector type
453  *	Y = PMD type
454  *	Z = port type
455  */
456 #define STATION_LABEL_CONNECTOR_OFFSET	5
457 #define STATION_LABEL_PMD_OFFSET	6
458 #define STATION_LABEL_PORT_OFFSET	7
459 
read_address(smc,mac_addr)460 void read_address(smc,mac_addr)
461 struct s_smc *smc ;
462 u_char *mac_addr ;
463 {
464 	char ConnectorType ;
465 	char PmdType ;
466 	int	i ;
467 
468 	extern const u_char canonical[256] ;
469 
470 #if	(defined(ISA) || defined(MCA))
471 	for (i = 0; i < 4 ;i++) {	/* read mac address from board */
472 		smc->hw.fddi_phys_addr.a[i] =
473 			canonical[(inpw(PR_A(i+SA_MAC))&0xff)] ;
474 	}
475 	for (i = 4; i < 6; i++) {
476 		smc->hw.fddi_phys_addr.a[i] =
477 			canonical[(inpw(PR_A(i+SA_MAC+PRA_OFF))&0xff)] ;
478 	}
479 #endif
480 #ifdef	EISA
481 	/*
482 	 * Note: We get trouble on an Alpha machine if we make a inpw()
483 	 * instead of inp()
484 	 */
485 	for (i = 0; i < 4 ;i++) {	/* read mac address from board */
486 		smc->hw.fddi_phys_addr.a[i] =
487 			canonical[inp(PR_A(i+SA_MAC))] ;
488 	}
489 	for (i = 4; i < 6; i++) {
490 		smc->hw.fddi_phys_addr.a[i] =
491 			canonical[inp(PR_A(i+SA_MAC+PRA_OFF))] ;
492 	}
493 #endif
494 #ifdef	PCI
495 	for (i = 0; i < 6; i++) {	/* read mac address from board */
496 		smc->hw.fddi_phys_addr.a[i] =
497 			canonical[inp(ADDR(B2_MAC_0+i))] ;
498 	}
499 #endif
500 #ifndef	PCI
501 	ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
502 	PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
503 #else
504 	ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
505 	PmdType = inp(ADDR(B2_PMD_TYP)) ;
506 #endif
507 
508 	smc->y[PA].pmd_type[PMD_SK_CONN] =
509 	smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
510 	smc->y[PA].pmd_type[PMD_SK_PMD ] =
511 	smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
512 
513 	if (mac_addr) {
514 		for (i = 0; i < 6 ;i++) {
515 			smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
516 			smc->hw.fddi_home_addr.a[i] = canonical[mac_addr[i]] ;
517 		}
518 		return ;
519 	}
520 	smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
521 
522 	for (i = 0; i < 6 ;i++) {
523 		smc->hw.fddi_canon_addr.a[i] =
524 			canonical[smc->hw.fddi_phys_addr.a[i]] ;
525 	}
526 }
527 
528 /*
529  * FDDI card soft reset
530  */
init_board(smc,mac_addr)531 void init_board(smc,mac_addr)
532 struct s_smc *smc ;
533 u_char *mac_addr ;
534 {
535 	card_start(smc) ;
536 	read_address(smc,mac_addr) ;
537 
538 #ifndef	PCI
539 	if (inpw(CSR_A) & CS_SAS)
540 #else
541 	if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
542 #endif
543 		smc->s.sas = SMT_SAS ;	/* Single att. station */
544 	else
545 		smc->s.sas = SMT_DAS ;	/* Dual att. station */
546 
547 #ifndef	PCI
548 	if (inpw(CSR_A) & CS_BYSTAT)
549 #else
550 	if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
551 #endif
552 		smc->mib.fddiSMTBypassPresent = 0 ;
553 		/* without opt. bypass */
554 	else
555 		smc->mib.fddiSMTBypassPresent = 1 ;
556 		/* with opt. bypass */
557 }
558 
559 /*
560  * insert or deinsert optical bypass (called by ECM)
561  */
sm_pm_bypass_req(smc,mode)562 void sm_pm_bypass_req(smc,mode)
563 struct s_smc *smc ;
564 int mode;
565 {
566 #if	(defined(ISA) || defined(EISA))
567 	int csra_v ;
568 #endif
569 
570 	DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
571 					"BP_INSERT" : "BP_DEINSERT",0) ;
572 
573 	if (smc->s.sas != SMT_DAS)
574 		return ;
575 
576 #if	(defined(ISA) || defined(EISA))
577 
578 	csra_v = inpw(CSR_A) & ~CS_BYPASS ;
579 #ifdef	EISA
580 	csra_v |= smc->hw.led ;
581 #endif
582 
583 	switch(mode) {
584 	case BP_INSERT :
585 		outpw(CSR_A,csra_v | CS_BYPASS) ;
586 		break ;
587 	case BP_DEINSERT :
588 		outpw(CSR_A,csra_v) ;
589 		break ;
590 	}
591 #endif	/* ISA / EISA */
592 #ifdef	MCA
593 	switch(mode) {
594 	case BP_INSERT :
595 		outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
596 		break ;
597 	case BP_DEINSERT :
598 		outp(ADDR(BYPASS(STAT_BYP)),0) ;	/* bypass station */
599 		break ;
600 	}
601 #endif
602 #ifdef	PCI
603 	switch(mode) {
604 	case BP_INSERT :
605 		outp(ADDR(B0_DAS),DAS_BYP_INS) ;	/* insert station */
606 		break ;
607 	case BP_DEINSERT :
608 		outp(ADDR(B0_DAS),DAS_BYP_RMV) ;	/* bypass station */
609 		break ;
610 	}
611 #endif
612 }
613 
614 /*
615  * check if bypass connected
616  */
sm_pm_bypass_present(smc)617 int sm_pm_bypass_present(smc)
618 struct s_smc *smc ;
619 {
620 #ifndef	PCI
621 	return(	(inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
622 #else
623 	return(	(inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
624 #endif
625 }
626 
plc_clear_irq(smc,p)627 void plc_clear_irq(smc,p)
628 struct s_smc *smc ;
629 int p ;
630 {
631 	SK_UNUSED(p) ;
632 
633 #if	(defined(ISA) || defined(EISA))
634 	switch (p) {
635 	case PA :
636 		/* reset PLC Int. bits */
637 		outpw(PLC2_I,inpw(PLC2_I)) ;
638 		break ;
639 	case PB :
640 		/* reset PLC Int. bits */
641 		outpw(PLC1_I,inpw(PLC1_I)) ;
642 		break ;
643 	}
644 #else
645 	SK_UNUSED(smc) ;
646 #endif
647 }
648 
649 
650 /*
651  * led_indication called by rmt_indication() and
652  * pcm_state_change()
653  *
654  * Input:
655  *	smc:	SMT context
656  *	led_event:
657  *	0	Only switch green LEDs according to their respective PCM state
658  *	LED_Y_OFF	just switch yellow LED off
659  *	LED_Y_ON	just switch yello LED on
660  */
led_indication(smc,led_event)661 void led_indication(smc,led_event)
662 struct s_smc	*smc ;
663 int		led_event;
664 {
665 	/* use smc->hw.mac_ring_is_up == TRUE
666 	 * as indication for Ring Operational
667 	 */
668 	u_short			led_state ;
669 	struct s_phy		*phy ;
670 	struct fddi_mib_p	*mib_a ;
671 	struct fddi_mib_p	*mib_b ;
672 
673 	phy = &smc->y[PA] ;
674 	mib_a = phy->mib ;
675 	phy = &smc->y[PB] ;
676 	mib_b = phy->mib ;
677 
678 #ifdef	EISA
679 	/* Ring up = yellow led OFF*/
680 	if (led_event == LED_Y_ON) {
681 		smc->hw.led |= CS_LED_1 ;
682 	}
683 	else if (led_event == LED_Y_OFF) {
684 		smc->hw.led &= ~CS_LED_1 ;
685 	}
686 	else {
687 		/* Link at Port A or B = green led ON */
688 		if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
689 		    mib_b->fddiPORTPCMState == PC8_ACTIVE) {
690 			smc->hw.led |= CS_LED_0 ;
691 		}
692 		else {
693 			smc->hw.led &= ~CS_LED_0 ;
694 		}
695 	}
696 #endif
697 #ifdef	MCA
698 	led_state = inpw(LEDR_A) ;
699 
700 	/* Ring up = yellow led OFF*/
701 	if (led_event == LED_Y_ON) {
702 		led_state |= LED_1 ;
703 	}
704 	else if (led_event == LED_Y_OFF) {
705 		led_state &= ~LED_1 ;
706 	}
707 	else {
708                 led_state &= ~(LED_2|LED_0) ;
709 
710 		/* Link at Port A = green led A ON */
711 		if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
712 			led_state |= LED_2 ;
713 		}
714 
715 		/* Link at Port B/S = green led B ON */
716 		if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
717 			led_state |= LED_0 ;
718 		}
719 	}
720 
721         outpw(LEDR_A, led_state) ;
722 #endif	/* MCA */
723 #ifdef	PCI
724         led_state = 0 ;
725 
726 	/* Ring up = yellow led OFF*/
727 	if (led_event == LED_Y_ON) {
728 		led_state |= LED_MY_ON ;
729 	}
730 	else if (led_event == LED_Y_OFF) {
731 		led_state |= LED_MY_OFF ;
732 	}
733 	else {	/* PCM state changed */
734 		/* Link at Port A/S = green led A ON */
735 		if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
736 			led_state |= LED_GA_ON ;
737 		}
738 		else {
739 			led_state |= LED_GA_OFF ;
740 		}
741 
742 		/* Link at Port B = green led B ON */
743 		if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
744 			led_state |= LED_GB_ON ;
745 		}
746 		else {
747 			led_state |= LED_GB_OFF ;
748 		}
749 	}
750 
751         outp(ADDR(B0_LED), led_state) ;
752 #endif	/* PCI */
753 
754 }
755 
756 
pcm_state_change(smc,plc,p_state)757 void pcm_state_change(smc,plc,p_state)
758 struct s_smc *smc;
759 int plc;
760 int p_state;
761 {
762 	/*
763 	 * the current implementation of pcm_state_change() in the driver
764 	 * parts must be renamed to drv_pcm_state_change() which will be called
765 	 * now after led_indication.
766 	 */
767 	DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
768 
769 	led_indication(smc,0) ;
770 }
771 
772 
rmt_indication(smc,i)773 void rmt_indication(smc,i)
774 struct s_smc *smc ;
775 int i;
776 {
777 	/* Call a driver special function if defined */
778 	DRV_RMT_INDICATION(smc,i) ;
779 
780         led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
781 }
782 
783 
784 /*
785  * llc_recover_tx called by init_tx (fplus.c)
786  */
llc_recover_tx(smc)787 void llc_recover_tx(smc)
788 struct s_smc *smc ;
789 {
790 #ifdef	LOAD_GEN
791 	extern	int load_gen_flag ;
792 
793 	load_gen_flag = 0 ;
794 #endif
795 #ifndef	SYNC
796 	smc->hw.n_a_send= 0 ;
797 #else
798 	SK_UNUSED(smc) ;
799 #endif
800 }
801 
802 /*--------------------------- DMA init ----------------------------*/
803 #ifdef	ISA
804 
805 /*
806  * init DMA
807  */
init_dma(smc,dma)808 void init_dma(smc,dma)
809 struct s_smc *smc;
810 int	dma;
811 {
812 	SK_UNUSED(smc) ;
813 
814 	/*
815 	 * set cascade mode,
816 	 * clear mask bit (enable DMA cannal)
817 	 */
818 	if (dma > 3) {
819 		outp(0xd6,(dma & 0x03) | 0xc0) ;
820 		outp(0xd4, dma & 0x03) ;
821 	}
822 	else {
823 		outp(0x0b,(dma & 0x03) | 0xc0) ;
824 		outp(0x0a,dma & 0x03) ;
825 	}
826 }
827 
828 /*
829  * disable DMA
830  */
dis_dma(smc,dma)831 void dis_dma(smc,dma)
832 struct s_smc *smc ;
833 int	dma;
834 {
835 	SK_UNUSED(smc) ;
836 
837 	/*
838 	 * set mask bit (disable DMA cannal)
839 	 */
840 	if (dma > 3) {
841 		outp(0xd4,(dma & 0x03) | 0x04) ;
842 	}
843 	else {
844 		outp(0x0a,(dma & 0x03) | 0x04) ;
845 	}
846 }
847 
848 #endif	/* ISA */
849 
850 #ifdef	EISA
851 
852 /*arrays with io addresses of dma controller length and address registers*/
853 static const int cntr[8] = { 0x001,0x003,0x005,0x007,0,0x0c6,0x0ca,0x0ce } ;
854 static const int base[8] = { 0x000,0x002,0x004,0x006,0,0x0c4,0x0c8,0x0cc } ;
855 static const int page[8] = { 0x087,0x083,0x081,0x082,0,0x08b,0x089,0x08a } ;
856 
init_dma(smc,dma)857 void init_dma(smc,dma)
858 struct s_smc *smc ;
859 int	dma;
860 {
861 	/*
862 	 * extended mode register
863 	 * 32 bit IO
864 	 * type c
865 	 * TC output
866 	 * disable stop
867 	 */
868 
869 	/* mode read (write) demand */
870 	smc->hw.dma_rmode = (dma & 3) | 0x08 | 0x0 ;
871 	smc->hw.dma_wmode = (dma & 3) | 0x04 | 0x0 ;
872 
873 	/* 32 bit IO's, burst DMA mode (type "C") */
874 	smc->hw.dma_emode = (dma & 3) | 0x08 | 0x30 ;
875 
876 	outp((dma < 4) ? 0x40b : 0x4d6,smc->hw.dma_emode) ;
877 
878 	/* disable chaining */
879 	outp((dma < 4) ? 0x40a : 0x4d4,(dma&3)) ;
880 
881 	/*load dma controller addresses for fast access during set dma*/
882 	smc->hw.dma_base_word_count = cntr[smc->hw.dma];
883 	smc->hw.dma_base_address = base[smc->hw.dma];
884 	smc->hw.dma_base_address_page = page[smc->hw.dma];
885 
886 }
887 
dis_dma(smc,dma)888 void dis_dma(smc,dma)
889 struct s_smc *smc ;
890 int	dma;
891 {
892 	SK_UNUSED(smc) ;
893 
894 	outp((dma < 4) ? 0x0a : 0xd4,(dma&3)|4) ;/* mask bit */
895 }
896 #endif	/* EISA */
897 
898 #ifdef	MCA
init_dma(smc,dma)899 void init_dma(smc,dma)
900 struct s_smc *smc;
901 int	dma;
902 {
903 	SK_UNUSED(smc) ;
904 	SK_UNUSED(dma) ;
905 }
dis_dma(smc,dma)906 void dis_dma(smc,dma)
907 struct s_smc *smc;
908 int	dma;
909 {
910 	SK_UNUSED(smc) ;
911 	SK_UNUSED(dma) ;
912 }
913 #endif
914 
915 #ifdef	PCI
init_dma(smc,dma)916 void init_dma(smc,dma)
917 struct s_smc *smc;
918 int	dma;
919 {
920 	SK_UNUSED(smc) ;
921 	SK_UNUSED(dma) ;
922 }
dis_dma(smc,dma)923 void dis_dma(smc,dma)
924 struct s_smc *smc;
925 int	dma;
926 {
927 	SK_UNUSED(smc) ;
928 	SK_UNUSED(dma) ;
929 }
930 #endif
931 
932 #ifdef MULT_OEM
is_equal_num(comp1,comp2,num)933 static int is_equal_num(comp1,comp2,num)
934 char comp1[] ;
935 char comp2[] ;
936 int num ;
937 {
938 	int i ;
939 
940 	for (i = 0 ; i < num ; i++) {
941 		if (comp1[i] != comp2[i])
942 			return (0) ;
943 	}
944 		return (1) ;
945 }	/* is_equal_num */
946 
947 
948 /*
949  * set the OEM ID defaults, and test the contents of the OEM data base
950  * The default OEM is the first ACTIVE entry in the OEM data base
951  *
952  * returns:	0	success
953  *		1	error in data base
954  *		2	data base empty
955  *		3	no active entry
956  */
set_oi_id_def(smc)957 int set_oi_id_def(smc)
958 struct s_smc *smc ;
959 {
960 	int sel_id ;
961 	int i ;
962 	int act_entries ;
963 
964 	i = 0 ;
965 	sel_id = -1 ;
966 	act_entries = FALSE ;
967 	smc->hw.oem_id = 0 ;
968 	smc->hw.oem_min_status = OI_STAT_ACTIVE ;
969 
970 	/* check OEM data base */
971 	while (oem_ids[i].oi_status) {
972 		switch (oem_ids[i].oi_status) {
973 		case OI_STAT_ACTIVE:
974 			act_entries = TRUE ;	/* we have active IDs */
975 			if (sel_id == -1)
976 				sel_id = i ;	/* save the first active ID */
977 		case OI_STAT_VALID:
978 		case OI_STAT_PRESENT:
979 			i++ ;
980 			break ;			/* entry ok */
981 		default:
982 			return (1) ;		/* invalid oi_status */
983 		}
984 	}
985 
986 	if (i == 0)
987 		return (2) ;
988 	if (!act_entries)
989 		return (3) ;
990 
991 	/* ok, we have a valid OEM data base with an active entry */
992 	smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[sel_id] ;
993 	return (0) ;
994 }
995 #endif	/* MULT_OEM */
996 
997 
998 #ifdef	MCA
999 /************************
1000  *
1001  * BEGIN_MANUAL_ENTRY()
1002  *
1003  *	exist_board
1004  *
1005  *	Check if an MCA board is present in the specified slot.
1006  *
1007  *	int exist_board(
1008  *		struct s_smc *smc,
1009  *		int slot) ;
1010  * In
1011  *	smc - A pointer to the SMT Context struct.
1012  *
1013  *	slot - The number of the slot to inspect.
1014  * Out
1015  *	0 = No adapter present.
1016  *	1 = Found FM1 adapter.
1017  *
1018  * Pseudo
1019  *      Read MCA ID
1020  *	for all valid OEM_IDs
1021  *		compare with ID read
1022  *		if equal, return 1
1023  *	return(0
1024  *
1025  * Note
1026  *	The smc pointer must be valid now.
1027  *
1028  * END_MANUAL_ENTRY()
1029  *
1030  ************************/
1031 #define LONG_CARD_ID(lo, hi)	((((hi) & 0xff) << 8) | ((lo) & 0xff))
exist_board(smc,slot)1032 int exist_board(smc,slot)
1033 struct s_smc *smc ;
1034 int	slot ;
1035 {
1036 #ifdef MULT_OEM
1037 	SK_LOC_DECL(u_char,id[2]) ;
1038 	int idi ;
1039 #endif	/* MULT_OEM */
1040 
1041 	/* No longer valid. */
1042 	if (smc == NULL)
1043 		return(0) ;
1044 
1045 #ifndef MULT_OEM
1046 	if (read_card_id(smc, slot)
1047 		== LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
1048 		return (1) ;	/* Found FM adapter. */
1049 
1050 #else	/* MULT_OEM */
1051 	idi = read_card_id(smc, slot) ;
1052 	id[0] = idi & 0xff ;
1053 	id[1] = idi >> 8 ;
1054 
1055         smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1056 	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1057 		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1058 			continue ;
1059 
1060 		if (is_equal_num(&id[0],&OEMID(smc,0),2))
1061 			return (1) ;
1062 	}
1063 #endif	/* MULT_OEM */
1064 	return (0) ;	/* No adapter found. */
1065 }
1066 
1067 /************************
1068  *
1069  *	read_card_id
1070  *
1071  *	Read the MCA card id from the specified slot.
1072  * In
1073  *	smc - A pointer to the SMT Context struct.
1074  *	CAVEAT: This pointer may be NULL and *must not* be used within this
1075  *	function. It's only purpose is for drivers that need some information
1076  *	for the inp() and outp() macros.
1077  *
1078  *	slot - The number of the slot for which the card id is returned.
1079  * Out
1080  *	Returns the card id read from the specified slot. If an illegal slot
1081  *	number is specified, the function returns zero.
1082  *
1083  ************************/
read_card_id(smc,slot)1084 static int read_card_id(smc,slot)
1085 struct s_smc *smc ;	/* Do not use. */
1086 int slot ;
1087 {
1088 	int card_id ;
1089 
1090 	SK_UNUSED(smc) ;	/* Make LINT happy. */
1091 	if ((slot < 1) || (slot > 15))	/* max 16 slots, 0 = motherboard */
1092 		return (0) ;	/* Illegal slot number specified. */
1093 
1094 	EnableSlotAccess(smc, slot) ;
1095 
1096 	card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
1097 				(read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;
1098 
1099 	DisableSlotAccess(smc) ;
1100 
1101 	return (card_id) ;
1102 }
1103 
1104 /************************
1105  *
1106  * BEGIN_MANUAL_ENTRY()
1107  *
1108  *	get_board_para
1109  *
1110  *	Get adapter configuration information. Fill all board specific
1111  *	parameters within the 'smc' structure.
1112  *
1113  *	int get_board_para(
1114  *		struct s_smc *smc,
1115  *		int slot) ;
1116  * In
1117  *	smc - A pointer to the SMT Context struct, to which this function will
1118  *	write some adapter configuration data.
1119  *
1120  *	slot - The number of the slot, in which the adapter is installed.
1121  * Out
1122  *	0 = No adapter present.
1123  *	1 = Ok.
1124  *	2 = Adapter present, but card enable bit not set.
1125  *
1126  * END_MANUAL_ENTRY()
1127  *
1128  ************************/
get_board_para(smc,slot)1129 int get_board_para(smc,slot)
1130 struct s_smc *smc ;
1131 int slot ;
1132 {
1133 	int val ;
1134 	int i ;
1135 
1136 	/* Check if adapter present & get type of adapter. */
1137 	switch (exist_board(smc, slot)) {
1138 	case 0:	/* Adapter not present. */
1139 		return (0) ;
1140 	case 1:	/* FM Rev. 1 */
1141 		smc->hw.rev = FM1_REV ;
1142 		smc->hw.VFullRead = 0x0a ;
1143 		smc->hw.VFullWrite = 0x05 ;
1144 		smc->hw.DmaWriteExtraBytes = 8 ;	/* 2 extra words. */
1145 		break ;
1146 	}
1147 	smc->hw.slot = slot ;
1148 
1149 	EnableSlotAccess(smc, slot) ;
1150 
1151 	if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
1152 		DisableSlotAccess(smc) ;
1153 		return (2) ;	/* Card enable bit not set. */
1154 	}
1155 
1156 	val = read_POS(smc,POS_104, slot - 1) ;	/* I/O, IRQ */
1157 
1158 #ifndef MEM_MAPPED_IO	/* is defined by the operating system */
1159 	i = val & POS_IOSEL ;	/* I/O base addr. (0x0200 .. 0xfe00) */
1160 	smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
1161 #endif
1162 	i = ((val & POS_IRQSEL) >> 6) & 0x03 ;	/* IRQ <0, 1> */
1163 	smc->hw.irq = opt_ints[i] ;
1164 
1165 	/* FPROM base addr. */
1166 	i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
1167 	smc->hw.eprom = opt_eproms[i] ;
1168 
1169 	DisableSlotAccess(smc) ;
1170 
1171 	/* before this, the smc->hw.iop must be set !!! */
1172 	smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;
1173 
1174 	return (1) ;
1175 }
1176 
1177 /* Enable access to specified MCA slot. */
EnableSlotAccess(smc,slot)1178 static void EnableSlotAccess(smc,slot)
1179 struct s_smc *smc ;
1180 int slot ;
1181 {
1182 	SK_UNUSED(slot) ;
1183 
1184 #ifndef AIX
1185 	SK_UNUSED(smc) ;
1186 
1187 	/* System mode. */
1188 	outp(POS_SYS_SETUP, POS_SYSTEM) ;
1189 
1190 	/* Select slot. */
1191 	outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
1192 #else
1193 	attach_POS_addr (smc) ;
1194 #endif
1195 }
1196 
1197 /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
DisableSlotAccess(smc)1198 static void DisableSlotAccess(smc)
1199 struct s_smc *smc ;
1200 {
1201 #ifndef AIX
1202 	SK_UNUSED(smc) ;
1203 
1204 	outp(POS_CHANNEL_POS, 0) ;
1205 #else
1206 	detach_POS_addr (smc) ;
1207 #endif
1208 }
1209 #endif	/* MCA */
1210 
1211 #ifdef	EISA
1212 #ifndef	MEM_MAPPED_IO
1213 #define	SADDR(slot)	(((slot)<<12)&0xf000)
1214 #else	/* MEM_MAPPED_IO */
1215 #define	SADDR(slot)	(smc->hw.iop)
1216 #endif	/* MEM_MAPPED_IO */
1217 
1218 /************************
1219  *
1220  * BEGIN_MANUAL_ENTRY()
1221  *
1222  *	exist_board
1223  *
1224  *	Check if an EISA board is present in the specified slot.
1225  *
1226  *	int exist_board(
1227  *		struct s_smc *smc,
1228  *		int slot) ;
1229  * In
1230  *	smc - A pointer to the SMT Context struct.
1231  *
1232  *	slot - The number of the slot to inspect.
1233  * Out
1234  *	0 = No adapter present.
1235  *	1 = Found adapter.
1236  *
1237  * Pseudo
1238  *      Read EISA ID
1239  *	for all valid OEM_IDs
1240  *		compare with ID read
1241  *		if equal, return 1
1242  *	return(0
1243  *
1244  * Note
1245  *	The smc pointer must be valid now.
1246  *
1247  ************************/
exist_board(smc,slot)1248 int exist_board(smc,slot)
1249 struct s_smc *smc ;
1250 int	slot ;
1251 {
1252 	int i ;
1253 #ifdef MULT_OEM
1254 	SK_LOC_DECL(u_char,id[4]) ;
1255 #endif	/* MULT_OEM */
1256 
1257 	/* No longer valid. */
1258 	if (smc == NULL)
1259 		return(0);
1260 
1261 	SK_UNUSED(slot) ;
1262 
1263 #ifndef MULT_OEM
1264 	for (i = 0 ; i < 4 ; i++) {
1265 		if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
1266 			return(0) ;
1267 	}
1268 	return(1) ;
1269 #else	/* MULT_OEM */
1270 	for (i = 0 ; i < 4 ; i++)
1271 		id[i] = inp(SADDR(slot)+PRA(i)) ;
1272 
1273 	smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1274 
1275 	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1276 		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1277 			continue ;
1278 
1279 		if (is_equal_num(&id[0],&OEMID(smc,0),4))
1280 			return (1) ;
1281 	}
1282 	return (0) ;	/* No adapter found. */
1283 #endif	/* MULT_OEM */
1284 }
1285 
1286 
get_board_para(smc,slot)1287 int get_board_para(smc,slot)
1288 struct s_smc *smc ;
1289 int	slot ;
1290 {
1291 	int	i ;
1292 
1293 	if (!exist_board(smc,slot))
1294 		return(0) ;
1295 
1296 	smc->hw.slot = slot ;
1297 #ifndef	MEM_MAPPED_IO		/* if defined by the operating system */
1298 	smc->hw.iop = SADDR(slot) ;
1299 #endif
1300 
1301 	if (!(inp(C0_A(0))&CFG_CARD_EN)) {
1302 		return(2) ;			/* CFG_CARD_EN bit not set! */
1303 	}
1304 
1305 	smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
1306 	smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;
1307 
1308 	if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
1309 		smc->hw.eprom = opt_eproms[i] ;
1310 	else
1311 		smc->hw.eprom = 0 ;
1312 
1313 	smc->hw.DmaWriteExtraBytes = 8 ;
1314 
1315 	return(1) ;
1316 }
1317 #endif	/* EISA */
1318 
1319 #ifdef	ISA
1320 #ifndef MULT_OEM
1321 const u_char sklogo[6] = SKLOGO_STR ;
1322 #define	SIZE_SKLOGO(smc)	sizeof(sklogo)
1323 #define	SKLOGO(smc,i)		sklogo[i]
1324 #else	/* MULT_OEM */
1325 #define	SIZE_SKLOGO(smc)	smc->hw.oem_id->oi_logo_len
1326 #define	SKLOGO(smc,i)		smc->hw.oem_id->oi_logo[i]
1327 #endif	/* MULT_OEM */
1328 
1329 
exist_board(smc,port)1330 int exist_board(smc,port)
1331 struct s_smc *smc ;
1332 HW_PTR	port ;
1333 {
1334 	int	i ;
1335 #ifdef MULT_OEM
1336 	int	bytes_read ;
1337 	u_char	board_logo[15] ;
1338 	SK_LOC_DECL(u_char,id[4]) ;
1339 #endif	/* MULT_OEM */
1340 
1341 	/* No longer valid. */
1342 	if (smc == NULL)
1343 		return(0);
1344 
1345 	SK_UNUSED(smc) ;
1346 #ifndef MULT_OEM
1347 	for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
1348 		if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
1349 			return(0) ;
1350 		}
1351 	}
1352 
1353 	/* check MAC address (S&K or other) */
1354 	for (i = 0 ; i < 3 ; i++) {
1355 		if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
1356 			return(0) ;
1357 	}
1358 	return(1) ;
1359 #else	/* MULT_OEM */
1360         smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[0] ;
1361 	board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
1362 	bytes_read = 1 ;
1363 
1364 	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1365 		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1366 			continue ;
1367 
1368 		/* Test all read bytes with current OEM_entry */
1369 		/* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
1370 		for (i = 0; i < bytes_read; i++) {
1371 			if (board_logo[i] != SKLOGO(smc,i))
1372 				break ;
1373 		}
1374 
1375 		/* If mismatch, switch to next OEM entry */
1376 		if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
1377 			continue ;
1378 
1379 		--i ;
1380 		while (bytes_read < SIZE_SKLOGO(smc)) {
1381 			//   inpw next byte SK_Logo
1382 			i++ ;
1383 			board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
1384 			bytes_read++ ;
1385 			if (board_logo[i] != SKLOGO(smc,i))
1386 				break ;
1387 		}
1388 
1389 		for (i = 0 ; i < 3 ; i++)
1390 			id[i] = (u_char)inpw((PRA(i)+port)) ;
1391 
1392 		if ((board_logo[i] == SKLOGO(smc,i))
1393 			&& (bytes_read == SIZE_SKLOGO(smc))) {
1394 
1395 			if (is_equal_num(&id[0],&OEMID(smc,0),3))
1396 				return(1);
1397 		}
1398 	}	/* for */
1399 	return(0) ;
1400 #endif	/* MULT_OEM */
1401 }
1402 
get_board_para(smc,slot)1403 int get_board_para(smc,slot)
1404 struct s_smc *smc ;
1405 int	slot ;
1406 {
1407 	SK_UNUSED(smc) ;
1408 	SK_UNUSED(slot) ;
1409 	return(0) ;	/* for ISA not supported */
1410 }
1411 #endif	/* ISA */
1412 
1413 #ifdef PCI
1414 #ifdef USE_BIOS_FUN
exist_board(smc,slot)1415 int exist_board(smc,slot)
1416 struct s_smc *smc ;
1417 int	slot ;
1418 {
1419 	u_short dev_id ;
1420 	u_short ven_id ;
1421 	int found ;
1422 	int i ;
1423 
1424 	found = FALSE ;		/* make sure we returned with adatper not found*/
1425 				/* if an empty oemids.h was included */
1426 
1427 #ifdef MULT_OEM
1428         smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1429 	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1430 		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1431 			continue ;
1432 #endif
1433 		ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ;
1434 		dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ;
1435 		for (i = 0; i < slot; i++) {
1436 			if (pci_find_device(i,&smc->hw.pci_handle,
1437 				dev_id,ven_id) != 0) {
1438 
1439 				found = FALSE ;
1440 			} else {
1441 				found = TRUE ;
1442 			}
1443 		}
1444 		if (found) {
1445 			return(1) ;	/* adapter was found */
1446 		}
1447 #ifdef MULT_OEM
1448 	}
1449 #endif
1450 	return(0) ;	/* adapter was not found */
1451 }
1452 #endif	/* PCI */
1453 #endif	/* USE_BIOS_FUNC */
1454 
driver_get_bia(smc,bia_addr)1455 void driver_get_bia(smc, bia_addr)
1456 struct s_smc *smc ;
1457 struct fddi_addr *bia_addr ;
1458 {
1459 	int i ;
1460 
1461 	extern const u_char canonical[256] ;
1462 
1463 	for (i = 0 ; i < 6 ; i++) {
1464 		bia_addr->a[i] = canonical[smc->hw.fddi_phys_addr.a[i]] ;
1465 	}
1466 }
1467 
smt_start_watchdog(smc)1468 void smt_start_watchdog(smc)
1469 struct s_smc *smc ;
1470 {
1471 	SK_UNUSED(smc) ;	/* Make LINT happy. */
1472 
1473 #ifndef	DEBUG
1474 
1475 #ifdef	PCI
1476 	if (smc->hw.wdog_used) {
1477 		outpw(ADDR(B2_WDOG_CRTL),TIM_START) ;	/* Start timer. */
1478 	}
1479 #endif
1480 
1481 #endif	/* DEBUG */
1482 }
1483 
smt_stop_watchdog(smc)1484 void smt_stop_watchdog(smc)
1485 struct s_smc *smc ;
1486 {
1487 	SK_UNUSED(smc) ;	/* Make LINT happy. */
1488 #ifndef	DEBUG
1489 
1490 #ifdef	PCI
1491 	if (smc->hw.wdog_used) {
1492 		outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ;	/* Stop timer. */
1493 	}
1494 #endif
1495 
1496 #endif	/* DEBUG */
1497 }
1498 
1499 #ifdef	PCI
get_rom_byte(smc,addr)1500 static char get_rom_byte(smc,addr)
1501 struct s_smc *smc ;
1502 u_short	addr ;
1503 {
1504 	GET_PAGE(addr) ;
1505 	return (READ_PROM(ADDR(B2_FDP))) ;
1506 }
1507 
1508 /*
1509  * ROM image defines
1510  */
1511 #define	ROM_SIG_1	0
1512 #define ROM_SIG_2	1
1513 #define PCI_DATA_1	0x18
1514 #define PCI_DATA_2	0x19
1515 
1516 /*
1517  * PCI data structure defines
1518  */
1519 #define	VPD_DATA_1	0x08
1520 #define	VPD_DATA_2	0x09
1521 #define IMAGE_LEN_1	0x10
1522 #define IMAGE_LEN_2	0x11
1523 #define	CODE_TYPE	0x14
1524 #define	INDICATOR	0x15
1525 
1526 /*
1527  *	BEGIN_MANUAL_ENTRY(mac_drv_vpd_read)
1528  *	mac_drv_vpd_read(smc,buf,size,image)
1529  *
1530  * function	DOWNCALL	(FDDIWARE)
1531  *		reads the VPD data of the FPROM and writes it into the
1532  *		buffer
1533  *
1534  * para	buf	points to the buffer for the VPD data
1535  *	size	size of the VPD data buffer
1536  *	image	boot image; code type of the boot image
1537  *		image = 0	Intel x86, PC-AT compatible
1538  *			1	OPENBOOT standard for PCI
1539  *			2-FF	reserved
1540  *
1541  * returns	len	number of VPD data bytes read form the FPROM
1542  *		<0	number of read bytes
1543  *		>0	error: data invalid
1544  *
1545  *	END_MANUAL_ENTRY
1546  */
mac_drv_vpd_read(smc,buf,size,image)1547 int mac_drv_vpd_read(smc,buf,size,image)
1548 struct s_smc *smc ;
1549 char *buf ;
1550 int size ;
1551 char image ;
1552 {
1553 	u_short	ibase ;
1554 	u_short pci_base ;
1555 	u_short vpd ;
1556 	int	len ;
1557 
1558 	len = 0 ;
1559 	ibase = 0 ;
1560 	/*
1561 	 * as long images defined
1562 	 */
1563 	while (get_rom_byte(smc,ibase+ROM_SIG_1) == 0x55 &&
1564 		(u_char) get_rom_byte(smc,ibase+ROM_SIG_2) == 0xaa) {
1565 		/*
1566 		 * get the pointer to the PCI data structure
1567 		 */
1568 		pci_base = ibase + get_rom_byte(smc,ibase+PCI_DATA_1) +
1569 				(get_rom_byte(smc,ibase+PCI_DATA_2) << 8) ;
1570 
1571 		if (image == get_rom_byte(smc,pci_base+CODE_TYPE)) {
1572 			/*
1573 			 * we have the right image, read the VPD data
1574 			 */
1575 			vpd = ibase + get_rom_byte(smc,pci_base+VPD_DATA_1) +
1576 				(get_rom_byte(smc,pci_base+VPD_DATA_2) << 8) ;
1577 			if (vpd == ibase) {
1578 				break ;		/* no VPD data */
1579 			}
1580 			for (len = 0; len < size; len++,buf++,vpd++) {
1581 				*buf = get_rom_byte(smc,vpd) ;
1582 			}
1583 			break ;
1584 		}
1585 		else {
1586 			/*
1587 			 * try the next image
1588 			 */
1589 			if (get_rom_byte(smc,pci_base+INDICATOR) & 0x80) {
1590 				break ;		/* this was the last image */
1591 			}
1592 			ibase = ibase + get_rom_byte(smc,ibase+IMAGE_LEN_1) +
1593 				(get_rom_byte(smc,ibase+IMAGE_LEN_2) << 8) ;
1594 		}
1595 	}
1596 
1597 	return(len) ;
1598 }
1599 
mac_drv_pci_fix(smc,fix_value)1600 void mac_drv_pci_fix(smc,fix_value)
1601 struct s_smc *smc ;
1602 u_long fix_value ;
1603 {
1604 	smc->hw.pci_fix_value = fix_value ;
1605 }
1606 
mac_do_pci_fix(smc)1607 void mac_do_pci_fix(smc)
1608 struct s_smc *smc ;
1609 {
1610 	SK_UNUSED(smc) ;
1611 }
1612 #endif	/* PCI */
1613