1 /******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.43 $
6 * Date: $Date: 2004/01/29 15:47:07 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11 /******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39 /******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48 /******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <asm/byteorder.h>
76 * <asm/bitops.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skcsum.h"
105 * "h/skrlmt.h"
106 *
107 ******************************************************************************/
108
109 #include "h/skversion.h"
110
111 #include <linux/module.h>
112 #include <linux/init.h>
113
114 #ifdef CONFIG_PROC_FS
115 #include <linux/proc_fs.h>
116 #endif
117
118 #include "h/skdrv1st.h"
119 #include "h/skdrv2nd.h"
120
121 /*******************************************************************************
122 *
123 * Defines
124 *
125 ******************************************************************************/
126
127 /* for debuging on x86 only */
128 /* #define BREAKPOINT() asm(" int $3"); */
129
130 /* use the transmit hw checksum driver functionality */
131 #define USE_SK_TX_CHECKSUM
132
133 /* use the receive hw checksum driver functionality */
134 #define USE_SK_RX_CHECKSUM
135
136 /* use the scatter-gather functionality with sendfile() */
137 #define SK_ZEROCOPY
138
139 /* use of a transmit complete interrupt */
140 #define USE_TX_COMPLETE
141
142 /*
143 * threshold for copying small receive frames
144 * set to 0 to avoid copying, set to 9001 to copy all frames
145 */
146 #define SK_COPY_THRESHOLD 50
147
148 /* number of adapters that can be configured via command line params */
149 #define SK_MAX_CARD_PARAM 16
150
151
152
153 /*
154 * use those defines for a compile-in version of the driver instead
155 * of command line parameters
156 */
157 // #define LINK_SPEED_A {"Auto", }
158 // #define LINK_SPEED_B {"Auto", }
159 // #define AUTO_NEG_A {"Sense", }
160 // #define AUTO_NEG_B {"Sense", }
161 // #define DUP_CAP_A {"Both", }
162 // #define DUP_CAP_B {"Both", }
163 // #define FLOW_CTRL_A {"SymOrRem", }
164 // #define FLOW_CTRL_B {"SymOrRem", }
165 // #define ROLE_A {"Auto", }
166 // #define ROLE_B {"Auto", }
167 // #define PREF_PORT {"A", }
168 // #define CON_TYPE {"Auto", }
169 // #define RLMT_MODE {"CheckLinkState", }
170
171 #define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
172 #define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
173 #define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
174
175
176 /* Set blink mode*/
177 #define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
178 SK_DUP_LED_NORMAL | \
179 SK_LED_LINK100_ON)
180
181
182 /* Isr return value */
183 #define SkIsrRetVar void
184 #define SkIsrRetNone NULL
185 #define SkIsrRetHandled NULL
186
187
188 /*******************************************************************************
189 *
190 * Local Function Prototypes
191 *
192 ******************************************************************************/
193
194 static void FreeResources(struct SK_NET_DEVICE *dev);
195 static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
196 static SK_BOOL BoardAllocMem(SK_AC *pAC);
197 static void BoardFreeMem(SK_AC *pAC);
198 static void BoardInitMem(SK_AC *pAC);
199 static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
200 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
201 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
202 static int SkGeOpen(struct SK_NET_DEVICE *dev);
203 static int SkGeClose(struct SK_NET_DEVICE *dev);
204 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
205 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
206 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
207 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
208 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
209 static void GetConfiguration(SK_AC*);
210 static void ProductStr(SK_AC*);
211 static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
212 static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
213 static void FillRxRing(SK_AC*, RX_PORT*);
214 static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
215 static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
216 static void ClearAndStartRx(SK_AC*, int);
217 static void ClearTxIrq(SK_AC*, int, int);
218 static void ClearRxRing(SK_AC*, RX_PORT*);
219 static void ClearTxRing(SK_AC*, TX_PORT*);
220 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
221 static void PortReInitBmu(SK_AC*, int);
222 static int SkGeIocMib(DEV_NET*, unsigned int, int);
223 static int SkGeInitPCI(SK_AC *pAC);
224 static void StartDrvCleanupTimer(SK_AC *pAC);
225 static void StopDrvCleanupTimer(SK_AC *pAC);
226 static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
227
228 #ifdef SK_DIAG_SUPPORT
229 static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
230 static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
231 static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
232 #endif
233
234 /*******************************************************************************
235 *
236 * Extern Function Prototypes
237 *
238 ******************************************************************************/
239
240 #ifdef CONFIG_PROC_FS
241 static const char SK_Root_Dir_entry[] = "sk98lin";
242 static struct proc_dir_entry *pSkRootDir = NULL;
243 extern int sk_proc_read( char *buffer,
244 char **buffer_location,
245 off_t offset,
246 int buffer_length,
247 int *eof,
248 void *data);
249 #endif
250
251 extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
252 extern void SkDimDisplayModerationSettings(SK_AC *pAC);
253 extern void SkDimStartModerationTimer(SK_AC *pAC);
254 extern void SkDimModerate(SK_AC *pAC);
255
256 #ifdef DEBUG
257 static void DumpMsg(struct sk_buff*, char*);
258 static void DumpData(char*, int);
259 static void DumpLong(char*, int);
260 #endif
261
262 /* global variables *********************************************************/
263 static const char *BootString = BOOT_STRING;
264 struct SK_NET_DEVICE *SkGeRootDev = NULL;
265 static int probed __initdata = 0;
266 static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
267
268 /* local variables **********************************************************/
269 static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
270 static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
271
272
273 #ifdef CONFIG_PROC_FS
274 static struct proc_dir_entry *pSkRootDir;
275 #endif
276
277
278
279 /*****************************************************************************
280 *
281 * skge_probe - find all SK-98xx adapters
282 *
283 * Description:
284 * This function scans the PCI bus for SK-98xx adapters. Resources for
285 * each adapter are allocated and the adapter is brought into Init 1
286 * state.
287 *
288 * Returns:
289 * 0, if everything is ok
290 * !=0, on error
291 */
skge_probe(void)292 static int __init skge_probe (void)
293 {
294 int boards_found = 0;
295 int vendor_flag = SK_FALSE;
296 SK_AC *pAC;
297 DEV_NET *pNet = NULL;
298 struct pci_dev *pdev = NULL;
299 struct SK_NET_DEVICE *dev = NULL;
300 SK_BOOL DeviceFound = SK_FALSE;
301 SK_BOOL BootStringCount = SK_FALSE;
302 int retval;
303 #ifdef CONFIG_PROC_FS
304 int proc_root_initialized = 0;
305 struct proc_dir_entry *pProcFile;
306 #endif
307
308 if (probed)
309 return -ENODEV;
310 probed++;
311
312 if (!pci_present()) { /* is PCI support present? */
313 return -ENODEV;
314 }
315
316 while((pdev = pci_find_class(PCI_CLASS_NETWORK_ETHERNET << 8, pdev))) {
317
318 dev = NULL;
319 pNet = NULL;
320
321
322 SK_PCI_ISCOMPLIANT(vendor_flag, pdev);
323 if (!vendor_flag)
324 continue;
325
326 /* Configure DMA attributes. */
327 if (pci_set_dma_mask(pdev, (u64) 0xffffffffffffffffULL) &&
328 pci_set_dma_mask(pdev, (u64) 0xffffffff))
329 continue;
330
331
332 if ((dev = init_etherdev(dev, sizeof(DEV_NET))) == NULL) {
333 printk(KERN_ERR "Unable to allocate etherdev "
334 "structure!\n");
335 break;
336 }
337
338 pNet = dev->priv;
339 pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
340 if (pNet->pAC == NULL){
341 unregister_netdev(dev);
342 dev->get_stats = NULL;
343 kfree(dev->priv);
344 printk(KERN_ERR "Unable to allocate adapter "
345 "structure!\n");
346 break;
347 }
348
349 /* Print message */
350 if (!BootStringCount) {
351 /* set display flag to TRUE so that */
352 /* we only display this string ONCE */
353 BootStringCount = SK_TRUE;
354 printk("%s\n", BootString);
355 }
356
357 memset(pNet->pAC, 0, sizeof(SK_AC));
358 pAC = pNet->pAC;
359 pAC->PciDev = pdev;
360 pAC->PciDevId = pdev->device;
361 pAC->dev[0] = dev;
362 pAC->dev[1] = dev;
363 sprintf(pAC->Name, "SysKonnect SK-98xx");
364 pAC->CheckQueue = SK_FALSE;
365
366 pNet->Mtu = 1500;
367 pNet->Up = 0;
368 dev->irq = pdev->irq;
369 retval = SkGeInitPCI(pAC);
370 if (retval) {
371 printk("SKGE: PCI setup failed: %i\n", retval);
372 unregister_netdev(dev);
373 dev->get_stats = NULL;
374 kfree(dev);
375 continue;
376 }
377
378 dev->open = &SkGeOpen;
379 dev->stop = &SkGeClose;
380 dev->hard_start_xmit = &SkGeXmit;
381 dev->get_stats = &SkGeStats;
382 dev->set_multicast_list = &SkGeSetRxMode;
383 dev->set_mac_address = &SkGeSetMacAddr;
384 dev->do_ioctl = &SkGeIoctl;
385 dev->change_mtu = &SkGeChangeMtu;
386 dev->flags &= ~IFF_RUNNING;
387
388 #ifdef SK_ZEROCOPY
389 #ifdef USE_SK_TX_CHECKSUM
390
391 if (pAC->ChipsetType) {
392 /* Use only if yukon hardware */
393 /* SK and ZEROCOPY - fly baby... */
394 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
395 }
396 #endif
397 #endif
398
399 pAC->Index = boards_found;
400
401 if (SkGeBoardInit(dev, pAC)) {
402 unregister_netdev(dev);
403 kfree(dev);
404 continue;
405 }
406
407
408 /* Print adapter specific string from vpd */
409 ProductStr(pAC);
410 printk("%s: %s\n", dev->name, pAC->DeviceStr);
411
412 /* Print configuration settings */
413 printk(" PrefPort:%c RlmtMode:%s\n",
414 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
415 (pAC->RlmtMode==0) ? "Check Link State" :
416 ((pAC->RlmtMode==1) ? "Check Link State" :
417 ((pAC->RlmtMode==3) ? "Check Local Port" :
418 ((pAC->RlmtMode==7) ? "Check Segmentation" :
419 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
420
421 SkGeYellowLED(pAC, pAC->IoBase, 1);
422
423
424 memcpy((caddr_t) &dev->dev_addr,
425 (caddr_t) &pAC->Addr.Net[0].CurrentMacAddress, 6);
426
427 /* First adapter... Create proc and print message */
428 #ifdef CONFIG_PROC_FS
429 if (!DeviceFound) {
430 DeviceFound = SK_TRUE;
431 SK_MEMCPY(&SK_Root_Dir_entry, BootString,
432 sizeof(SK_Root_Dir_entry) - 1);
433
434 /*Create proc (directory)*/
435 if(!proc_root_initialized) {
436 pSkRootDir = create_proc_entry(SK_Root_Dir_entry,
437 S_IFDIR | S_IWUSR | S_IRUGO | S_IXUGO, proc_net);
438 pSkRootDir->owner = THIS_MODULE;
439 proc_root_initialized = 1;
440 }
441 }
442
443 /* Create proc file */
444 pProcFile = create_proc_entry(dev->name,
445 S_IFREG | S_IXUSR | S_IWGRP | S_IROTH,
446 pSkRootDir);
447
448 pProcFile->read_proc = sk_proc_read;
449 pProcFile->write_proc = NULL;
450 pProcFile->nlink = 1;
451 pProcFile->size = sizeof(dev->name + 1);
452 pProcFile->data = (void *)pProcFile;
453 pProcFile->owner = THIS_MODULE;
454 #endif
455
456 pNet->PortNr = 0;
457 pNet->NetNr = 0;
458
459 boards_found++;
460
461 /* More then one port found */
462 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
463 if ((dev = init_etherdev(NULL, sizeof(DEV_NET))) == 0) {
464 printk(KERN_ERR "Unable to allocate etherdev "
465 "structure!\n");
466 break;
467 }
468
469 pAC->dev[1] = dev;
470 pNet = dev->priv;
471 pNet->PortNr = 1;
472 pNet->NetNr = 1;
473 pNet->pAC = pAC;
474 pNet->Mtu = 1500;
475 pNet->Up = 0;
476
477 dev->open = &SkGeOpen;
478 dev->stop = &SkGeClose;
479 dev->hard_start_xmit = &SkGeXmit;
480 dev->get_stats = &SkGeStats;
481 dev->set_multicast_list = &SkGeSetRxMode;
482 dev->set_mac_address = &SkGeSetMacAddr;
483 dev->do_ioctl = &SkGeIoctl;
484 dev->change_mtu = &SkGeChangeMtu;
485 dev->flags &= ~IFF_RUNNING;
486
487 #ifdef SK_ZEROCOPY
488 #ifdef USE_SK_TX_CHECKSUM
489 if (pAC->ChipsetType) {
490 /* SG and ZEROCOPY - fly baby... */
491 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
492 }
493 #endif
494 #endif
495
496 #ifdef CONFIG_PROC_FS
497 pProcFile = create_proc_entry(dev->name,
498 S_IFREG | S_IXUSR | S_IWGRP | S_IROTH,
499 pSkRootDir);
500 pProcFile->read_proc = sk_proc_read;
501 pProcFile->write_proc = NULL;
502 pProcFile->nlink = 1;
503 pProcFile->size = sizeof(dev->name + 1);
504 pProcFile->data = (void *)pProcFile;
505 pProcFile->owner = THIS_MODULE;
506 #endif
507
508 memcpy((caddr_t) &dev->dev_addr,
509 (caddr_t) &pAC->Addr.Net[1].CurrentMacAddress, 6);
510
511 printk("%s: %s\n", dev->name, pAC->DeviceStr);
512 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
513 }
514
515 /* Save the hardware revision */
516 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
517 (pAC->GIni.GIPciHwRev & 0x0F);
518
519 /* Set driver globals */
520 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
521 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
522
523 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
524 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
525 sizeof(SK_PNMI_STRUCT_DATA));
526
527 /*
528 * This is bollocks, but we need to tell the net-init
529 * code that it shall go for the next device.
530 */
531 #ifndef MODULE
532 dev->base_addr = 0;
533 #endif
534 }
535
536 /*
537 * If we're at this point we're going through skge_probe() for
538 * the first time. Return success (0) if we've initialized 1
539 * or more boards. Otherwise, return failure (-ENODEV).
540 */
541
542 return boards_found;
543 } /* skge_probe */
544
545
546 /*****************************************************************************
547 *
548 * SkGeInitPCI - Init the PCI resources
549 *
550 * Description:
551 * This function initialize the PCI resources and IO
552 *
553 * Returns: N/A
554 *
555 */
SkGeInitPCI(SK_AC * pAC)556 int SkGeInitPCI(SK_AC *pAC)
557 {
558 struct SK_NET_DEVICE *dev = pAC->dev[0];
559 struct pci_dev *pdev = pAC->PciDev;
560 int retval;
561
562 if (pci_enable_device(pdev) != 0) {
563 return 1;
564 }
565
566 dev->mem_start = pci_resource_start (pdev, 0);
567 pci_set_master(pdev);
568
569 if (pci_request_regions(pdev, pAC->Name) != 0) {
570 retval = 2;
571 goto out_disable;
572 }
573
574 #ifdef SK_BIG_ENDIAN
575 /*
576 * On big endian machines, we use the adapter's aibility of
577 * reading the descriptors as big endian.
578 */
579 {
580 SK_U32 our2;
581 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
582 our2 |= PCI_REV_DESC;
583 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
584 }
585 #endif
586
587 /*
588 * Remap the regs into kernel space.
589 */
590 pAC->IoBase = (char*)ioremap_nocache(dev->mem_start, 0x4000);
591
592 if (!pAC->IoBase){
593 retval = 3;
594 goto out_release;
595 }
596
597 return 0;
598
599 out_release:
600 pci_release_regions(pdev);
601 out_disable:
602 pci_disable_device(pdev);
603 return retval;
604 }
605
606
607 /*****************************************************************************
608 *
609 * FreeResources - release resources allocated for adapter
610 *
611 * Description:
612 * This function releases the IRQ, unmaps the IO and
613 * frees the desriptor ring.
614 *
615 * Returns: N/A
616 *
617 */
FreeResources(struct SK_NET_DEVICE * dev)618 static void FreeResources(struct SK_NET_DEVICE *dev)
619 {
620 SK_U32 AllocFlag;
621 DEV_NET *pNet;
622 SK_AC *pAC;
623
624 if (dev->priv) {
625 pNet = (DEV_NET*) dev->priv;
626 pAC = pNet->pAC;
627 AllocFlag = pAC->AllocFlag;
628 if (pAC->PciDev) {
629 pci_release_regions(pAC->PciDev);
630 }
631 if (AllocFlag & SK_ALLOC_IRQ) {
632 free_irq(dev->irq, dev);
633 }
634 if (pAC->IoBase) {
635 iounmap(pAC->IoBase);
636 }
637 if (pAC->pDescrMem) {
638 BoardFreeMem(pAC);
639 }
640 }
641
642 } /* FreeResources */
643
644 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
645 MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
646 MODULE_LICENSE("GPL");
647 MODULE_PARM(Speed_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
648 MODULE_PARM(Speed_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
649 MODULE_PARM(AutoNeg_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
650 MODULE_PARM(AutoNeg_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
651 MODULE_PARM(DupCap_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
652 MODULE_PARM(DupCap_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
653 MODULE_PARM(FlowCtrl_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
654 MODULE_PARM(FlowCtrl_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
655 MODULE_PARM(Role_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
656 MODULE_PARM(Role_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
657 MODULE_PARM(ConType, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
658 MODULE_PARM(PrefPort, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
659 MODULE_PARM(RlmtMode, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
660 /* not used, just there because every driver should have them: */
661 MODULE_PARM(options, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "i");
662 MODULE_PARM(debug, "i");
663 /* used for interrupt moderation */
664 MODULE_PARM(IntsPerSec, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "i");
665 MODULE_PARM(Moderation, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
666 MODULE_PARM(Stats, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
667 MODULE_PARM(ModerationMask, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
668 MODULE_PARM(AutoSizing, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
669
670
671 #ifdef LINK_SPEED_A
672 static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
673 #else
674 static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
675 #endif
676
677 #ifdef LINK_SPEED_B
678 static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
679 #else
680 static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
681 #endif
682
683 #ifdef AUTO_NEG_A
684 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
685 #else
686 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
687 #endif
688
689 #ifdef DUP_CAP_A
690 static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
691 #else
692 static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
693 #endif
694
695 #ifdef FLOW_CTRL_A
696 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
697 #else
698 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
699 #endif
700
701 #ifdef ROLE_A
702 static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
703 #else
704 static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
705 #endif
706
707 #ifdef AUTO_NEG_B
708 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
709 #else
710 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
711 #endif
712
713 #ifdef DUP_CAP_B
714 static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
715 #else
716 static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
717 #endif
718
719 #ifdef FLOW_CTRL_B
720 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
721 #else
722 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
723 #endif
724
725 #ifdef ROLE_B
726 static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
727 #else
728 static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
729 #endif
730
731 #ifdef CON_TYPE
732 static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
733 #else
734 static char *ConType[SK_MAX_CARD_PARAM] = {"", };
735 #endif
736
737 #ifdef PREF_PORT
738 static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
739 #else
740 static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
741 #endif
742
743 #ifdef RLMT_MODE
744 static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
745 #else
746 static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
747 #endif
748
749 static int debug = 0; /* not used */
750 static int options[SK_MAX_CARD_PARAM] = {0, }; /* not used */
751
752 static int IntsPerSec[SK_MAX_CARD_PARAM];
753 static char *Moderation[SK_MAX_CARD_PARAM];
754 static char *ModerationMask[SK_MAX_CARD_PARAM];
755 static char *AutoSizing[SK_MAX_CARD_PARAM];
756 static char *Stats[SK_MAX_CARD_PARAM];
757
758
759 /*****************************************************************************
760 *
761 * skge_init_module - module initialization function
762 *
763 * Description:
764 * Very simple, only call skge_probe and return approriate result.
765 *
766 * Returns:
767 * 0, if everything is ok
768 * !=0, on error
769 */
skge_init_module(void)770 static int __init skge_init_module(void)
771 {
772 int cards;
773 SkGeRootDev = NULL;
774
775 /* just to avoid warnings ... */
776 debug = 0;
777 options[0] = 0;
778
779 cards = skge_probe();
780 if (cards == 0) {
781 printk("sk98lin: No adapter found.\n");
782 }
783 return cards ? 0 : -ENODEV;
784 } /* skge_init_module */
785
786
787 /*****************************************************************************
788 *
789 * skge_cleanup_module - module unload function
790 *
791 * Description:
792 * Disable adapter if it is still running, free resources,
793 * free device struct.
794 *
795 * Returns: N/A
796 */
skge_cleanup_module(void)797 static void __exit skge_cleanup_module(void)
798 {
799 DEV_NET *pNet;
800 SK_AC *pAC;
801 struct SK_NET_DEVICE *next;
802 unsigned long Flags;
803 SK_EVPARA EvPara;
804
805 while (SkGeRootDev) {
806 pNet = (DEV_NET*) SkGeRootDev->priv;
807 pAC = pNet->pAC;
808 next = pAC->Next;
809
810 netif_stop_queue(SkGeRootDev);
811 SkGeYellowLED(pAC, pAC->IoBase, 0);
812
813 if(pAC->BoardLevel == SK_INIT_RUN) {
814 /* board is still alive */
815 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
816 EvPara.Para32[0] = 0;
817 EvPara.Para32[1] = -1;
818 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
819 EvPara.Para32[0] = 1;
820 EvPara.Para32[1] = -1;
821 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
822 SkEventDispatcher(pAC, pAC->IoBase);
823 /* disable interrupts */
824 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
825 SkGeDeInit(pAC, pAC->IoBase);
826 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
827 pAC->BoardLevel = SK_INIT_DATA;
828 /* We do NOT check here, if IRQ was pending, of course*/
829 }
830
831 if(pAC->BoardLevel == SK_INIT_IO) {
832 /* board is still alive */
833 SkGeDeInit(pAC, pAC->IoBase);
834 pAC->BoardLevel = SK_INIT_DATA;
835 }
836
837 if ((pAC->GIni.GIMacsFound == 2) && pAC->RlmtNets == 2){
838 unregister_netdev(pAC->dev[1]);
839 kfree(pAC->dev[1]);
840 }
841
842 FreeResources(SkGeRootDev);
843
844 SkGeRootDev->get_stats = NULL;
845 /*
846 * otherwise unregister_netdev calls get_stats with
847 * invalid IO ... :-(
848 */
849 unregister_netdev(SkGeRootDev);
850 kfree(SkGeRootDev);
851 kfree(pAC);
852 SkGeRootDev = next;
853 }
854
855 #ifdef CONFIG_PROC_FS
856 /* clear proc-dir */
857 remove_proc_entry(pSkRootDir->name, proc_net);
858 #endif
859
860 } /* skge_cleanup_module */
861
862 module_init(skge_init_module);
863 module_exit(skge_cleanup_module);
864
865
866 /*****************************************************************************
867 *
868 * SkGeBoardInit - do level 0 and 1 initialization
869 *
870 * Description:
871 * This function prepares the board hardware for running. The desriptor
872 * ring is set up, the IRQ is allocated and the configuration settings
873 * are examined.
874 *
875 * Returns:
876 * 0, if everything is ok
877 * !=0, on error
878 */
SkGeBoardInit(struct SK_NET_DEVICE * dev,SK_AC * pAC)879 static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
880 {
881 short i;
882 unsigned long Flags;
883 char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
884 char *VerStr = VER_STRING;
885 int Ret; /* return code of request_irq */
886 SK_BOOL DualNet;
887
888 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
889 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
890 for (i=0; i<SK_MAX_MACS; i++) {
891 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
892 pAC->TxPort[i][0].PortIndex = i;
893 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
894 pAC->RxPort[i].PortIndex = i;
895 }
896
897 /* Initialize the mutexes */
898 for (i=0; i<SK_MAX_MACS; i++) {
899 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
900 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
901 }
902 spin_lock_init(&pAC->SlowPathLock);
903
904 /* level 0 init common modules here */
905
906 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
907 /* Does a RESET on board ...*/
908 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
909 printk("HWInit (0) failed.\n");
910 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
911 return(-EAGAIN);
912 }
913 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
914 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
915 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
916 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
917 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
918 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
919
920 pAC->BoardLevel = SK_INIT_DATA;
921 pAC->RxBufSize = ETH_BUF_SIZE;
922
923 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
924 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
925
926 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
927
928 /* level 1 init common modules here (HW init) */
929 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
930 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
931 printk("sk98lin: HWInit (1) failed.\n");
932 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
933 return(-EAGAIN);
934 }
935 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
936 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
937 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
938 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
939 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
940 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
941
942 /* Set chipset type support */
943 pAC->ChipsetType = 0;
944 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
945 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
946 pAC->ChipsetType = 1;
947 }
948
949 GetConfiguration(pAC);
950 if (pAC->RlmtNets == 2) {
951 pAC->GIni.GIPortUsage = SK_MUL_LINK;
952 }
953
954 pAC->BoardLevel = SK_INIT_IO;
955 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
956
957 if (pAC->GIni.GIMacsFound == 2) {
958 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
959 } else if (pAC->GIni.GIMacsFound == 1) {
960 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
961 pAC->Name, dev);
962 } else {
963 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
964 pAC->GIni.GIMacsFound);
965 return -EAGAIN;
966 }
967
968 if (Ret) {
969 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
970 dev->irq);
971 return -EAGAIN;
972 }
973 pAC->AllocFlag |= SK_ALLOC_IRQ;
974
975 /* Alloc memory for this board (Mem for RxD/TxD) : */
976 if(!BoardAllocMem(pAC)) {
977 printk("No memory for descriptor rings.\n");
978 return(-EAGAIN);
979 }
980
981 SkCsSetReceiveFlags(pAC,
982 SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
983 &pAC->CsOfs1, &pAC->CsOfs2, 0);
984 pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
985
986 BoardInitMem(pAC);
987 /* tschilling: New common function with minimum size check. */
988 DualNet = SK_FALSE;
989 if (pAC->RlmtNets == 2) {
990 DualNet = SK_TRUE;
991 }
992
993 if (SkGeInitAssignRamToQueues(
994 pAC,
995 pAC->ActivePort,
996 DualNet)) {
997 BoardFreeMem(pAC);
998 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
999 return(-EAGAIN);
1000 }
1001
1002 /*
1003 * Register the device here
1004 */
1005 pAC->Next = SkGeRootDev;
1006 SkGeRootDev = dev;
1007
1008 return (0);
1009 } /* SkGeBoardInit */
1010
1011
1012 /*****************************************************************************
1013 *
1014 * BoardAllocMem - allocate the memory for the descriptor rings
1015 *
1016 * Description:
1017 * This function allocates the memory for all descriptor rings.
1018 * Each ring is aligned for the desriptor alignment and no ring
1019 * has a 4 GByte boundary in it (because the upper 32 bit must
1020 * be constant for all descriptiors in one rings).
1021 *
1022 * Returns:
1023 * SK_TRUE, if all memory could be allocated
1024 * SK_FALSE, if not
1025 */
BoardAllocMem(SK_AC * pAC)1026 static SK_BOOL BoardAllocMem(
1027 SK_AC *pAC)
1028 {
1029 caddr_t pDescrMem; /* pointer to descriptor memory area */
1030 size_t AllocLength; /* length of complete descriptor area */
1031 int i; /* loop counter */
1032 unsigned long BusAddr;
1033
1034
1035 /* rings plus one for alignment (do not cross 4 GB boundary) */
1036 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
1037 #if (BITS_PER_LONG == 32)
1038 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
1039 #else
1040 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
1041 + RX_RING_SIZE + 8;
1042 #endif
1043
1044 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
1045 &pAC->pDescrMemDMA);
1046
1047 if (pDescrMem == NULL) {
1048 return (SK_FALSE);
1049 }
1050 pAC->pDescrMem = pDescrMem;
1051 BusAddr = (unsigned long) pAC->pDescrMemDMA;
1052
1053 /* Descriptors need 8 byte alignment, and this is ensured
1054 * by pci_alloc_consistent.
1055 */
1056 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1057 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
1058 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
1059 i, (unsigned long) pDescrMem,
1060 BusAddr));
1061 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
1062 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
1063 pDescrMem += TX_RING_SIZE;
1064 BusAddr += TX_RING_SIZE;
1065
1066 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
1067 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
1068 i, (unsigned long) pDescrMem,
1069 (unsigned long)BusAddr));
1070 pAC->RxPort[i].pRxDescrRing = pDescrMem;
1071 pAC->RxPort[i].VRxDescrRing = BusAddr;
1072 pDescrMem += RX_RING_SIZE;
1073 BusAddr += RX_RING_SIZE;
1074 } /* for */
1075
1076 return (SK_TRUE);
1077 } /* BoardAllocMem */
1078
1079
1080 /****************************************************************************
1081 *
1082 * BoardFreeMem - reverse of BoardAllocMem
1083 *
1084 * Description:
1085 * Free all memory allocated in BoardAllocMem: adapter context,
1086 * descriptor rings, locks.
1087 *
1088 * Returns: N/A
1089 */
BoardFreeMem(SK_AC * pAC)1090 static void BoardFreeMem(
1091 SK_AC *pAC)
1092 {
1093 size_t AllocLength; /* length of complete descriptor area */
1094
1095 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1096 ("BoardFreeMem\n"));
1097 #if (BITS_PER_LONG == 32)
1098 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
1099 #else
1100 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
1101 + RX_RING_SIZE + 8;
1102 #endif
1103
1104 pci_free_consistent(pAC->PciDev, AllocLength,
1105 pAC->pDescrMem, pAC->pDescrMemDMA);
1106 pAC->pDescrMem = NULL;
1107 } /* BoardFreeMem */
1108
1109
1110 /*****************************************************************************
1111 *
1112 * BoardInitMem - initiate the descriptor rings
1113 *
1114 * Description:
1115 * This function sets the descriptor rings up in memory.
1116 * The adapter is initialized with the descriptor start addresses.
1117 *
1118 * Returns: N/A
1119 */
BoardInitMem(SK_AC * pAC)1120 static void BoardInitMem(
1121 SK_AC *pAC) /* pointer to adapter context */
1122 {
1123 int i; /* loop counter */
1124 int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
1125 int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
1126
1127 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1128 ("BoardInitMem\n"));
1129
1130 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
1131 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
1132 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
1133 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
1134
1135 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1136 SetupRing(
1137 pAC,
1138 pAC->TxPort[i][0].pTxDescrRing,
1139 pAC->TxPort[i][0].VTxDescrRing,
1140 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
1141 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
1142 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
1143 &pAC->TxPort[i][0].TxdRingFree,
1144 SK_TRUE);
1145 SetupRing(
1146 pAC,
1147 pAC->RxPort[i].pRxDescrRing,
1148 pAC->RxPort[i].VRxDescrRing,
1149 &pAC->RxPort[i].pRxdRingHead,
1150 &pAC->RxPort[i].pRxdRingTail,
1151 &pAC->RxPort[i].pRxdRingPrev,
1152 &pAC->RxPort[i].RxdRingFree,
1153 SK_FALSE);
1154 }
1155 } /* BoardInitMem */
1156
1157
1158 /*****************************************************************************
1159 *
1160 * SetupRing - create one descriptor ring
1161 *
1162 * Description:
1163 * This function creates one descriptor ring in the given memory area.
1164 * The head, tail and number of free descriptors in the ring are set.
1165 *
1166 * Returns:
1167 * none
1168 */
SetupRing(SK_AC * pAC,void * pMemArea,uintptr_t VMemArea,RXD ** ppRingHead,RXD ** ppRingTail,RXD ** ppRingPrev,int * pRingFree,SK_BOOL IsTx)1169 static void SetupRing(
1170 SK_AC *pAC,
1171 void *pMemArea, /* a pointer to the memory area for the ring */
1172 uintptr_t VMemArea, /* the virtual bus address of the memory area */
1173 RXD **ppRingHead, /* address where the head should be written */
1174 RXD **ppRingTail, /* address where the tail should be written */
1175 RXD **ppRingPrev, /* address where the tail should be written */
1176 int *pRingFree, /* address where the # of free descr. goes */
1177 SK_BOOL IsTx) /* flag: is this a tx ring */
1178 {
1179 int i; /* loop counter */
1180 int DescrSize; /* the size of a descriptor rounded up to alignment*/
1181 int DescrNum; /* number of descriptors per ring */
1182 RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
1183 RXD *pNextDescr; /* pointer to the next descriptor */
1184 RXD *pPrevDescr; /* pointer to the previous descriptor */
1185 uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
1186
1187 if (IsTx == SK_TRUE) {
1188 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
1189 DESCR_ALIGN;
1190 DescrNum = TX_RING_SIZE / DescrSize;
1191 } else {
1192 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
1193 DESCR_ALIGN;
1194 DescrNum = RX_RING_SIZE / DescrSize;
1195 }
1196
1197 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
1198 ("Descriptor size: %d Descriptor Number: %d\n",
1199 DescrSize,DescrNum));
1200
1201 pDescr = (RXD*) pMemArea;
1202 pPrevDescr = NULL;
1203 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
1204 VNextDescr = VMemArea + DescrSize;
1205 for(i=0; i<DescrNum; i++) {
1206 /* set the pointers right */
1207 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
1208 pDescr->pNextRxd = pNextDescr;
1209 pDescr->TcpSumStarts = pAC->CsOfs;
1210
1211 /* advance one step */
1212 pPrevDescr = pDescr;
1213 pDescr = pNextDescr;
1214 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
1215 VNextDescr += DescrSize;
1216 }
1217 pPrevDescr->pNextRxd = (RXD*) pMemArea;
1218 pPrevDescr->VNextRxd = VMemArea;
1219 pDescr = (RXD*) pMemArea;
1220 *ppRingHead = (RXD*) pMemArea;
1221 *ppRingTail = *ppRingHead;
1222 *ppRingPrev = pPrevDescr;
1223 *pRingFree = DescrNum;
1224 } /* SetupRing */
1225
1226
1227 /*****************************************************************************
1228 *
1229 * PortReInitBmu - re-initiate the descriptor rings for one port
1230 *
1231 * Description:
1232 * This function reinitializes the descriptor rings of one port
1233 * in memory. The port must be stopped before.
1234 * The HW is initialized with the descriptor start addresses.
1235 *
1236 * Returns:
1237 * none
1238 */
PortReInitBmu(SK_AC * pAC,int PortIndex)1239 static void PortReInitBmu(
1240 SK_AC *pAC, /* pointer to adapter context */
1241 int PortIndex) /* index of the port for which to re-init */
1242 {
1243 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1244 ("PortReInitBmu "));
1245
1246 /* set address of first descriptor of ring in BMU */
1247 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
1248 (uint32_t)(((caddr_t)
1249 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
1250 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
1251 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
1252 0xFFFFFFFF));
1253 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
1254 (uint32_t)(((caddr_t)
1255 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
1256 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
1257 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
1258 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
1259 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
1260 pAC->RxPort[PortIndex].pRxDescrRing +
1261 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
1262 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
1263 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
1264 pAC->RxPort[PortIndex].pRxDescrRing +
1265 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
1266 } /* PortReInitBmu */
1267
1268
1269 /****************************************************************************
1270 *
1271 * SkGeIsr - handle adapter interrupts
1272 *
1273 * Description:
1274 * The interrupt routine is called when the network adapter
1275 * generates an interrupt. It may also be called if another device
1276 * shares this interrupt vector with the driver.
1277 *
1278 * Returns: N/A
1279 *
1280 */
SkGeIsr(int irq,void * dev_id,struct pt_regs * ptregs)1281 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
1282 {
1283 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1284 DEV_NET *pNet;
1285 SK_AC *pAC;
1286 SK_U32 IntSrc; /* interrupts source register contents */
1287
1288 pNet = (DEV_NET*) dev->priv;
1289 pAC = pNet->pAC;
1290
1291 /*
1292 * Check and process if its our interrupt
1293 */
1294 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1295 if (IntSrc == 0) {
1296 return;
1297 }
1298
1299 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1300 #if 0 /* software irq currently not used */
1301 if (IntSrc & IS_IRQ_SW) {
1302 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1303 SK_DBGCAT_DRV_INT_SRC,
1304 ("Software IRQ\n"));
1305 }
1306 #endif
1307 if (IntSrc & IS_R1_F) {
1308 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1309 SK_DBGCAT_DRV_INT_SRC,
1310 ("EOF RX1 IRQ\n"));
1311 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1312 SK_PNMI_CNT_RX_INTR(pAC, 0);
1313 }
1314 if (IntSrc & IS_R2_F) {
1315 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1316 SK_DBGCAT_DRV_INT_SRC,
1317 ("EOF RX2 IRQ\n"));
1318 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1319 SK_PNMI_CNT_RX_INTR(pAC, 1);
1320 }
1321 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1322 if (IntSrc & IS_XA1_F) {
1323 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1324 SK_DBGCAT_DRV_INT_SRC,
1325 ("EOF AS TX1 IRQ\n"));
1326 SK_PNMI_CNT_TX_INTR(pAC, 0);
1327 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1328 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1329 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1330 }
1331 if (IntSrc & IS_XA2_F) {
1332 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1333 SK_DBGCAT_DRV_INT_SRC,
1334 ("EOF AS TX2 IRQ\n"));
1335 SK_PNMI_CNT_TX_INTR(pAC, 1);
1336 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
1337 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
1338 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
1339 }
1340 #if 0 /* only if sync. queues used */
1341 if (IntSrc & IS_XS1_F) {
1342 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1343 SK_DBGCAT_DRV_INT_SRC,
1344 ("EOF SY TX1 IRQ\n"));
1345 SK_PNMI_CNT_TX_INTR(pAC, 1);
1346 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1347 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1348 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1349 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1350 }
1351 if (IntSrc & IS_XS2_F) {
1352 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1353 SK_DBGCAT_DRV_INT_SRC,
1354 ("EOF SY TX2 IRQ\n"));
1355 SK_PNMI_CNT_TX_INTR(pAC, 1);
1356 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
1357 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
1358 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
1359 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
1360 }
1361 #endif
1362 #endif
1363
1364 /* do all IO at once */
1365 if (IntSrc & IS_R1_F)
1366 ClearAndStartRx(pAC, 0);
1367 if (IntSrc & IS_R2_F)
1368 ClearAndStartRx(pAC, 1);
1369 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1370 if (IntSrc & IS_XA1_F)
1371 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1372 if (IntSrc & IS_XA2_F)
1373 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
1374 #endif
1375 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1376 } /* while (IntSrc & IRQ_MASK != 0) */
1377
1378 IntSrc &= pAC->GIni.GIValIrqMask;
1379 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1380 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1381 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
1382 pAC->CheckQueue = SK_FALSE;
1383 spin_lock(&pAC->SlowPathLock);
1384 if (IntSrc & SPECIAL_IRQS)
1385 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1386
1387 SkEventDispatcher(pAC, pAC->IoBase);
1388 spin_unlock(&pAC->SlowPathLock);
1389 }
1390 /*
1391 * do it all again is case we cleared an interrupt that
1392 * came in after handling the ring (OUTs may be delayed
1393 * in hardware buffers, but are through after IN)
1394 *
1395 * rroesler: has been commented out and shifted to
1396 * SkGeDrvEvent(), because it is timer
1397 * guarded now
1398 *
1399 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1400 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1401 */
1402
1403 if (pAC->CheckQueue) {
1404 pAC->CheckQueue = SK_FALSE;
1405 spin_lock(&pAC->SlowPathLock);
1406 SkEventDispatcher(pAC, pAC->IoBase);
1407 spin_unlock(&pAC->SlowPathLock);
1408 }
1409
1410 /* IRQ is processed - Enable IRQs again*/
1411 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1412
1413 return;
1414 } /* SkGeIsr */
1415
1416
1417 /****************************************************************************
1418 *
1419 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1420 *
1421 * Description:
1422 * The interrupt routine is called when the network adapter
1423 * generates an interrupt. It may also be called if another device
1424 * shares this interrupt vector with the driver.
1425 * This is the same as above, but handles only one port.
1426 *
1427 * Returns: N/A
1428 *
1429 */
SkGeIsrOnePort(int irq,void * dev_id,struct pt_regs * ptregs)1430 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1431 {
1432 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1433 DEV_NET *pNet;
1434 SK_AC *pAC;
1435 SK_U32 IntSrc; /* interrupts source register contents */
1436
1437 pNet = (DEV_NET*) dev->priv;
1438 pAC = pNet->pAC;
1439
1440 /*
1441 * Check and process if its our interrupt
1442 */
1443 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1444 if (IntSrc == 0) {
1445 return;
1446 }
1447
1448 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1449 #if 0 /* software irq currently not used */
1450 if (IntSrc & IS_IRQ_SW) {
1451 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1452 SK_DBGCAT_DRV_INT_SRC,
1453 ("Software IRQ\n"));
1454 }
1455 #endif
1456 if (IntSrc & IS_R1_F) {
1457 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1458 SK_DBGCAT_DRV_INT_SRC,
1459 ("EOF RX1 IRQ\n"));
1460 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1461 SK_PNMI_CNT_RX_INTR(pAC, 0);
1462 }
1463 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1464 if (IntSrc & IS_XA1_F) {
1465 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1466 SK_DBGCAT_DRV_INT_SRC,
1467 ("EOF AS TX1 IRQ\n"));
1468 SK_PNMI_CNT_TX_INTR(pAC, 0);
1469 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1470 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1471 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1472 }
1473 #if 0 /* only if sync. queues used */
1474 if (IntSrc & IS_XS1_F) {
1475 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1476 SK_DBGCAT_DRV_INT_SRC,
1477 ("EOF SY TX1 IRQ\n"));
1478 SK_PNMI_CNT_TX_INTR(pAC, 0);
1479 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1480 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1481 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1482 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1483 }
1484 #endif
1485 #endif
1486
1487 /* do all IO at once */
1488 if (IntSrc & IS_R1_F)
1489 ClearAndStartRx(pAC, 0);
1490 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1491 if (IntSrc & IS_XA1_F)
1492 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1493 #endif
1494 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1495 } /* while (IntSrc & IRQ_MASK != 0) */
1496
1497 IntSrc &= pAC->GIni.GIValIrqMask;
1498 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1499 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1500 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1501 pAC->CheckQueue = SK_FALSE;
1502 spin_lock(&pAC->SlowPathLock);
1503 if (IntSrc & SPECIAL_IRQS)
1504 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1505
1506 SkEventDispatcher(pAC, pAC->IoBase);
1507 spin_unlock(&pAC->SlowPathLock);
1508 }
1509 /*
1510 * do it all again is case we cleared an interrupt that
1511 * came in after handling the ring (OUTs may be delayed
1512 * in hardware buffers, but are through after IN)
1513 *
1514 * rroesler: has been commented out and shifted to
1515 * SkGeDrvEvent(), because it is timer
1516 * guarded now
1517 *
1518 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1519 */
1520
1521 /* IRQ is processed - Enable IRQs again*/
1522 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1523
1524 return;
1525 } /* SkGeIsrOnePort */
1526
1527
1528 /****************************************************************************
1529 *
1530 * SkGeOpen - handle start of initialized adapter
1531 *
1532 * Description:
1533 * This function starts the initialized adapter.
1534 * The board level variable is set and the adapter is
1535 * brought to full functionality.
1536 * The device flags are set for operation.
1537 * Do all necessary level 2 initialization, enable interrupts and
1538 * give start command to RLMT.
1539 *
1540 * Returns:
1541 * 0 on success
1542 * != 0 on error
1543 */
SkGeOpen(struct SK_NET_DEVICE * dev)1544 static int SkGeOpen(
1545 struct SK_NET_DEVICE *dev)
1546 {
1547 DEV_NET *pNet;
1548 SK_AC *pAC;
1549 unsigned long Flags; /* for spin lock */
1550 int i;
1551 SK_EVPARA EvPara; /* an event parameter union */
1552
1553 pNet = (DEV_NET*) dev->priv;
1554 pAC = pNet->pAC;
1555
1556 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1557 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1558
1559 #ifdef SK_DIAG_SUPPORT
1560 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1561 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1562 return (-1); /* still in use by diag; deny actions */
1563 }
1564 }
1565 #endif
1566
1567
1568 /* Set blink mode */
1569 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1570 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1571
1572 if (pAC->BoardLevel == SK_INIT_DATA) {
1573 /* level 1 init common modules here */
1574 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1575 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1576 return (-1);
1577 }
1578 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1579 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1580 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1581 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1582 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1583 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1584 pAC->BoardLevel = SK_INIT_IO;
1585 }
1586
1587 if (pAC->BoardLevel != SK_INIT_RUN) {
1588 /* tschilling: Level 2 init modules here, check return value. */
1589 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1590 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1591 return (-1);
1592 }
1593 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1594 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1595 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1596 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1597 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1598 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1599 pAC->BoardLevel = SK_INIT_RUN;
1600 }
1601
1602 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1603 /* Enable transmit descriptor polling. */
1604 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1605 FillRxRing(pAC, &pAC->RxPort[i]);
1606 }
1607 SkGeYellowLED(pAC, pAC->IoBase, 1);
1608
1609 StartDrvCleanupTimer(pAC);
1610 SkDimEnableModerationIfNeeded(pAC);
1611 SkDimDisplayModerationSettings(pAC);
1612
1613 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1614
1615 /* enable Interrupts */
1616 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1617 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1618
1619 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1620
1621 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1622 EvPara.Para32[0] = pAC->RlmtNets;
1623 EvPara.Para32[1] = -1;
1624 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1625 EvPara);
1626 EvPara.Para32[0] = pAC->RlmtMode;
1627 EvPara.Para32[1] = 0;
1628 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1629 EvPara);
1630 }
1631
1632 EvPara.Para32[0] = pNet->NetNr;
1633 EvPara.Para32[1] = -1;
1634 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1635 SkEventDispatcher(pAC, pAC->IoBase);
1636 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1637
1638 pAC->MaxPorts++;
1639 pNet->Up = 1;
1640
1641 MOD_INC_USE_COUNT;
1642
1643 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1644 ("SkGeOpen suceeded\n"));
1645
1646 return (0);
1647 } /* SkGeOpen */
1648
1649
1650 /****************************************************************************
1651 *
1652 * SkGeClose - Stop initialized adapter
1653 *
1654 * Description:
1655 * Close initialized adapter.
1656 *
1657 * Returns:
1658 * 0 - on success
1659 * error code - on error
1660 */
SkGeClose(struct SK_NET_DEVICE * dev)1661 static int SkGeClose(
1662 struct SK_NET_DEVICE *dev)
1663 {
1664 DEV_NET *pNet;
1665 DEV_NET *newPtrNet;
1666 SK_AC *pAC;
1667
1668 unsigned long Flags; /* for spin lock */
1669 int i;
1670 int PortIdx;
1671 SK_EVPARA EvPara;
1672
1673 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1674 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1675
1676 pNet = (DEV_NET*) dev->priv;
1677 pAC = pNet->pAC;
1678
1679 #ifdef SK_DIAG_SUPPORT
1680 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1681 if (pAC->DiagFlowCtrl == SK_FALSE) {
1682 MOD_DEC_USE_COUNT;
1683 /*
1684 ** notify that the interface which has been closed
1685 ** by operator interaction must not be started up
1686 ** again when the DIAG has finished.
1687 */
1688 newPtrNet = (DEV_NET *) pAC->dev[0]->priv;
1689 if (newPtrNet == pNet) {
1690 pAC->WasIfUp[0] = SK_FALSE;
1691 } else {
1692 pAC->WasIfUp[1] = SK_FALSE;
1693 }
1694 return 0; /* return to system everything is fine... */
1695 } else {
1696 pAC->DiagFlowCtrl = SK_FALSE;
1697 }
1698 }
1699 #endif
1700
1701 netif_stop_queue(dev);
1702
1703 if (pAC->RlmtNets == 1)
1704 PortIdx = pAC->ActivePort;
1705 else
1706 PortIdx = pNet->NetNr;
1707
1708 StopDrvCleanupTimer(pAC);
1709
1710 /*
1711 * Clear multicast table, promiscuous mode ....
1712 */
1713 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1714 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1715 SK_PROM_MODE_NONE);
1716
1717 if (pAC->MaxPorts == 1) {
1718 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1719 /* disable interrupts */
1720 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1721 EvPara.Para32[0] = pNet->NetNr;
1722 EvPara.Para32[1] = -1;
1723 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1724 SkEventDispatcher(pAC, pAC->IoBase);
1725 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1726 /* stop the hardware */
1727 SkGeDeInit(pAC, pAC->IoBase);
1728 pAC->BoardLevel = SK_INIT_DATA;
1729 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1730 } else {
1731
1732 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1733 EvPara.Para32[0] = pNet->NetNr;
1734 EvPara.Para32[1] = -1;
1735 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1736 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1737 SkEventDispatcher(pAC, pAC->IoBase);
1738 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1739
1740 /* Stop port */
1741 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1742 [TX_PRIO_LOW].TxDesRingLock, Flags);
1743 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1744 SK_STOP_ALL, SK_HARD_RST);
1745 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1746 [TX_PRIO_LOW].TxDesRingLock, Flags);
1747 }
1748
1749 if (pAC->RlmtNets == 1) {
1750 /* clear all descriptor rings */
1751 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1752 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1753 ClearRxRing(pAC, &pAC->RxPort[i]);
1754 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1755 }
1756 } else {
1757 /* clear port descriptor rings */
1758 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1759 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1760 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1761 }
1762
1763 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1764 ("SkGeClose: done "));
1765
1766 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1767 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1768 sizeof(SK_PNMI_STRUCT_DATA));
1769
1770 pAC->MaxPorts--;
1771 pNet->Up = 0;
1772
1773 MOD_DEC_USE_COUNT;
1774 return (0);
1775 } /* SkGeClose */
1776
1777
1778 /*****************************************************************************
1779 *
1780 * SkGeXmit - Linux frame transmit function
1781 *
1782 * Description:
1783 * The system calls this function to send frames onto the wire.
1784 * It puts the frame in the tx descriptor ring. If the ring is
1785 * full then, the 'tbusy' flag is set.
1786 *
1787 * Returns:
1788 * 0, if everything is ok
1789 * !=0, on error
1790 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1791 * allocated skb's) !!!
1792 */
SkGeXmit(struct sk_buff * skb,struct SK_NET_DEVICE * dev)1793 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1794 {
1795 DEV_NET *pNet;
1796 SK_AC *pAC;
1797 int Rc; /* return code of XmitFrame */
1798
1799 pNet = (DEV_NET*) dev->priv;
1800 pAC = pNet->pAC;
1801
1802 if ((!skb_shinfo(skb)->nr_frags) ||
1803 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1804 /* Don't activate scatter-gather and hardware checksum */
1805
1806 if (pAC->RlmtNets == 2)
1807 Rc = XmitFrame(
1808 pAC,
1809 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1810 skb);
1811 else
1812 Rc = XmitFrame(
1813 pAC,
1814 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1815 skb);
1816 } else {
1817 /* scatter-gather and hardware TCP checksumming anabled*/
1818 if (pAC->RlmtNets == 2)
1819 Rc = XmitFrameSG(
1820 pAC,
1821 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1822 skb);
1823 else
1824 Rc = XmitFrameSG(
1825 pAC,
1826 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1827 skb);
1828 }
1829
1830 /* Transmitter out of resources? */
1831 if (Rc <= 0) {
1832 netif_stop_queue(dev);
1833 }
1834
1835 /* If not taken, give buffer ownership back to the
1836 * queueing layer.
1837 */
1838 if (Rc < 0)
1839 return (1);
1840
1841 dev->trans_start = jiffies;
1842 return (0);
1843 } /* SkGeXmit */
1844
1845
1846 /*****************************************************************************
1847 *
1848 * XmitFrame - fill one socket buffer into the transmit ring
1849 *
1850 * Description:
1851 * This function puts a message into the transmit descriptor ring
1852 * if there is a descriptors left.
1853 * Linux skb's consist of only one continuous buffer.
1854 * The first step locks the ring. It is held locked
1855 * all time to avoid problems with SWITCH_../PORT_RESET.
1856 * Then the descriptoris allocated.
1857 * The second part is linking the buffer to the descriptor.
1858 * At the very last, the Control field of the descriptor
1859 * is made valid for the BMU and a start TX command is given
1860 * if necessary.
1861 *
1862 * Returns:
1863 * > 0 - on succes: the number of bytes in the message
1864 * = 0 - on resource shortage: this frame sent or dropped, now
1865 * the ring is full ( -> set tbusy)
1866 * < 0 - on failure: other problems ( -> return failure to upper layers)
1867 */
XmitFrame(SK_AC * pAC,TX_PORT * pTxPort,struct sk_buff * pMessage)1868 static int XmitFrame(
1869 SK_AC *pAC, /* pointer to adapter context */
1870 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1871 struct sk_buff *pMessage) /* pointer to send-message */
1872 {
1873 TXD *pTxd; /* the rxd to fill */
1874 TXD *pOldTxd;
1875 unsigned long Flags;
1876 SK_U64 PhysAddr;
1877 int Protocol;
1878 int IpHeaderLength;
1879 int BytesSend = pMessage->len;
1880
1881 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1882
1883 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1884 #ifndef USE_TX_COMPLETE
1885 FreeTxDescriptors(pAC, pTxPort);
1886 #endif
1887 if (pTxPort->TxdRingFree == 0) {
1888 /*
1889 ** no enough free descriptors in ring at the moment.
1890 ** Maybe free'ing some old one help?
1891 */
1892 FreeTxDescriptors(pAC, pTxPort);
1893 if (pTxPort->TxdRingFree == 0) {
1894 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1895 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1896 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1897 SK_DBGCAT_DRV_TX_PROGRESS,
1898 ("XmitFrame failed\n"));
1899 /*
1900 ** the desired message can not be sent
1901 ** Because tbusy seems to be set, the message
1902 ** should not be freed here. It will be used
1903 ** by the scheduler of the ethernet handler
1904 */
1905 return (-1);
1906 }
1907 }
1908
1909 /*
1910 ** If the passed socket buffer is of smaller MTU-size than 60,
1911 ** copy everything into new buffer and fill all bytes between
1912 ** the original packet end and the new packet end of 60 with 0x00.
1913 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1914 */
1915 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1916 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1917 return 0;
1918 }
1919 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1920 }
1921
1922 /*
1923 ** advance head counter behind descriptor needed for this frame,
1924 ** so that needed descriptor is reserved from that on. The next
1925 ** action will be to add the passed buffer to the TX-descriptor
1926 */
1927 pTxd = pTxPort->pTxdRingHead;
1928 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1929 pTxPort->TxdRingFree--;
1930
1931 #ifdef SK_DUMP_TX
1932 DumpMsg(pMessage, "XmitFrame");
1933 #endif
1934
1935 /*
1936 ** First step is to map the data to be sent via the adapter onto
1937 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1938 ** and 2.6 need to use pci_map_page() for that mapping.
1939 */
1940 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1941 virt_to_page(pMessage->data),
1942 ((unsigned long) pMessage->data & ~PAGE_MASK),
1943 pMessage->len,
1944 PCI_DMA_TODEVICE);
1945 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1946 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1947 pTxd->pMBuf = pMessage;
1948
1949 if (pMessage->ip_summed == CHECKSUM_HW) {
1950 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1951 if ((Protocol == C_PROTO_ID_UDP) &&
1952 (pAC->GIni.GIChipRev == 0) &&
1953 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1954 pTxd->TBControl = BMU_TCP_CHECK;
1955 } else {
1956 pTxd->TBControl = BMU_UDP_CHECK;
1957 }
1958
1959 IpHeaderLength = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
1960 IpHeaderLength = (IpHeaderLength & 0xf) * 4;
1961 pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
1962 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1963 (Protocol == C_PROTO_ID_UDP ?
1964 C_OFFSET_UDPHEADER_UDPCS :
1965 C_OFFSET_TCPHEADER_TCPCS);
1966 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1967
1968 pTxd->TBControl |= BMU_OWN | BMU_STF |
1969 BMU_SW | BMU_EOF |
1970 #ifdef USE_TX_COMPLETE
1971 BMU_IRQ_EOF |
1972 #endif
1973 pMessage->len;
1974 } else {
1975 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1976 BMU_SW | BMU_EOF |
1977 #ifdef USE_TX_COMPLETE
1978 BMU_IRQ_EOF |
1979 #endif
1980 pMessage->len;
1981 }
1982
1983 /*
1984 ** If previous descriptor already done, give TX start cmd
1985 */
1986 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1987 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1988 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1989 }
1990
1991 /*
1992 ** after releasing the lock, the skb may immediately be free'd
1993 */
1994 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1995 if (pTxPort->TxdRingFree != 0) {
1996 return (BytesSend);
1997 } else {
1998 return (0);
1999 }
2000
2001 } /* XmitFrame */
2002
2003 /*****************************************************************************
2004 *
2005 * XmitFrameSG - fill one socket buffer into the transmit ring
2006 * (use SG and TCP/UDP hardware checksumming)
2007 *
2008 * Description:
2009 * This function puts a message into the transmit descriptor ring
2010 * if there is a descriptors left.
2011 *
2012 * Returns:
2013 * > 0 - on succes: the number of bytes in the message
2014 * = 0 - on resource shortage: this frame sent or dropped, now
2015 * the ring is full ( -> set tbusy)
2016 * < 0 - on failure: other problems ( -> return failure to upper layers)
2017 */
XmitFrameSG(SK_AC * pAC,TX_PORT * pTxPort,struct sk_buff * pMessage)2018 static int XmitFrameSG(
2019 SK_AC *pAC, /* pointer to adapter context */
2020 TX_PORT *pTxPort, /* pointer to struct of port to send to */
2021 struct sk_buff *pMessage) /* pointer to send-message */
2022 {
2023
2024 TXD *pTxd;
2025 TXD *pTxdFst;
2026 TXD *pTxdLst;
2027 int CurrFrag;
2028 int BytesSend;
2029 int IpHeaderLength;
2030 int Protocol;
2031 skb_frag_t *sk_frag;
2032 SK_U64 PhysAddr;
2033 unsigned long Flags;
2034
2035 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2036 #ifndef USE_TX_COMPLETE
2037 FreeTxDescriptors(pAC, pTxPort);
2038 #endif
2039 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
2040 FreeTxDescriptors(pAC, pTxPort);
2041 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
2042 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2043 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
2044 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2045 SK_DBGCAT_DRV_TX_PROGRESS,
2046 ("XmitFrameSG failed - Ring full\n"));
2047 /* this message can not be sent now */
2048 return(-1);
2049 }
2050 }
2051
2052 pTxd = pTxPort->pTxdRingHead;
2053 pTxdFst = pTxd;
2054 pTxdLst = pTxd;
2055 BytesSend = 0;
2056 Protocol = 0;
2057
2058 /*
2059 ** Map the first fragment (header) into the DMA-space
2060 */
2061 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
2062 virt_to_page(pMessage->data),
2063 ((unsigned long) pMessage->data & ~PAGE_MASK),
2064 skb_headlen(pMessage),
2065 PCI_DMA_TODEVICE);
2066
2067 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
2068 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
2069
2070 /*
2071 ** Does the HW need to evaluate checksum for TCP or UDP packets?
2072 */
2073 if (pMessage->ip_summed == CHECKSUM_HW) {
2074 pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
2075 /*
2076 ** We have to use the opcode for tcp here, because the
2077 ** opcode for udp is not working in the hardware yet
2078 ** (Revision 2.0)
2079 */
2080 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
2081 if ((Protocol == C_PROTO_ID_UDP) &&
2082 (pAC->GIni.GIChipRev == 0) &&
2083 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
2084 pTxd->TBControl |= BMU_TCP_CHECK;
2085 } else {
2086 pTxd->TBControl |= BMU_UDP_CHECK;
2087 }
2088
2089 IpHeaderLength = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
2090 pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
2091 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
2092 (Protocol == C_PROTO_ID_UDP ?
2093 C_OFFSET_UDPHEADER_UDPCS :
2094 C_OFFSET_TCPHEADER_TCPCS);
2095 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
2096 } else {
2097 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
2098 skb_headlen(pMessage);
2099 }
2100
2101 pTxd = pTxd->pNextTxd;
2102 pTxPort->TxdRingFree--;
2103 BytesSend += skb_headlen(pMessage);
2104
2105 /*
2106 ** Browse over all SG fragments and map each of them into the DMA space
2107 */
2108 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
2109 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
2110 /*
2111 ** we already have the proper value in entry
2112 */
2113 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
2114 sk_frag->page,
2115 sk_frag->page_offset,
2116 sk_frag->size,
2117 PCI_DMA_TODEVICE);
2118
2119 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
2120 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
2121 pTxd->pMBuf = pMessage;
2122
2123 /*
2124 ** Does the HW need to evaluate checksum for TCP or UDP packets?
2125 */
2126 if (pMessage->ip_summed == CHECKSUM_HW) {
2127 pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
2128 /*
2129 ** We have to use the opcode for tcp here because the
2130 ** opcode for udp is not working in the hardware yet
2131 ** (revision 2.0)
2132 */
2133 if ((Protocol == C_PROTO_ID_UDP) &&
2134 (pAC->GIni.GIChipRev == 0) &&
2135 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
2136 pTxd->TBControl |= BMU_TCP_CHECK;
2137 } else {
2138 pTxd->TBControl |= BMU_UDP_CHECK;
2139 }
2140 } else {
2141 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
2142 }
2143
2144 /*
2145 ** Do we have the last fragment?
2146 */
2147 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
2148 #ifdef USE_TX_COMPLETE
2149 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
2150 #else
2151 pTxd->TBControl |= BMU_EOF | sk_frag->size;
2152 #endif
2153 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
2154
2155 } else {
2156 pTxd->TBControl |= sk_frag->size;
2157 }
2158 pTxdLst = pTxd;
2159 pTxd = pTxd->pNextTxd;
2160 pTxPort->TxdRingFree--;
2161 BytesSend += sk_frag->size;
2162 }
2163
2164 /*
2165 ** If previous descriptor already done, give TX start cmd
2166 */
2167 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
2168 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
2169 }
2170
2171 pTxPort->pTxdRingPrev = pTxdLst;
2172 pTxPort->pTxdRingHead = pTxd;
2173
2174 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2175
2176 if (pTxPort->TxdRingFree > 0) {
2177 return (BytesSend);
2178 } else {
2179 return (0);
2180 }
2181 }
2182
2183 /*****************************************************************************
2184 *
2185 * FreeTxDescriptors - release descriptors from the descriptor ring
2186 *
2187 * Description:
2188 * This function releases descriptors from a transmit ring if they
2189 * have been sent by the BMU.
2190 * If a descriptors is sent, it can be freed and the message can
2191 * be freed, too.
2192 * The SOFTWARE controllable bit is used to prevent running around a
2193 * completely free ring for ever. If this bit is no set in the
2194 * frame (by XmitFrame), this frame has never been sent or is
2195 * already freed.
2196 * The Tx descriptor ring lock must be held while calling this function !!!
2197 *
2198 * Returns:
2199 * none
2200 */
FreeTxDescriptors(SK_AC * pAC,TX_PORT * pTxPort)2201 static void FreeTxDescriptors(
2202 SK_AC *pAC, /* pointer to the adapter context */
2203 TX_PORT *pTxPort) /* pointer to destination port structure */
2204 {
2205 TXD *pTxd; /* pointer to the checked descriptor */
2206 TXD *pNewTail; /* pointer to 'end' of the ring */
2207 SK_U32 Control; /* TBControl field of descriptor */
2208 SK_U64 PhysAddr; /* address of DMA mapping */
2209
2210 pNewTail = pTxPort->pTxdRingTail;
2211 pTxd = pNewTail;
2212 /*
2213 ** loop forever; exits if BMU_SW bit not set in start frame
2214 ** or BMU_OWN bit set in any frame
2215 */
2216 while (1) {
2217 Control = pTxd->TBControl;
2218 if ((Control & BMU_SW) == 0) {
2219 /*
2220 ** software controllable bit is set in first
2221 ** fragment when given to BMU. Not set means that
2222 ** this fragment was never sent or is already
2223 ** freed ( -> ring completely free now).
2224 */
2225 pTxPort->pTxdRingTail = pTxd;
2226 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
2227 return;
2228 }
2229 if (Control & BMU_OWN) {
2230 pTxPort->pTxdRingTail = pTxd;
2231 if (pTxPort->TxdRingFree > 0) {
2232 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
2233 }
2234 return;
2235 }
2236
2237 /*
2238 ** release the DMA mapping, because until not unmapped
2239 ** this buffer is considered being under control of the
2240 ** adapter card!
2241 */
2242 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
2243 PhysAddr |= (SK_U64) pTxd->VDataLow;
2244 pci_unmap_page(pAC->PciDev, PhysAddr,
2245 pTxd->pMBuf->len,
2246 PCI_DMA_TODEVICE);
2247
2248 if (Control & BMU_EOF)
2249 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
2250
2251 pTxPort->TxdRingFree++;
2252 pTxd->TBControl &= ~BMU_SW;
2253 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
2254 } /* while(forever) */
2255 } /* FreeTxDescriptors */
2256
2257 /*****************************************************************************
2258 *
2259 * FillRxRing - fill the receive ring with valid descriptors
2260 *
2261 * Description:
2262 * This function fills the receive ring descriptors with data
2263 * segments and makes them valid for the BMU.
2264 * The active ring is filled completely, if possible.
2265 * The non-active ring is filled only partial to save memory.
2266 *
2267 * Description of rx ring structure:
2268 * head - points to the descriptor which will be used next by the BMU
2269 * tail - points to the next descriptor to give to the BMU
2270 *
2271 * Returns: N/A
2272 */
FillRxRing(SK_AC * pAC,RX_PORT * pRxPort)2273 static void FillRxRing(
2274 SK_AC *pAC, /* pointer to the adapter context */
2275 RX_PORT *pRxPort) /* ptr to port struct for which the ring
2276 should be filled */
2277 {
2278 unsigned long Flags;
2279
2280 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2281 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
2282 if(!FillRxDescriptor(pAC, pRxPort))
2283 break;
2284 }
2285 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2286 } /* FillRxRing */
2287
2288
2289 /*****************************************************************************
2290 *
2291 * FillRxDescriptor - fill one buffer into the receive ring
2292 *
2293 * Description:
2294 * The function allocates a new receive buffer and
2295 * puts it into the next descriptor.
2296 *
2297 * Returns:
2298 * SK_TRUE - a buffer was added to the ring
2299 * SK_FALSE - a buffer could not be added
2300 */
FillRxDescriptor(SK_AC * pAC,RX_PORT * pRxPort)2301 static SK_BOOL FillRxDescriptor(
2302 SK_AC *pAC, /* pointer to the adapter context struct */
2303 RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
2304 {
2305 struct sk_buff *pMsgBlock; /* pointer to a new message block */
2306 RXD *pRxd; /* the rxd to fill */
2307 SK_U16 Length; /* data fragment length */
2308 SK_U64 PhysAddr; /* physical address of a rx buffer */
2309
2310 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
2311 if (pMsgBlock == NULL) {
2312 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2313 SK_DBGCAT_DRV_ENTRY,
2314 ("%s: Allocation of rx buffer failed !\n",
2315 pAC->dev[pRxPort->PortIndex]->name));
2316 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
2317 return(SK_FALSE);
2318 }
2319 skb_reserve(pMsgBlock, 2); /* to align IP frames */
2320 /* skb allocated ok, so add buffer */
2321 pRxd = pRxPort->pRxdRingTail;
2322 pRxPort->pRxdRingTail = pRxd->pNextRxd;
2323 pRxPort->RxdRingFree--;
2324 Length = pAC->RxBufSize;
2325 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
2326 virt_to_page(pMsgBlock->data),
2327 ((unsigned long) pMsgBlock->data &
2328 ~PAGE_MASK),
2329 pAC->RxBufSize - 2,
2330 PCI_DMA_FROMDEVICE);
2331
2332 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
2333 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
2334 pRxd->pMBuf = pMsgBlock;
2335 pRxd->RBControl = BMU_OWN |
2336 BMU_STF |
2337 BMU_IRQ_EOF |
2338 BMU_TCP_CHECK |
2339 Length;
2340 return (SK_TRUE);
2341
2342 } /* FillRxDescriptor */
2343
2344
2345 /*****************************************************************************
2346 *
2347 * ReQueueRxBuffer - fill one buffer back into the receive ring
2348 *
2349 * Description:
2350 * Fill a given buffer back into the rx ring. The buffer
2351 * has been previously allocated and aligned, and its phys.
2352 * address calculated, so this is no more necessary.
2353 *
2354 * Returns: N/A
2355 */
ReQueueRxBuffer(SK_AC * pAC,RX_PORT * pRxPort,struct sk_buff * pMsg,SK_U32 PhysHigh,SK_U32 PhysLow)2356 static void ReQueueRxBuffer(
2357 SK_AC *pAC, /* pointer to the adapter context struct */
2358 RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
2359 struct sk_buff *pMsg, /* pointer to the buffer */
2360 SK_U32 PhysHigh, /* phys address high dword */
2361 SK_U32 PhysLow) /* phys address low dword */
2362 {
2363 RXD *pRxd; /* the rxd to fill */
2364 SK_U16 Length; /* data fragment length */
2365
2366 pRxd = pRxPort->pRxdRingTail;
2367 pRxPort->pRxdRingTail = pRxd->pNextRxd;
2368 pRxPort->RxdRingFree--;
2369 Length = pAC->RxBufSize;
2370
2371 pRxd->VDataLow = PhysLow;
2372 pRxd->VDataHigh = PhysHigh;
2373 pRxd->pMBuf = pMsg;
2374 pRxd->RBControl = BMU_OWN |
2375 BMU_STF |
2376 BMU_IRQ_EOF |
2377 BMU_TCP_CHECK |
2378 Length;
2379 return;
2380 } /* ReQueueRxBuffer */
2381
2382 /*****************************************************************************
2383 *
2384 * ReceiveIrq - handle a receive IRQ
2385 *
2386 * Description:
2387 * This function is called when a receive IRQ is set.
2388 * It walks the receive descriptor ring and sends up all
2389 * frames that are complete.
2390 *
2391 * Returns: N/A
2392 */
ReceiveIrq(SK_AC * pAC,RX_PORT * pRxPort,SK_BOOL SlowPathLock)2393 static void ReceiveIrq(
2394 SK_AC *pAC, /* pointer to adapter context */
2395 RX_PORT *pRxPort, /* pointer to receive port struct */
2396 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
2397 {
2398 RXD *pRxd; /* pointer to receive descriptors */
2399 SK_U32 Control; /* control field of descriptor */
2400 struct sk_buff *pMsg; /* pointer to message holding frame */
2401 struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
2402 int FrameLength; /* total length of received frame */
2403 int IpFrameLength;
2404 SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
2405 SK_EVPARA EvPara; /* an event parameter union */
2406 unsigned long Flags; /* for spin lock */
2407 int PortIndex = pRxPort->PortIndex;
2408 unsigned int Offset;
2409 unsigned int NumBytes;
2410 unsigned int ForRlmt;
2411 SK_BOOL IsBc;
2412 SK_BOOL IsMc;
2413 SK_BOOL IsBadFrame; /* Bad frame */
2414
2415 SK_U32 FrameStat;
2416 unsigned short Csum1;
2417 unsigned short Csum2;
2418 unsigned short Type;
2419 int Result;
2420 SK_U64 PhysAddr;
2421
2422 rx_start:
2423 /* do forever; exit if BMU_OWN found */
2424 for ( pRxd = pRxPort->pRxdRingHead ;
2425 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2426 pRxd = pRxd->pNextRxd,
2427 pRxPort->pRxdRingHead = pRxd,
2428 pRxPort->RxdRingFree ++) {
2429
2430 /*
2431 * For a better understanding of this loop
2432 * Go through every descriptor beginning at the head
2433 * Please note: the ring might be completely received so the OWN bit
2434 * set is not a good crirteria to leave that loop.
2435 * Therefore the RingFree counter is used.
2436 * On entry of this loop pRxd is a pointer to the Rxd that needs
2437 * to be checked next.
2438 */
2439
2440 Control = pRxd->RBControl;
2441
2442 /* check if this descriptor is ready */
2443 if ((Control & BMU_OWN) != 0) {
2444 /* this descriptor is not yet ready */
2445 /* This is the usual end of the loop */
2446 /* We don't need to start the ring again */
2447 FillRxRing(pAC, pRxPort);
2448 return;
2449 }
2450 pAC->DynIrqModInfo.NbrProcessedDescr++;
2451
2452 /* get length of frame and check it */
2453 FrameLength = Control & BMU_BBC;
2454 if (FrameLength > pAC->RxBufSize) {
2455 goto rx_failed;
2456 }
2457
2458 /* check for STF and EOF */
2459 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2460 goto rx_failed;
2461 }
2462
2463 /* here we have a complete frame in the ring */
2464 pMsg = pRxd->pMBuf;
2465
2466 FrameStat = pRxd->FrameStat;
2467
2468 /* check for frame length mismatch */
2469 #define XMR_FS_LEN_SHIFT 18
2470 #define GMR_FS_LEN_SHIFT 16
2471 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2472 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2473 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2474 SK_DBGCAT_DRV_RX_PROGRESS,
2475 ("skge: Frame length mismatch (%u/%u).\n",
2476 FrameLength,
2477 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2478 goto rx_failed;
2479 }
2480 }
2481 else {
2482 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2483 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2484 SK_DBGCAT_DRV_RX_PROGRESS,
2485 ("skge: Frame length mismatch (%u/%u).\n",
2486 FrameLength,
2487 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2488 goto rx_failed;
2489 }
2490 }
2491
2492 /* Set Rx Status */
2493 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2494 IsBc = (FrameStat & XMR_FS_BC) != 0;
2495 IsMc = (FrameStat & XMR_FS_MC) != 0;
2496 IsBadFrame = (FrameStat &
2497 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2498 } else {
2499 IsBc = (FrameStat & GMR_FS_BC) != 0;
2500 IsMc = (FrameStat & GMR_FS_MC) != 0;
2501 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2502 ((FrameStat & GMR_FS_RX_OK) == 0));
2503 }
2504
2505 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2506 ("Received frame of length %d on port %d\n",
2507 FrameLength, PortIndex));
2508 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2509 ("Number of free rx descriptors: %d\n",
2510 pRxPort->RxdRingFree));
2511 /* DumpMsg(pMsg, "Rx"); */
2512
2513 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2514 #if 0
2515 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2516 #endif
2517 /* there is a receive error in this frame */
2518 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2519 SK_DBGCAT_DRV_RX_PROGRESS,
2520 ("skge: Error in received frame, dropped!\n"
2521 "Control: %x\nRxStat: %x\n",
2522 Control, FrameStat));
2523
2524 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2525 PhysAddr |= (SK_U64) pRxd->VDataLow;
2526 pci_dma_sync_single(pAC->PciDev,
2527 (dma_addr_t) PhysAddr,
2528 FrameLength,
2529 PCI_DMA_FROMDEVICE);
2530 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2531 pRxd->VDataHigh, pRxd->VDataLow);
2532
2533 continue;
2534 }
2535
2536 /*
2537 * if short frame then copy data to reduce memory waste
2538 */
2539 if ((FrameLength < SK_COPY_THRESHOLD) &&
2540 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2541 /*
2542 * Short frame detected and allocation successfull
2543 */
2544 /* use new skb and copy data */
2545 skb_reserve(pNewMsg, 2);
2546 skb_put(pNewMsg, FrameLength);
2547 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2548 PhysAddr |= (SK_U64) pRxd->VDataLow;
2549
2550 pci_dma_sync_single(pAC->PciDev,
2551 (dma_addr_t) PhysAddr,
2552 FrameLength,
2553 PCI_DMA_FROMDEVICE);
2554 eth_copy_and_sum(pNewMsg, pMsg->data,
2555 FrameLength, 0);
2556 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2557 pRxd->VDataHigh, pRxd->VDataLow);
2558
2559 pMsg = pNewMsg;
2560
2561 }
2562 else {
2563 /*
2564 * if large frame, or SKB allocation failed, pass
2565 * the SKB directly to the networking
2566 */
2567
2568 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2569 PhysAddr |= (SK_U64) pRxd->VDataLow;
2570
2571 /* release the DMA mapping */
2572 pci_unmap_single(pAC->PciDev,
2573 PhysAddr,
2574 pAC->RxBufSize - 2,
2575 PCI_DMA_FROMDEVICE);
2576
2577 /* set length in message */
2578 skb_put(pMsg, FrameLength);
2579 /* hardware checksum */
2580 Type = ntohs(*((short*)&pMsg->data[12]));
2581
2582 #ifdef USE_SK_RX_CHECKSUM
2583 if (Type == 0x800) {
2584 Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
2585 Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
2586 IpFrameLength = (int) ntohs((unsigned short)
2587 ((unsigned short *) pMsg->data)[8]);
2588
2589 /*
2590 * Test: If frame is padded, a check is not possible!
2591 * Frame not padded? Length difference must be 14 (0xe)!
2592 */
2593 if ((FrameLength - IpFrameLength) != 0xe) {
2594 /* Frame padded => TCP offload not possible! */
2595 pMsg->ip_summed = CHECKSUM_NONE;
2596 } else {
2597 /* Frame not padded => TCP offload! */
2598 if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
2599 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
2600 (pAC->ChipsetType)) {
2601 Result = SkCsGetReceiveInfo(pAC,
2602 &pMsg->data[14],
2603 Csum1, Csum2, pRxPort->PortIndex);
2604 if (Result ==
2605 SKCS_STATUS_IP_FRAGMENT ||
2606 Result ==
2607 SKCS_STATUS_IP_CSUM_OK ||
2608 Result ==
2609 SKCS_STATUS_TCP_CSUM_OK ||
2610 Result ==
2611 SKCS_STATUS_UDP_CSUM_OK) {
2612 pMsg->ip_summed =
2613 CHECKSUM_UNNECESSARY;
2614 }
2615 else if (Result ==
2616 SKCS_STATUS_TCP_CSUM_ERROR ||
2617 Result ==
2618 SKCS_STATUS_UDP_CSUM_ERROR ||
2619 Result ==
2620 SKCS_STATUS_IP_CSUM_ERROR_UDP ||
2621 Result ==
2622 SKCS_STATUS_IP_CSUM_ERROR_TCP ||
2623 Result ==
2624 SKCS_STATUS_IP_CSUM_ERROR ) {
2625 /* HW Checksum error */
2626 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2627 SK_DBGCAT_DRV_RX_PROGRESS,
2628 ("skge: CRC error. Frame dropped!\n"));
2629 goto rx_failed;
2630 } else {
2631 pMsg->ip_summed =
2632 CHECKSUM_NONE;
2633 }
2634 }/* checksumControl calculation valid */
2635 } /* Frame length check */
2636 } /* IP frame */
2637 #else
2638 pMsg->ip_summed = CHECKSUM_NONE;
2639 #endif
2640 } /* frame > SK_COPY_TRESHOLD */
2641
2642 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2643 ForRlmt = SK_RLMT_RX_PROTOCOL;
2644 #if 0
2645 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2646 #endif
2647 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2648 IsBc, &Offset, &NumBytes);
2649 if (NumBytes != 0) {
2650 #if 0
2651 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2652 #endif
2653 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2654 &pMsg->data[Offset],
2655 IsBc, IsMc, &ForRlmt);
2656 }
2657 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2658 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2659 /* send up only frames from active port */
2660 if ((PortIndex == pAC->ActivePort) ||
2661 (pAC->RlmtNets == 2)) {
2662 /* frame for upper layer */
2663 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2664 #ifdef xDEBUG
2665 DumpMsg(pMsg, "Rx");
2666 #endif
2667 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2668 FrameLength, pRxPort->PortIndex);
2669
2670 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2671 pMsg->protocol = eth_type_trans(pMsg,
2672 pAC->dev[pRxPort->PortIndex]);
2673 netif_rx(pMsg);
2674 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2675 }
2676 else {
2677 /* drop frame */
2678 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2679 SK_DBGCAT_DRV_RX_PROGRESS,
2680 ("D"));
2681 DEV_KFREE_SKB(pMsg);
2682 }
2683
2684 } /* if not for rlmt */
2685 else {
2686 /* packet for rlmt */
2687 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2688 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2689 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2690 pAC->IoBase, FrameLength);
2691 if (pRlmtMbuf != NULL) {
2692 pRlmtMbuf->pNext = NULL;
2693 pRlmtMbuf->Length = FrameLength;
2694 pRlmtMbuf->PortIdx = PortIndex;
2695 EvPara.pParaPtr = pRlmtMbuf;
2696 memcpy((char*)(pRlmtMbuf->pData),
2697 (char*)(pMsg->data),
2698 FrameLength);
2699
2700 /* SlowPathLock needed? */
2701 if (SlowPathLock == SK_TRUE) {
2702 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2703 SkEventQueue(pAC, SKGE_RLMT,
2704 SK_RLMT_PACKET_RECEIVED,
2705 EvPara);
2706 pAC->CheckQueue = SK_TRUE;
2707 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2708 } else {
2709 SkEventQueue(pAC, SKGE_RLMT,
2710 SK_RLMT_PACKET_RECEIVED,
2711 EvPara);
2712 pAC->CheckQueue = SK_TRUE;
2713 }
2714
2715 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2716 SK_DBGCAT_DRV_RX_PROGRESS,
2717 ("Q"));
2718 }
2719 if ((pAC->dev[pRxPort->PortIndex]->flags &
2720 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2721 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2722 SK_RLMT_RX_PROTOCOL) {
2723 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2724 pMsg->protocol = eth_type_trans(pMsg,
2725 pAC->dev[pRxPort->PortIndex]);
2726 netif_rx(pMsg);
2727 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2728 }
2729 else {
2730 DEV_KFREE_SKB(pMsg);
2731 }
2732
2733 } /* if packet for rlmt */
2734 } /* for ... scanning the RXD ring */
2735
2736 /* RXD ring is empty -> fill and restart */
2737 FillRxRing(pAC, pRxPort);
2738 /* do not start if called from Close */
2739 if (pAC->BoardLevel > SK_INIT_DATA) {
2740 ClearAndStartRx(pAC, PortIndex);
2741 }
2742 return;
2743
2744 rx_failed:
2745 /* remove error frame */
2746 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2747 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2748
2749 /* release the DMA mapping */
2750
2751 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2752 PhysAddr |= (SK_U64) pRxd->VDataLow;
2753 pci_unmap_page(pAC->PciDev,
2754 PhysAddr,
2755 pAC->RxBufSize - 2,
2756 PCI_DMA_FROMDEVICE);
2757 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2758 pRxd->pMBuf = NULL;
2759 pRxPort->RxdRingFree++;
2760 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2761 goto rx_start;
2762
2763 } /* ReceiveIrq */
2764
2765
2766 /*****************************************************************************
2767 *
2768 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2769 *
2770 * Description:
2771 * This function sends a start command and a clear interrupt
2772 * command for one receive queue to the BMU.
2773 *
2774 * Returns: N/A
2775 * none
2776 */
2777 static void ClearAndStartRx(
2778 SK_AC *pAC, /* pointer to the adapter context */
2779 int PortIndex) /* index of the receive port (XMAC) */
2780 {
2781 SK_OUT8(pAC->IoBase,
2782 RxQueueAddr[PortIndex]+Q_CSR,
2783 CSR_START | CSR_IRQ_CL_F);
2784 } /* ClearAndStartRx */
2785
2786
2787 /*****************************************************************************
2788 *
2789 * ClearTxIrq - give a clear transmit IRQ command to BMU
2790 *
2791 * Description:
2792 * This function sends a clear tx IRQ command for one
2793 * transmit queue to the BMU.
2794 *
2795 * Returns: N/A
2796 */
2797 static void ClearTxIrq(
2798 SK_AC *pAC, /* pointer to the adapter context */
2799 int PortIndex, /* index of the transmit port (XMAC) */
2800 int Prio) /* priority or normal queue */
2801 {
2802 SK_OUT8(pAC->IoBase,
2803 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2804 CSR_IRQ_CL_F);
2805 } /* ClearTxIrq */
2806
2807
2808 /*****************************************************************************
2809 *
2810 * ClearRxRing - remove all buffers from the receive ring
2811 *
2812 * Description:
2813 * This function removes all receive buffers from the ring.
2814 * The receive BMU must be stopped before calling this function.
2815 *
2816 * Returns: N/A
2817 */
2818 static void ClearRxRing(
2819 SK_AC *pAC, /* pointer to adapter context */
2820 RX_PORT *pRxPort) /* pointer to rx port struct */
2821 {
2822 RXD *pRxd; /* pointer to the current descriptor */
2823 unsigned long Flags;
2824 SK_U64 PhysAddr;
2825
2826 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2827 return;
2828 }
2829 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2830 pRxd = pRxPort->pRxdRingHead;
2831 do {
2832 if (pRxd->pMBuf != NULL) {
2833
2834 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2835 PhysAddr |= (SK_U64) pRxd->VDataLow;
2836 pci_unmap_page(pAC->PciDev,
2837 PhysAddr,
2838 pAC->RxBufSize - 2,
2839 PCI_DMA_FROMDEVICE);
2840 DEV_KFREE_SKB(pRxd->pMBuf);
2841 pRxd->pMBuf = NULL;
2842 }
2843 pRxd->RBControl &= BMU_OWN;
2844 pRxd = pRxd->pNextRxd;
2845 pRxPort->RxdRingFree++;
2846 } while (pRxd != pRxPort->pRxdRingTail);
2847 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2848 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2849 } /* ClearRxRing */
2850
2851 /*****************************************************************************
2852 *
2853 * ClearTxRing - remove all buffers from the transmit ring
2854 *
2855 * Description:
2856 * This function removes all transmit buffers from the ring.
2857 * The transmit BMU must be stopped before calling this function
2858 * and transmitting at the upper level must be disabled.
2859 * The BMU own bit of all descriptors is cleared, the rest is
2860 * done by calling FreeTxDescriptors.
2861 *
2862 * Returns: N/A
2863 */
2864 static void ClearTxRing(
2865 SK_AC *pAC, /* pointer to adapter context */
2866 TX_PORT *pTxPort) /* pointer to tx prt struct */
2867 {
2868 TXD *pTxd; /* pointer to the current descriptor */
2869 int i;
2870 unsigned long Flags;
2871
2872 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2873 pTxd = pTxPort->pTxdRingHead;
2874 for (i=0; i<pAC->TxDescrPerRing; i++) {
2875 pTxd->TBControl &= ~BMU_OWN;
2876 pTxd = pTxd->pNextTxd;
2877 }
2878 FreeTxDescriptors(pAC, pTxPort);
2879 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2880 } /* ClearTxRing */
2881
2882 /*****************************************************************************
2883 *
2884 * SkGeSetMacAddr - Set the hardware MAC address
2885 *
2886 * Description:
2887 * This function sets the MAC address used by the adapter.
2888 *
2889 * Returns:
2890 * 0, if everything is ok
2891 * !=0, on error
2892 */
2893 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2894 {
2895
2896 DEV_NET *pNet = (DEV_NET*) dev->priv;
2897 SK_AC *pAC = pNet->pAC;
2898
2899 struct sockaddr *addr = p;
2900 unsigned long Flags;
2901
2902 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2903 ("SkGeSetMacAddr starts now...\n"));
2904 if(netif_running(dev))
2905 return -EBUSY;
2906
2907 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2908
2909 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2910
2911 if (pAC->RlmtNets == 2)
2912 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2913 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2914 else
2915 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2916 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2917
2918
2919
2920 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2921 return 0;
2922 } /* SkGeSetMacAddr */
2923
2924
2925 /*****************************************************************************
2926 *
2927 * SkGeSetRxMode - set receive mode
2928 *
2929 * Description:
2930 * This function sets the receive mode of an adapter. The adapter
2931 * supports promiscuous mode, allmulticast mode and a number of
2932 * multicast addresses. If more multicast addresses the available
2933 * are selected, a hash function in the hardware is used.
2934 *
2935 * Returns:
2936 * 0, if everything is ok
2937 * !=0, on error
2938 */
2939 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2940 {
2941
2942 DEV_NET *pNet;
2943 SK_AC *pAC;
2944
2945 struct dev_mc_list *pMcList;
2946 int i;
2947 int PortIdx;
2948 unsigned long Flags;
2949
2950 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2951 ("SkGeSetRxMode starts now... "));
2952
2953 pNet = (DEV_NET*) dev->priv;
2954 pAC = pNet->pAC;
2955 if (pAC->RlmtNets == 1)
2956 PortIdx = pAC->ActivePort;
2957 else
2958 PortIdx = pNet->NetNr;
2959
2960 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2961 if (dev->flags & IFF_PROMISC) {
2962 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2963 ("PROMISCUOUS mode\n"));
2964 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2965 SK_PROM_MODE_LLC);
2966 } else if (dev->flags & IFF_ALLMULTI) {
2967 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2968 ("ALLMULTI mode\n"));
2969 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2970 SK_PROM_MODE_ALL_MC);
2971 } else {
2972 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2973 SK_PROM_MODE_NONE);
2974 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2975
2976 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2977 ("Number of MC entries: %d ", dev->mc_count));
2978
2979 pMcList = dev->mc_list;
2980 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2981 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2982 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2983 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2984 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2985 pMcList->dmi_addr[0],
2986 pMcList->dmi_addr[1],
2987 pMcList->dmi_addr[2],
2988 pMcList->dmi_addr[3],
2989 pMcList->dmi_addr[4],
2990 pMcList->dmi_addr[5]));
2991 }
2992 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2993 }
2994 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2995
2996 return;
2997 } /* SkGeSetRxMode */
2998
2999
3000 /*****************************************************************************
3001 *
3002 * SkGeChangeMtu - set the MTU to another value
3003 *
3004 * Description:
3005 * This function sets is called whenever the MTU size is changed
3006 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
3007 * ethernet MTU size, long frame support is activated.
3008 *
3009 * Returns:
3010 * 0, if everything is ok
3011 * !=0, on error
3012 */
3013 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
3014 {
3015 DEV_NET *pNet;
3016 DEV_NET *pOtherNet;
3017 SK_AC *pAC;
3018 unsigned long Flags;
3019 int i;
3020 SK_EVPARA EvPara;
3021
3022 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3023 ("SkGeChangeMtu starts now...\n"));
3024
3025 pNet = (DEV_NET*) dev->priv;
3026 pAC = pNet->pAC;
3027
3028 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
3029 return -EINVAL;
3030 }
3031
3032 if(pAC->BoardLevel != SK_INIT_RUN) {
3033 return -EINVAL;
3034 }
3035
3036 #ifdef SK_DIAG_SUPPORT
3037 if (pAC->DiagModeActive == DIAG_ACTIVE) {
3038 if (pAC->DiagFlowCtrl == SK_FALSE) {
3039 return -1; /* still in use, deny any actions of MTU */
3040 } else {
3041 pAC->DiagFlowCtrl = SK_FALSE;
3042 }
3043 }
3044 #endif
3045
3046 pNet->Mtu = NewMtu;
3047 pOtherNet = (DEV_NET*)pAC->dev[1 - pNet->NetNr]->priv;
3048 if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
3049 return(0);
3050 }
3051
3052 pAC->RxBufSize = NewMtu + 32;
3053 dev->mtu = NewMtu;
3054
3055 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3056 ("New MTU: %d\n", NewMtu));
3057
3058 /*
3059 ** Prevent any reconfiguration while changing the MTU
3060 ** by disabling any interrupts
3061 */
3062 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
3063 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3064
3065 /*
3066 ** Notify RLMT that any ports are to be stopped
3067 */
3068 EvPara.Para32[0] = 0;
3069 EvPara.Para32[1] = -1;
3070 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
3071 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
3072 EvPara.Para32[0] = 1;
3073 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
3074 } else {
3075 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
3076 }
3077
3078 /*
3079 ** After calling the SkEventDispatcher(), RLMT is aware about
3080 ** the stopped ports -> configuration can take place!
3081 */
3082 SkEventDispatcher(pAC, pAC->IoBase);
3083
3084 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
3085 spin_lock_irqsave(
3086 &pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock, Flags);
3087 netif_stop_queue(pAC->dev[i]);
3088
3089 }
3090
3091 /*
3092 ** Depending on the desired MTU size change, a different number of
3093 ** RX buffers need to be allocated
3094 */
3095 if (NewMtu > 1500) {
3096 /*
3097 ** Use less rx buffers
3098 */
3099 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
3100 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
3101 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
3102 (pAC->RxDescrPerRing / 4);
3103 } else {
3104 if (i == pAC->ActivePort) {
3105 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
3106 (pAC->RxDescrPerRing / 4);
3107 } else {
3108 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
3109 (pAC->RxDescrPerRing / 10);
3110 }
3111 }
3112 }
3113 } else {
3114 /*
3115 ** Use the normal amount of rx buffers
3116 */
3117 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
3118 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
3119 pAC->RxPort[i].RxFillLimit = 1;
3120 } else {
3121 if (i == pAC->ActivePort) {
3122 pAC->RxPort[i].RxFillLimit = 1;
3123 } else {
3124 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
3125 (pAC->RxDescrPerRing / 4);
3126 }
3127 }
3128 }
3129 }
3130
3131 SkGeDeInit(pAC, pAC->IoBase);
3132
3133 /*
3134 ** enable/disable hardware support for long frames
3135 */
3136 if (NewMtu > 1500) {
3137 // pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
3138 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
3139 } else {
3140 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
3141 pAC->GIni.GIPortUsage = SK_MUL_LINK;
3142 } else {
3143 pAC->GIni.GIPortUsage = SK_RED_LINK;
3144 }
3145 }
3146
3147 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
3148 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
3149 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
3150 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
3151 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
3152 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
3153 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
3154
3155 /*
3156 ** tschilling:
3157 ** Speed and others are set back to default in level 1 init!
3158 */
3159 GetConfiguration(pAC);
3160
3161 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
3162 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
3163 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
3164 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
3165 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
3166 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
3167 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
3168
3169 /*
3170 ** clear and reinit the rx rings here
3171 */
3172 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
3173 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
3174 ClearRxRing(pAC, &pAC->RxPort[i]);
3175 FillRxRing(pAC, &pAC->RxPort[i]);
3176
3177 /*
3178 ** Enable transmit descriptor polling
3179 */
3180 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
3181 FillRxRing(pAC, &pAC->RxPort[i]);
3182 };
3183
3184 SkGeYellowLED(pAC, pAC->IoBase, 1);
3185 SkDimEnableModerationIfNeeded(pAC);
3186 SkDimDisplayModerationSettings(pAC);
3187
3188 netif_start_queue(pAC->dev[pNet->PortNr]);
3189 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
3190 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
3191 }
3192
3193 /*
3194 ** Enable Interrupts again
3195 */
3196 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
3197 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
3198
3199 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
3200 SkEventDispatcher(pAC, pAC->IoBase);
3201
3202 /*
3203 ** Notify RLMT about the changing and restarting one (or more) ports
3204 */
3205 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
3206 EvPara.Para32[0] = pAC->RlmtNets;
3207 EvPara.Para32[1] = -1;
3208 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
3209 EvPara.Para32[0] = pNet->PortNr;
3210 EvPara.Para32[1] = -1;
3211 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
3212
3213 if (pOtherNet->Up) {
3214 EvPara.Para32[0] = pOtherNet->PortNr;
3215 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
3216 }
3217 } else {
3218 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
3219 }
3220
3221 SkEventDispatcher(pAC, pAC->IoBase);
3222 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3223
3224 /*
3225 ** While testing this driver with latest kernel 2.5 (2.5.70), it
3226 ** seems as if upper layers have a problem to handle a successful
3227 ** return value of '0'. If such a zero is returned, the complete
3228 ** system hangs for several minutes (!), which is in acceptable.
3229 **
3230 ** Currently it is not clear, what the exact reason for this problem
3231 ** is. The implemented workaround for 2.5 is to return the desired
3232 ** new MTU size if all needed changes for the new MTU size where
3233 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
3234 ** which indicates the successful change of the mtu-size.
3235 */
3236 return 0;
3237
3238 } /* SkGeChangeMtu */
3239
3240
3241 /*****************************************************************************
3242 *
3243 * SkGeStats - return ethernet device statistics
3244 *
3245 * Description:
3246 * This function return statistic data about the ethernet device
3247 * to the operating system.
3248 *
3249 * Returns:
3250 * pointer to the statistic structure.
3251 */
3252 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
3253 {
3254 DEV_NET *pNet = (DEV_NET*) dev->priv;
3255 SK_AC *pAC = pNet->pAC;
3256 SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
3257 SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
3258 SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
3259 unsigned int Size; /* size of pnmi struct */
3260 unsigned long Flags; /* for spin lock */
3261
3262 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3263 ("SkGeStats starts now...\n"));
3264 pPnmiStruct = &pAC->PnmiStruct;
3265
3266 #ifdef SK_DIAG_SUPPORT
3267 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
3268 (pAC->BoardLevel == SK_INIT_RUN)) {
3269 #endif
3270 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
3271 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3272 Size = SK_PNMI_STRUCT_SIZE;
3273 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
3274 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3275 #ifdef SK_DIAG_SUPPORT
3276 }
3277 #endif
3278
3279 pPnmiStat = &pPnmiStruct->Stat[0];
3280 pPnmiConf = &pPnmiStruct->Conf[0];
3281
3282 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
3283 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
3284 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
3285 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
3286
3287 if (pNet->Mtu <= 1500) {
3288 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
3289 } else {
3290 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
3291 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
3292 }
3293
3294
3295 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
3296 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
3297
3298 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
3299 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
3300 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
3301 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
3302 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
3303
3304 /* detailed rx_errors: */
3305 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
3306 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
3307 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
3308 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
3309 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
3310 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
3311
3312 /* detailed tx_errors */
3313 pAC->stats.tx_aborted_errors = (SK_U32) 0;
3314 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
3315 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
3316 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
3317 pAC->stats.tx_window_errors = (SK_U32) 0;
3318
3319 return(&pAC->stats);
3320 } /* SkGeStats */
3321
3322
3323 /*****************************************************************************
3324 *
3325 * SkGeIoctl - IO-control function
3326 *
3327 * Description:
3328 * This function is called if an ioctl is issued on the device.
3329 * There are three subfunction for reading, writing and test-writing
3330 * the private MIB data structure (usefull for SysKonnect-internal tools).
3331 *
3332 * Returns:
3333 * 0, if everything is ok
3334 * !=0, on error
3335 */
3336 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
3337 {
3338 DEV_NET *pNet;
3339 SK_AC *pAC;
3340 void *pMemBuf;
3341 struct pci_dev *pdev = NULL;
3342 SK_GE_IOCTL Ioctl;
3343 unsigned int Err = 0;
3344 int Size = 0;
3345 int Ret = 0;
3346 unsigned int Length = 0;
3347 int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
3348
3349 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3350 ("SkGeIoctl starts now...\n"));
3351
3352 pNet = (DEV_NET*) dev->priv;
3353 pAC = pNet->pAC;
3354
3355 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
3356 return -EFAULT;
3357 }
3358
3359 switch(cmd) {
3360 case SK_IOCTL_SETMIB:
3361 case SK_IOCTL_PRESETMIB:
3362 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3363 case SK_IOCTL_GETMIB:
3364 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
3365 Ioctl.Len<sizeof(pAC->PnmiStruct)?
3366 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
3367 return -EFAULT;
3368 }
3369 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
3370 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
3371 Ioctl.Len<Size? Ioctl.Len : Size)) {
3372 return -EFAULT;
3373 }
3374 Ioctl.Len = Size;
3375 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3376 return -EFAULT;
3377 }
3378 break;
3379 case SK_IOCTL_GEN:
3380 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3381 Length = Ioctl.Len;
3382 } else {
3383 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3384 }
3385 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3386 return -ENOMEM;
3387 }
3388 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3389 Err = -EFAULT;
3390 goto fault_gen;
3391 }
3392 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
3393 Err = -EFAULT;
3394 goto fault_gen;
3395 }
3396 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3397 Err = -EFAULT;
3398 goto fault_gen;
3399 }
3400 Ioctl.Len = Length;
3401 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3402 Err = -EFAULT;
3403 goto fault_gen;
3404 }
3405 fault_gen:
3406 kfree(pMemBuf); /* cleanup everything */
3407 break;
3408 #ifdef SK_DIAG_SUPPORT
3409 case SK_IOCTL_DIAG:
3410 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3411 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3412 Length = Ioctl.Len;
3413 } else {
3414 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3415 }
3416 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3417 return -ENOMEM;
3418 }
3419 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3420 Err = -EFAULT;
3421 goto fault_diag;
3422 }
3423 pdev = pAC->PciDev;
3424 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
3425 /*
3426 ** While coding this new IOCTL interface, only a few lines of code
3427 ** are to to be added. Therefore no dedicated function has been
3428 ** added. If more functionality is added, a separate function
3429 ** should be used...
3430 */
3431 * ((SK_U32 *)pMemBuf) = 0;
3432 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3433 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pdev->slot_name);
3434 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3435 Err = -EFAULT;
3436 goto fault_diag;
3437 }
3438 Ioctl.Len = Length;
3439 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3440 Err = -EFAULT;
3441 goto fault_diag;
3442 }
3443 fault_diag:
3444 kfree(pMemBuf); /* cleanup everything */
3445 break;
3446 #endif
3447 default:
3448 Err = -EOPNOTSUPP;
3449 }
3450
3451 return(Err);
3452
3453 } /* SkGeIoctl */
3454
3455
3456 /*****************************************************************************
3457 *
3458 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3459 *
3460 * Description:
3461 * This function reads/writes the MIB data using PNMI (Private Network
3462 * Management Interface).
3463 * The destination for the data must be provided with the
3464 * ioctl call and is given to the driver in the form of
3465 * a user space address.
3466 * Copying from the user-provided data area into kernel messages
3467 * and back is done by copy_from_user and copy_to_user calls in
3468 * SkGeIoctl.
3469 *
3470 * Returns:
3471 * returned size from PNMI call
3472 */
3473 static int SkGeIocMib(
3474 DEV_NET *pNet, /* pointer to the adapter context */
3475 unsigned int Size, /* length of ioctl data */
3476 int mode) /* flag for set/preset */
3477 {
3478 unsigned long Flags; /* for spin lock */
3479 SK_AC *pAC;
3480
3481 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3482 ("SkGeIocMib starts now...\n"));
3483 pAC = pNet->pAC;
3484 /* access MIB */
3485 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3486 switch(mode) {
3487 case SK_IOCTL_GETMIB:
3488 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3489 pNet->NetNr);
3490 break;
3491 case SK_IOCTL_PRESETMIB:
3492 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3493 pNet->NetNr);
3494 break;
3495 case SK_IOCTL_SETMIB:
3496 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3497 pNet->NetNr);
3498 break;
3499 default:
3500 break;
3501 }
3502 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3503 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3504 ("MIB data access succeeded\n"));
3505 return (Size);
3506 } /* SkGeIocMib */
3507
3508
3509 /*****************************************************************************
3510 *
3511 * GetConfiguration - read configuration information
3512 *
3513 * Description:
3514 * This function reads per-adapter configuration information from
3515 * the options provided on the command line.
3516 *
3517 * Returns:
3518 * none
3519 */
3520 static void GetConfiguration(
3521 SK_AC *pAC) /* pointer to the adapter context structure */
3522 {
3523 SK_I32 Port; /* preferred port */
3524 SK_BOOL AutoSet;
3525 SK_BOOL DupSet;
3526 int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3527 int AutoNeg = 1; /* autoneg off (0) or on (1) */
3528 int DuplexCap = 0; /* 0=both,1=full,2=half */
3529 int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3530 int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3531
3532 SK_BOOL IsConTypeDefined = SK_TRUE;
3533 SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3534 SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3535 SK_BOOL IsRoleDefined = SK_TRUE;
3536 SK_BOOL IsModeDefined = SK_TRUE;
3537 /*
3538 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3539 * parameter. The mapping is described by this table:
3540 * DuplexCap -> | both | full | half |
3541 * AutoNeg | | | |
3542 * -----------------------------------------------------------------
3543 * Off | illegal | Full | Half |
3544 * -----------------------------------------------------------------
3545 * On | AutoBoth | AutoFull | AutoHalf |
3546 * -----------------------------------------------------------------
3547 * Sense | AutoSense | AutoSense | AutoSense |
3548 */
3549 int Capabilities[3][3] =
3550 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3551 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3552 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3553
3554 #define DC_BOTH 0
3555 #define DC_FULL 1
3556 #define DC_HALF 2
3557 #define AN_OFF 0
3558 #define AN_ON 1
3559 #define AN_SENS 2
3560 #define M_CurrPort pAC->GIni.GP[Port]
3561
3562
3563 /*
3564 ** Set the default values first for both ports!
3565 */
3566 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3567 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3568 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3569 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3570 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3571 }
3572
3573 /*
3574 ** Check merged parameter ConType. If it has not been used,
3575 ** verify any other parameter (e.g. AutoNeg) and use default values.
3576 **
3577 ** Stating both ConType and other lowlevel link parameters is also
3578 ** possible. If this is the case, the passed ConType-parameter is
3579 ** overwritten by the lowlevel link parameter.
3580 **
3581 ** The following settings are used for a merged ConType-parameter:
3582 **
3583 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3584 ** ------- ------ ------- -------- ---------- -----
3585 ** Auto Both On SymOrRem Auto Auto
3586 ** 100FD Full Off None <ignored> 100
3587 ** 100HD Half Off None <ignored> 100
3588 ** 10FD Full Off None <ignored> 10
3589 ** 10HD Half Off None <ignored> 10
3590 **
3591 ** This ConType parameter is used for all ports of the adapter!
3592 */
3593 if ( (ConType != NULL) &&
3594 (pAC->Index < SK_MAX_CARD_PARAM) &&
3595 (ConType[pAC->Index] != NULL) ) {
3596
3597 /* Check chipset family */
3598 if ((!pAC->ChipsetType) &&
3599 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3600 (strcmp(ConType[pAC->Index],"")!=0)) {
3601 /* Set the speed parameter back */
3602 printk("sk98lin: Illegal value \"%s\" "
3603 "for ConType."
3604 " Using Auto.\n",
3605 ConType[pAC->Index]);
3606
3607 sprintf(ConType[pAC->Index], "Auto");
3608 }
3609
3610 if (strcmp(ConType[pAC->Index],"")==0) {
3611 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3612 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3613 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3614 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3615 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3616 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3617 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3618 }
3619 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3620 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3621 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3622 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3623 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3624 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3625 }
3626 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3627 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3628 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3629 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3630 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3631 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3632 }
3633 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3634 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3635 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3636 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3637 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3638 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3639 }
3640 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3641 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3642 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3643 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3644 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3645 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3646 }
3647 } else {
3648 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3649 ConType[pAC->Index]);
3650 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3651 }
3652 } else {
3653 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3654 }
3655
3656 /*
3657 ** Parse any parameter settings for port A:
3658 ** a) any LinkSpeed stated?
3659 */
3660 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3661 Speed_A[pAC->Index] != NULL) {
3662 if (strcmp(Speed_A[pAC->Index],"")==0) {
3663 IsLinkSpeedDefined = SK_FALSE;
3664 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3665 LinkSpeed = SK_LSPEED_AUTO;
3666 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3667 LinkSpeed = SK_LSPEED_10MBPS;
3668 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3669 LinkSpeed = SK_LSPEED_100MBPS;
3670 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3671 LinkSpeed = SK_LSPEED_1000MBPS;
3672 } else {
3673 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3674 Speed_A[pAC->Index]);
3675 IsLinkSpeedDefined = SK_FALSE;
3676 }
3677 } else {
3678 IsLinkSpeedDefined = SK_FALSE;
3679 }
3680
3681 /*
3682 ** Check speed parameter:
3683 ** Only copper type adapter and GE V2 cards
3684 */
3685 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3686 ((LinkSpeed != SK_LSPEED_AUTO) &&
3687 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3688 printk("sk98lin: Illegal value for Speed_A. "
3689 "Not a copper card or GE V2 card\n Using "
3690 "speed 1000\n");
3691 LinkSpeed = SK_LSPEED_1000MBPS;
3692 }
3693
3694 /*
3695 ** Decide whether to set new config value if somethig valid has
3696 ** been received.
3697 */
3698 if (IsLinkSpeedDefined) {
3699 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3700 }
3701
3702 /*
3703 ** b) Any Autonegotiation and DuplexCapabilities set?
3704 ** Please note that both belong together...
3705 */
3706 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3707 AutoSet = SK_FALSE;
3708 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3709 AutoNeg_A[pAC->Index] != NULL) {
3710 AutoSet = SK_TRUE;
3711 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3712 AutoSet = SK_FALSE;
3713 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3714 AutoNeg = AN_ON;
3715 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3716 AutoNeg = AN_OFF;
3717 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3718 AutoNeg = AN_SENS;
3719 } else {
3720 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3721 AutoNeg_A[pAC->Index]);
3722 }
3723 }
3724
3725 DuplexCap = DC_BOTH;
3726 DupSet = SK_FALSE;
3727 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3728 DupCap_A[pAC->Index] != NULL) {
3729 DupSet = SK_TRUE;
3730 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3731 DupSet = SK_FALSE;
3732 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3733 DuplexCap = DC_BOTH;
3734 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3735 DuplexCap = DC_FULL;
3736 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3737 DuplexCap = DC_HALF;
3738 } else {
3739 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3740 DupCap_A[pAC->Index]);
3741 }
3742 }
3743
3744 /*
3745 ** Check for illegal combinations
3746 */
3747 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3748 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3749 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3750 (pAC->ChipsetType)) {
3751 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3752 " Using Full Duplex.\n");
3753 DuplexCap = DC_FULL;
3754 }
3755
3756 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3757 printk("sk98lin, Port A: DuplexCapabilities"
3758 " ignored using Sense mode\n");
3759 }
3760
3761 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3762 printk("sk98lin: Port A: Illegal combination"
3763 " of values AutoNeg. and DuplexCap.\n Using "
3764 "Full Duplex\n");
3765 DuplexCap = DC_FULL;
3766 }
3767
3768 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3769 DuplexCap = DC_FULL;
3770 }
3771
3772 if (!AutoSet && DupSet) {
3773 printk("sk98lin: Port A: Duplex setting not"
3774 " possible in\n default AutoNegotiation mode"
3775 " (Sense).\n Using AutoNegotiation On\n");
3776 AutoNeg = AN_ON;
3777 }
3778
3779 /*
3780 ** set the desired mode
3781 */
3782 if (AutoSet || DupSet) {
3783 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3784 }
3785
3786 /*
3787 ** c) Any Flowcontrol-parameter set?
3788 */
3789 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3790 FlowCtrl_A[pAC->Index] != NULL) {
3791 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3792 IsFlowCtrlDefined = SK_FALSE;
3793 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3794 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3795 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3796 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3797 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3798 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3799 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3800 FlowCtrl = SK_FLOW_MODE_NONE;
3801 } else {
3802 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3803 FlowCtrl_A[pAC->Index]);
3804 IsFlowCtrlDefined = SK_FALSE;
3805 }
3806 } else {
3807 IsFlowCtrlDefined = SK_FALSE;
3808 }
3809
3810 if (IsFlowCtrlDefined) {
3811 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3812 printk("sk98lin: Port A: FlowControl"
3813 " impossible without AutoNegotiation,"
3814 " disabled\n");
3815 FlowCtrl = SK_FLOW_MODE_NONE;
3816 }
3817 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3818 }
3819
3820 /*
3821 ** d) What is with the RoleParameter?
3822 */
3823 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3824 Role_A[pAC->Index] != NULL) {
3825 if (strcmp(Role_A[pAC->Index],"")==0) {
3826 IsRoleDefined = SK_FALSE;
3827 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3828 MSMode = SK_MS_MODE_AUTO;
3829 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3830 MSMode = SK_MS_MODE_MASTER;
3831 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3832 MSMode = SK_MS_MODE_SLAVE;
3833 } else {
3834 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3835 Role_A[pAC->Index]);
3836 IsRoleDefined = SK_FALSE;
3837 }
3838 } else {
3839 IsRoleDefined = SK_FALSE;
3840 }
3841
3842 if (IsRoleDefined == SK_TRUE) {
3843 pAC->GIni.GP[0].PMSMode = MSMode;
3844 }
3845
3846
3847
3848 /*
3849 ** Parse any parameter settings for port B:
3850 ** a) any LinkSpeed stated?
3851 */
3852 IsConTypeDefined = SK_TRUE;
3853 IsLinkSpeedDefined = SK_TRUE;
3854 IsFlowCtrlDefined = SK_TRUE;
3855 IsModeDefined = SK_TRUE;
3856
3857 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3858 Speed_B[pAC->Index] != NULL) {
3859 if (strcmp(Speed_B[pAC->Index],"")==0) {
3860 IsLinkSpeedDefined = SK_FALSE;
3861 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3862 LinkSpeed = SK_LSPEED_AUTO;
3863 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3864 LinkSpeed = SK_LSPEED_10MBPS;
3865 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3866 LinkSpeed = SK_LSPEED_100MBPS;
3867 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3868 LinkSpeed = SK_LSPEED_1000MBPS;
3869 } else {
3870 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3871 Speed_B[pAC->Index]);
3872 IsLinkSpeedDefined = SK_FALSE;
3873 }
3874 } else {
3875 IsLinkSpeedDefined = SK_FALSE;
3876 }
3877
3878 /*
3879 ** Check speed parameter:
3880 ** Only copper type adapter and GE V2 cards
3881 */
3882 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3883 ((LinkSpeed != SK_LSPEED_AUTO) &&
3884 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3885 printk("sk98lin: Illegal value for Speed_B. "
3886 "Not a copper card or GE V2 card\n Using "
3887 "speed 1000\n");
3888 LinkSpeed = SK_LSPEED_1000MBPS;
3889 }
3890
3891 /*
3892 ** Decide whether to set new config value if somethig valid has
3893 ** been received.
3894 */
3895 if (IsLinkSpeedDefined) {
3896 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3897 }
3898
3899 /*
3900 ** b) Any Autonegotiation and DuplexCapabilities set?
3901 ** Please note that both belong together...
3902 */
3903 AutoNeg = AN_SENS; /* default: do auto Sense */
3904 AutoSet = SK_FALSE;
3905 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3906 AutoNeg_B[pAC->Index] != NULL) {
3907 AutoSet = SK_TRUE;
3908 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3909 AutoSet = SK_FALSE;
3910 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3911 AutoNeg = AN_ON;
3912 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3913 AutoNeg = AN_OFF;
3914 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3915 AutoNeg = AN_SENS;
3916 } else {
3917 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3918 AutoNeg_B[pAC->Index]);
3919 }
3920 }
3921
3922 DuplexCap = DC_BOTH;
3923 DupSet = SK_FALSE;
3924 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3925 DupCap_B[pAC->Index] != NULL) {
3926 DupSet = SK_TRUE;
3927 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3928 DupSet = SK_FALSE;
3929 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3930 DuplexCap = DC_BOTH;
3931 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3932 DuplexCap = DC_FULL;
3933 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3934 DuplexCap = DC_HALF;
3935 } else {
3936 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3937 DupCap_B[pAC->Index]);
3938 }
3939 }
3940
3941
3942 /*
3943 ** Check for illegal combinations
3944 */
3945 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3946 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3947 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3948 (pAC->ChipsetType)) {
3949 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3950 " Using Full Duplex.\n");
3951 DuplexCap = DC_FULL;
3952 }
3953
3954 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3955 printk("sk98lin, Port B: DuplexCapabilities"
3956 " ignored using Sense mode\n");
3957 }
3958
3959 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3960 printk("sk98lin: Port B: Illegal combination"
3961 " of values AutoNeg. and DuplexCap.\n Using "
3962 "Full Duplex\n");
3963 DuplexCap = DC_FULL;
3964 }
3965
3966 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3967 DuplexCap = DC_FULL;
3968 }
3969
3970 if (!AutoSet && DupSet) {
3971 printk("sk98lin: Port B: Duplex setting not"
3972 " possible in\n default AutoNegotiation mode"
3973 " (Sense).\n Using AutoNegotiation On\n");
3974 AutoNeg = AN_ON;
3975 }
3976
3977 /*
3978 ** set the desired mode
3979 */
3980 if (AutoSet || DupSet) {
3981 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3982 }
3983
3984 /*
3985 ** c) Any FlowCtrl parameter set?
3986 */
3987 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3988 FlowCtrl_B[pAC->Index] != NULL) {
3989 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3990 IsFlowCtrlDefined = SK_FALSE;
3991 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3992 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3993 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3994 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3995 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3996 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3997 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3998 FlowCtrl = SK_FLOW_MODE_NONE;
3999 } else {
4000 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
4001 FlowCtrl_B[pAC->Index]);
4002 IsFlowCtrlDefined = SK_FALSE;
4003 }
4004 } else {
4005 IsFlowCtrlDefined = SK_FALSE;
4006 }
4007
4008 if (IsFlowCtrlDefined) {
4009 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
4010 printk("sk98lin: Port B: FlowControl"
4011 " impossible without AutoNegotiation,"
4012 " disabled\n");
4013 FlowCtrl = SK_FLOW_MODE_NONE;
4014 }
4015 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
4016 }
4017
4018 /*
4019 ** d) What is the RoleParameter?
4020 */
4021 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
4022 Role_B[pAC->Index] != NULL) {
4023 if (strcmp(Role_B[pAC->Index],"")==0) {
4024 IsRoleDefined = SK_FALSE;
4025 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
4026 MSMode = SK_MS_MODE_AUTO;
4027 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
4028 MSMode = SK_MS_MODE_MASTER;
4029 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
4030 MSMode = SK_MS_MODE_SLAVE;
4031 } else {
4032 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
4033 Role_B[pAC->Index]);
4034 IsRoleDefined = SK_FALSE;
4035 }
4036 } else {
4037 IsRoleDefined = SK_FALSE;
4038 }
4039
4040 if (IsRoleDefined) {
4041 pAC->GIni.GP[1].PMSMode = MSMode;
4042 }
4043
4044 /*
4045 ** Evaluate settings for both ports
4046 */
4047 pAC->ActivePort = 0;
4048 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
4049 PrefPort[pAC->Index] != NULL) {
4050 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
4051 pAC->ActivePort = 0;
4052 pAC->Rlmt.Net[0].Preference = -1; /* auto */
4053 pAC->Rlmt.Net[0].PrefPort = 0;
4054 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
4055 /*
4056 ** do not set ActivePort here, thus a port
4057 ** switch is issued after net up.
4058 */
4059 Port = 0;
4060 pAC->Rlmt.Net[0].Preference = Port;
4061 pAC->Rlmt.Net[0].PrefPort = Port;
4062 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
4063 /*
4064 ** do not set ActivePort here, thus a port
4065 ** switch is issued after net up.
4066 */
4067 if (pAC->GIni.GIMacsFound == 1) {
4068 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
4069 " Port B not available on single port adapters.\n");
4070
4071 pAC->ActivePort = 0;
4072 pAC->Rlmt.Net[0].Preference = -1; /* auto */
4073 pAC->Rlmt.Net[0].PrefPort = 0;
4074 } else {
4075 Port = 1;
4076 pAC->Rlmt.Net[0].Preference = Port;
4077 pAC->Rlmt.Net[0].PrefPort = Port;
4078 }
4079 } else {
4080 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
4081 PrefPort[pAC->Index]);
4082 }
4083 }
4084
4085 pAC->RlmtNets = 1;
4086
4087 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
4088 RlmtMode[pAC->Index] != NULL) {
4089 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
4090 pAC->RlmtMode = 0;
4091 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
4092 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
4093 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
4094 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
4095 SK_RLMT_CHECK_LOC_LINK;
4096 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
4097 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
4098 SK_RLMT_CHECK_LOC_LINK |
4099 SK_RLMT_CHECK_SEG;
4100 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
4101 (pAC->GIni.GIMacsFound == 2)) {
4102 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
4103 pAC->RlmtNets = 2;
4104 } else {
4105 printk("sk98lin: Illegal value \"%s\" for"
4106 " RlmtMode, using default\n",
4107 RlmtMode[pAC->Index]);
4108 pAC->RlmtMode = 0;
4109 }
4110 } else {
4111 pAC->RlmtMode = 0;
4112 }
4113
4114 /*
4115 ** Check the interrupt moderation parameters
4116 */
4117 if (Moderation[pAC->Index] != NULL) {
4118 if (strcmp(Moderation[pAC->Index], "") == 0) {
4119 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
4120 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
4121 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
4122 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
4123 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
4124 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
4125 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
4126 } else {
4127 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
4128 " Disable interrupt moderation.\n",
4129 Moderation[pAC->Index]);
4130 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
4131 }
4132 } else {
4133 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
4134 }
4135
4136 if (Stats[pAC->Index] != NULL) {
4137 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
4138 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
4139 } else {
4140 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
4141 }
4142 } else {
4143 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
4144 }
4145
4146 if (ModerationMask[pAC->Index] != NULL) {
4147 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
4148 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
4149 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
4150 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
4151 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
4152 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
4153 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
4154 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
4155 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
4156 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
4157 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
4158 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
4159 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
4160 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
4161 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
4162 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
4163 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
4164 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
4165 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
4166 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
4167 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
4168 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
4169 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
4170 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
4171 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
4172 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
4173 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
4174 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
4175 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
4176 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
4177 } else { /* some rubbish */
4178 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
4179 }
4180 } else { /* operator has stated nothing */
4181 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
4182 }
4183
4184 if (AutoSizing[pAC->Index] != NULL) {
4185 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
4186 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
4187 } else {
4188 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
4189 }
4190 } else { /* operator has stated nothing */
4191 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
4192 }
4193
4194 if (IntsPerSec[pAC->Index] != 0) {
4195 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
4196 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
4197 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
4198 " Using default value of %i.\n",
4199 IntsPerSec[pAC->Index],
4200 C_INT_MOD_IPS_LOWER_RANGE,
4201 C_INT_MOD_IPS_UPPER_RANGE,
4202 C_INTS_PER_SEC_DEFAULT);
4203 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
4204 } else {
4205 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
4206 }
4207 } else {
4208 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
4209 }
4210
4211 /*
4212 ** Evaluate upper and lower moderation threshold
4213 */
4214 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
4215 pAC->DynIrqModInfo.MaxModIntsPerSec +
4216 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
4217
4218 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
4219 pAC->DynIrqModInfo.MaxModIntsPerSec -
4220 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
4221
4222 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
4223
4224
4225 } /* GetConfiguration */
4226
4227
4228 /*****************************************************************************
4229 *
4230 * ProductStr - return a adapter identification string from vpd
4231 *
4232 * Description:
4233 * This function reads the product name string from the vpd area
4234 * and puts it the field pAC->DeviceString.
4235 *
4236 * Returns: N/A
4237 */
4238 static void ProductStr(
4239 SK_AC *pAC /* pointer to adapter context */
4240 )
4241 {
4242 int StrLen = 80; /* length of the string, defined in SK_AC */
4243 char Keyword[] = VPD_NAME; /* vpd productname identifier */
4244 int ReturnCode; /* return code from vpd_read */
4245 unsigned long Flags;
4246
4247 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
4248 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
4249 &StrLen);
4250 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
4251 if (ReturnCode != 0) {
4252 /* there was an error reading the vpd data */
4253 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
4254 ("Error reading VPD data: %d\n", ReturnCode));
4255 pAC->DeviceStr[0] = '\0';
4256 }
4257 } /* ProductStr */
4258
4259 /*****************************************************************************
4260 *
4261 * StartDrvCleanupTimer - Start timer to check for descriptors which
4262 * might be placed in descriptor ring, but
4263 * havent been handled up to now
4264 *
4265 * Description:
4266 * This function requests a HW-timer fo the Yukon card. The actions to
4267 * perform when this timer expires, are located in the SkDrvEvent().
4268 *
4269 * Returns: N/A
4270 */
4271 static void
4272 StartDrvCleanupTimer(SK_AC *pAC) {
4273 SK_EVPARA EventParam; /* Event struct for timer event */
4274
4275 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
4276 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
4277 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
4278 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
4279 SKGE_DRV, SK_DRV_TIMER, EventParam);
4280 }
4281
4282 /*****************************************************************************
4283 *
4284 * StopDrvCleanupTimer - Stop timer to check for descriptors
4285 *
4286 * Description:
4287 * This function requests a HW-timer fo the Yukon card. The actions to
4288 * perform when this timer expires, are located in the SkDrvEvent().
4289 *
4290 * Returns: N/A
4291 */
4292 static void
4293 StopDrvCleanupTimer(SK_AC *pAC) {
4294 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
4295 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
4296 }
4297
4298 /****************************************************************************/
4299 /* functions for common modules *********************************************/
4300 /****************************************************************************/
4301
4302
4303 /*****************************************************************************
4304 *
4305 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
4306 *
4307 * Description:
4308 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
4309 * is embedded into a socket buff data area.
4310 *
4311 * Context:
4312 * runtime
4313 *
4314 * Returns:
4315 * NULL or pointer to Mbuf.
4316 */
4317 SK_MBUF *SkDrvAllocRlmtMbuf(
4318 SK_AC *pAC, /* pointer to adapter context */
4319 SK_IOC IoC, /* the IO-context */
4320 unsigned BufferSize) /* size of the requested buffer */
4321 {
4322 SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
4323 struct sk_buff *pMsgBlock; /* pointer to a new message block */
4324
4325 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
4326 if (pMsgBlock == NULL) {
4327 return (NULL);
4328 }
4329 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
4330 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
4331 pRlmtMbuf->pNext = NULL;
4332 pRlmtMbuf->pOs = pMsgBlock;
4333 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
4334 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
4335 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
4336 return (pRlmtMbuf);
4337
4338 } /* SkDrvAllocRlmtMbuf */
4339
4340
4341 /*****************************************************************************
4342 *
4343 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
4344 *
4345 * Description:
4346 * This routine frees one or more RLMT mbuf(s).
4347 *
4348 * Context:
4349 * runtime
4350 *
4351 * Returns:
4352 * Nothing
4353 */
4354 void SkDrvFreeRlmtMbuf(
4355 SK_AC *pAC, /* pointer to adapter context */
4356 SK_IOC IoC, /* the IO-context */
4357 SK_MBUF *pMbuf) /* size of the requested buffer */
4358 {
4359 SK_MBUF *pFreeMbuf;
4360 SK_MBUF *pNextMbuf;
4361
4362 pFreeMbuf = pMbuf;
4363 do {
4364 pNextMbuf = pFreeMbuf->pNext;
4365 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
4366 pFreeMbuf = pNextMbuf;
4367 } while ( pFreeMbuf != NULL );
4368 } /* SkDrvFreeRlmtMbuf */
4369
4370
4371 /*****************************************************************************
4372 *
4373 * SkOsGetTime - provide a time value
4374 *
4375 * Description:
4376 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
4377 * It is not used for absolute time, but only for time differences.
4378 *
4379 *
4380 * Returns:
4381 * Time value
4382 */
4383 SK_U64 SkOsGetTime(SK_AC *pAC)
4384 {
4385 SK_U64 PrivateJiffies;
4386 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
4387 return PrivateJiffies;
4388 } /* SkOsGetTime */
4389
4390
4391 /*****************************************************************************
4392 *
4393 * SkPciReadCfgDWord - read a 32 bit value from pci config space
4394 *
4395 * Description:
4396 * This routine reads a 32 bit value from the pci configuration
4397 * space.
4398 *
4399 * Returns:
4400 * 0 - indicate everything worked ok.
4401 * != 0 - error indication
4402 */
4403 int SkPciReadCfgDWord(
4404 SK_AC *pAC, /* Adapter Control structure pointer */
4405 int PciAddr, /* PCI register address */
4406 SK_U32 *pVal) /* pointer to store the read value */
4407 {
4408 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
4409 return(0);
4410 } /* SkPciReadCfgDWord */
4411
4412
4413 /*****************************************************************************
4414 *
4415 * SkPciReadCfgWord - read a 16 bit value from pci config space
4416 *
4417 * Description:
4418 * This routine reads a 16 bit value from the pci configuration
4419 * space.
4420 *
4421 * Returns:
4422 * 0 - indicate everything worked ok.
4423 * != 0 - error indication
4424 */
4425 int SkPciReadCfgWord(
4426 SK_AC *pAC, /* Adapter Control structure pointer */
4427 int PciAddr, /* PCI register address */
4428 SK_U16 *pVal) /* pointer to store the read value */
4429 {
4430 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4431 return(0);
4432 } /* SkPciReadCfgWord */
4433
4434
4435 /*****************************************************************************
4436 *
4437 * SkPciReadCfgByte - read a 8 bit value from pci config space
4438 *
4439 * Description:
4440 * This routine reads a 8 bit value from the pci configuration
4441 * space.
4442 *
4443 * Returns:
4444 * 0 - indicate everything worked ok.
4445 * != 0 - error indication
4446 */
4447 int SkPciReadCfgByte(
4448 SK_AC *pAC, /* Adapter Control structure pointer */
4449 int PciAddr, /* PCI register address */
4450 SK_U8 *pVal) /* pointer to store the read value */
4451 {
4452 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4453 return(0);
4454 } /* SkPciReadCfgByte */
4455
4456
4457 /*****************************************************************************
4458 *
4459 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
4460 *
4461 * Description:
4462 * This routine writes a 32 bit value to the pci configuration
4463 * space.
4464 *
4465 * Returns:
4466 * 0 - indicate everything worked ok.
4467 * != 0 - error indication
4468 */
4469 int SkPciWriteCfgDWord(
4470 SK_AC *pAC, /* Adapter Control structure pointer */
4471 int PciAddr, /* PCI register address */
4472 SK_U32 Val) /* pointer to store the read value */
4473 {
4474 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
4475 return(0);
4476 } /* SkPciWriteCfgDWord */
4477
4478
4479 /*****************************************************************************
4480 *
4481 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4482 *
4483 * Description:
4484 * This routine writes a 16 bit value to the pci configuration
4485 * space. The flag PciConfigUp indicates whether the config space
4486 * is accesible or must be set up first.
4487 *
4488 * Returns:
4489 * 0 - indicate everything worked ok.
4490 * != 0 - error indication
4491 */
4492 int SkPciWriteCfgWord(
4493 SK_AC *pAC, /* Adapter Control structure pointer */
4494 int PciAddr, /* PCI register address */
4495 SK_U16 Val) /* pointer to store the read value */
4496 {
4497 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4498 return(0);
4499 } /* SkPciWriteCfgWord */
4500
4501
4502 /*****************************************************************************
4503 *
4504 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4505 *
4506 * Description:
4507 * This routine writes a 8 bit value to the pci configuration
4508 * space. The flag PciConfigUp indicates whether the config space
4509 * is accesible or must be set up first.
4510 *
4511 * Returns:
4512 * 0 - indicate everything worked ok.
4513 * != 0 - error indication
4514 */
4515 int SkPciWriteCfgByte(
4516 SK_AC *pAC, /* Adapter Control structure pointer */
4517 int PciAddr, /* PCI register address */
4518 SK_U8 Val) /* pointer to store the read value */
4519 {
4520 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4521 return(0);
4522 } /* SkPciWriteCfgByte */
4523
4524
4525 /*****************************************************************************
4526 *
4527 * SkDrvEvent - handle driver events
4528 *
4529 * Description:
4530 * This function handles events from all modules directed to the driver
4531 *
4532 * Context:
4533 * Is called under protection of slow path lock.
4534 *
4535 * Returns:
4536 * 0 if everything ok
4537 * < 0 on error
4538 *
4539 */
4540 int SkDrvEvent(
4541 SK_AC *pAC, /* pointer to adapter context */
4542 SK_IOC IoC, /* io-context */
4543 SK_U32 Event, /* event-id */
4544 SK_EVPARA Param) /* event-parameter */
4545 {
4546 SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4547 struct sk_buff *pMsg; /* pointer to a message block */
4548 int FromPort; /* the port from which we switch away */
4549 int ToPort; /* the port we switch to */
4550 SK_EVPARA NewPara; /* parameter for further events */
4551 int Stat;
4552 unsigned long Flags;
4553 SK_BOOL DualNet;
4554
4555 switch (Event) {
4556 case SK_DRV_ADAP_FAIL:
4557 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4558 ("ADAPTER FAIL EVENT\n"));
4559 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4560 /* disable interrupts */
4561 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4562 /* cgoos */
4563 break;
4564 case SK_DRV_PORT_FAIL:
4565 FromPort = Param.Para32[0];
4566 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4567 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4568 if (FromPort == 0) {
4569 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4570 } else {
4571 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4572 }
4573 /* cgoos */
4574 break;
4575 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4576 /* action list 4 */
4577 FromPort = Param.Para32[0];
4578 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4579 ("PORT RESET EVENT, Port: %d ", FromPort));
4580 NewPara.Para64 = FromPort;
4581 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4582 spin_lock_irqsave(
4583 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4584 Flags);
4585
4586 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4587 pAC->dev[Param.Para32[0]]->flags &= ~IFF_RUNNING;
4588 spin_unlock_irqrestore(
4589 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4590 Flags);
4591
4592 /* clear rx ring from received frames */
4593 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4594
4595 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4596 spin_lock_irqsave(
4597 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4598 Flags);
4599
4600 /* tschilling: Handling of return value inserted. */
4601 if (SkGeInitPort(pAC, IoC, FromPort)) {
4602 if (FromPort == 0) {
4603 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4604 } else {
4605 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4606 }
4607 }
4608 SkAddrMcUpdate(pAC,IoC, FromPort);
4609 PortReInitBmu(pAC, FromPort);
4610 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4611 ClearAndStartRx(pAC, FromPort);
4612 spin_unlock_irqrestore(
4613 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4614 Flags);
4615 break;
4616 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4617 /* action list 5 */
4618 FromPort = Param.Para32[0];
4619 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4620 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4621 /* Mac update */
4622 SkAddrMcUpdate(pAC,IoC, FromPort);
4623
4624 if (DoPrintInterfaceChange) {
4625 printk("%s: network connection up using"
4626 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4627
4628 /* tschilling: Values changed according to LinkSpeedUsed. */
4629 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4630 if (Stat == SK_LSPEED_STAT_10MBPS) {
4631 printk(" speed: 10\n");
4632 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4633 printk(" speed: 100\n");
4634 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4635 printk(" speed: 1000\n");
4636 } else {
4637 printk(" speed: unknown\n");
4638 }
4639
4640
4641 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4642 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4643 Stat == SK_LMODE_STAT_AUTOFULL) {
4644 printk(" autonegotiation: yes\n");
4645 }
4646 else {
4647 printk(" autonegotiation: no\n");
4648 }
4649 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4650 Stat == SK_LMODE_STAT_HALF) {
4651 printk(" duplex mode: half\n");
4652 }
4653 else {
4654 printk(" duplex mode: full\n");
4655 }
4656 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4657 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4658 printk(" flowctrl: remote send\n");
4659 }
4660 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4661 printk(" flowctrl: local send\n");
4662 }
4663 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4664 printk(" flowctrl: symmetric\n");
4665 }
4666 else {
4667 printk(" flowctrl: none\n");
4668 }
4669
4670 /* tschilling: Check against CopperType now. */
4671 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4672 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4673 SK_LSPEED_STAT_1000MBPS)) {
4674 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4675 if (Stat == SK_MS_STAT_MASTER ) {
4676 printk(" role: master\n");
4677 }
4678 else if (Stat == SK_MS_STAT_SLAVE ) {
4679 printk(" role: slave\n");
4680 }
4681 else {
4682 printk(" role: ???\n");
4683 }
4684 }
4685
4686 /*
4687 Display dim (dynamic interrupt moderation)
4688 informations
4689 */
4690 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4691 printk(" irq moderation: static (%d ints/sec)\n",
4692 pAC->DynIrqModInfo.MaxModIntsPerSec);
4693 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4694 printk(" irq moderation: dynamic (%d ints/sec)\n",
4695 pAC->DynIrqModInfo.MaxModIntsPerSec);
4696 else
4697 printk(" irq moderation: disabled\n");
4698
4699
4700 #ifdef SK_ZEROCOPY
4701 if (pAC->ChipsetType)
4702 #ifdef USE_SK_TX_CHECKSUM
4703 printk(" scatter-gather: enabled\n");
4704 #else
4705 printk(" tx-checksum: disabled\n");
4706 #endif
4707 else
4708 printk(" scatter-gather: disabled\n");
4709 #else
4710 printk(" scatter-gather: disabled\n");
4711 #endif
4712
4713 #ifndef USE_SK_RX_CHECKSUM
4714 printk(" rx-checksum: disabled\n");
4715 #endif
4716
4717 } else {
4718 DoPrintInterfaceChange = SK_TRUE;
4719 }
4720
4721 if ((Param.Para32[0] != pAC->ActivePort) &&
4722 (pAC->RlmtNets == 1)) {
4723 NewPara.Para32[0] = pAC->ActivePort;
4724 NewPara.Para32[1] = Param.Para32[0];
4725 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4726 NewPara);
4727 }
4728
4729 /* Inform the world that link protocol is up. */
4730 pAC->dev[Param.Para32[0]]->flags |= IFF_RUNNING;
4731
4732 break;
4733 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4734 /* action list 7 */
4735 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4736 ("NET DOWN EVENT "));
4737 if (DoPrintInterfaceChange) {
4738 printk("%s: network connection down\n",
4739 pAC->dev[Param.Para32[1]]->name);
4740 } else {
4741 DoPrintInterfaceChange = SK_TRUE;
4742 }
4743 pAC->dev[Param.Para32[1]]->flags &= ~IFF_RUNNING;
4744 break;
4745 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4746 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4747 ("PORT SWITCH HARD "));
4748 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4749 /* action list 6 */
4750 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4751 'A'+Param.Para32[1]);
4752 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4753 FromPort = Param.Para32[0];
4754 ToPort = Param.Para32[1];
4755 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4756 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4757 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4758 NewPara.Para64 = FromPort;
4759 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4760 NewPara.Para64 = ToPort;
4761 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4762 spin_lock_irqsave(
4763 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4764 Flags);
4765 spin_lock_irqsave(
4766 &pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
4767 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4768 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4769 spin_unlock_irqrestore(
4770 &pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
4771 spin_unlock_irqrestore(
4772 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4773 Flags);
4774
4775 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4776 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4777
4778 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4779 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4780 spin_lock_irqsave(
4781 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4782 Flags);
4783 spin_lock_irqsave(
4784 &pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
4785 pAC->ActivePort = ToPort;
4786 #if 0
4787 SetQueueSizes(pAC);
4788 #else
4789 /* tschilling: New common function with minimum size check. */
4790 DualNet = SK_FALSE;
4791 if (pAC->RlmtNets == 2) {
4792 DualNet = SK_TRUE;
4793 }
4794
4795 if (SkGeInitAssignRamToQueues(
4796 pAC,
4797 pAC->ActivePort,
4798 DualNet)) {
4799 spin_unlock_irqrestore(
4800 &pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
4801 spin_unlock_irqrestore(
4802 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4803 Flags);
4804 printk("SkGeInitAssignRamToQueues failed.\n");
4805 break;
4806 }
4807 #endif
4808 /* tschilling: Handling of return values inserted. */
4809 if (SkGeInitPort(pAC, IoC, FromPort) ||
4810 SkGeInitPort(pAC, IoC, ToPort)) {
4811 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4812 }
4813 if (Event == SK_DRV_SWITCH_SOFT) {
4814 SkMacRxTxEnable(pAC, IoC, FromPort);
4815 }
4816 SkMacRxTxEnable(pAC, IoC, ToPort);
4817 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4818 SkAddrMcUpdate(pAC, IoC, FromPort);
4819 SkAddrMcUpdate(pAC, IoC, ToPort);
4820 PortReInitBmu(pAC, FromPort);
4821 PortReInitBmu(pAC, ToPort);
4822 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4823 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4824 ClearAndStartRx(pAC, FromPort);
4825 ClearAndStartRx(pAC, ToPort);
4826 spin_unlock_irqrestore(
4827 &pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
4828 spin_unlock_irqrestore(
4829 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4830 Flags);
4831 break;
4832 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4833 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4834 ("RLS "));
4835 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4836 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4837 skb_put(pMsg, pRlmtMbuf->Length);
4838 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4839 pMsg) < 0)
4840
4841 DEV_KFREE_SKB_ANY(pMsg);
4842 break;
4843 case SK_DRV_TIMER:
4844 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4845 /*
4846 ** expiration of the moderation timer implies that
4847 ** dynamic moderation is to be applied
4848 */
4849 SkDimStartModerationTimer(pAC);
4850 SkDimModerate(pAC);
4851 if (pAC->DynIrqModInfo.DisplayStats) {
4852 SkDimDisplayModerationSettings(pAC);
4853 }
4854 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4855 /*
4856 ** check if we need to check for descriptors which
4857 ** haven't been handled the last millisecs
4858 */
4859 StartDrvCleanupTimer(pAC);
4860 if (pAC->GIni.GIMacsFound == 2) {
4861 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4862 }
4863 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4864 } else {
4865 printk("Expiration of unknown timer\n");
4866 }
4867 break;
4868 default:
4869 break;
4870 }
4871 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4872 ("END EVENT "));
4873
4874 return (0);
4875 } /* SkDrvEvent */
4876
4877
4878 /*****************************************************************************
4879 *
4880 * SkErrorLog - log errors
4881 *
4882 * Description:
4883 * This function logs errors to the system buffer and to the console
4884 *
4885 * Returns:
4886 * 0 if everything ok
4887 * < 0 on error
4888 *
4889 */
4890 void SkErrorLog(
4891 SK_AC *pAC,
4892 int ErrClass,
4893 int ErrNum,
4894 char *pErrorMsg)
4895 {
4896 char ClassStr[80];
4897
4898 switch (ErrClass) {
4899 case SK_ERRCL_OTHER:
4900 strcpy(ClassStr, "Other error");
4901 break;
4902 case SK_ERRCL_CONFIG:
4903 strcpy(ClassStr, "Configuration error");
4904 break;
4905 case SK_ERRCL_INIT:
4906 strcpy(ClassStr, "Initialization error");
4907 break;
4908 case SK_ERRCL_NORES:
4909 strcpy(ClassStr, "Out of resources error");
4910 break;
4911 case SK_ERRCL_SW:
4912 strcpy(ClassStr, "internal Software error");
4913 break;
4914 case SK_ERRCL_HW:
4915 strcpy(ClassStr, "Hardware failure");
4916 break;
4917 case SK_ERRCL_COMM:
4918 strcpy(ClassStr, "Communication error");
4919 break;
4920 }
4921 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4922 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4923 ClassStr, ErrNum, pErrorMsg);
4924
4925 } /* SkErrorLog */
4926
4927 #ifdef SK_DIAG_SUPPORT
4928
4929 /*****************************************************************************
4930 *
4931 * SkDrvEnterDiagMode - handles DIAG attach request
4932 *
4933 * Description:
4934 * Notify the kernel to NOT access the card any longer due to DIAG
4935 * Deinitialize the Card
4936 *
4937 * Returns:
4938 * int
4939 */
4940 int SkDrvEnterDiagMode(
4941 SK_AC *pAc) /* pointer to adapter context */
4942 {
4943 SK_AC *pAC = NULL;
4944 DEV_NET *pNet = NULL;
4945
4946 pNet = (DEV_NET *) pAc->dev[0]->priv;
4947 pAC = pNet->pAC;
4948
4949 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4950 sizeof(SK_PNMI_STRUCT_DATA));
4951
4952 pAC->DiagModeActive = DIAG_ACTIVE;
4953 if (pAC->BoardLevel > SK_INIT_DATA) {
4954 if (pNet->Up) {
4955 pAC->WasIfUp[0] = SK_TRUE;
4956 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4957 DoPrintInterfaceChange = SK_FALSE;
4958 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4959 } else {
4960 pAC->WasIfUp[0] = SK_FALSE;
4961 }
4962 if (pNet != (DEV_NET *) pAc->dev[1]->priv) {
4963 pNet = (DEV_NET *) pAc->dev[1]->priv;
4964 if (pNet->Up) {
4965 pAC->WasIfUp[1] = SK_TRUE;
4966 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4967 DoPrintInterfaceChange = SK_FALSE;
4968 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4969 } else {
4970 pAC->WasIfUp[1] = SK_FALSE;
4971 }
4972 }
4973 pAC->BoardLevel = SK_INIT_DATA;
4974 }
4975 return(0);
4976 }
4977
4978 /*****************************************************************************
4979 *
4980 * SkDrvLeaveDiagMode - handles DIAG detach request
4981 *
4982 * Description:
4983 * Notify the kernel to may access the card again after use by DIAG
4984 * Initialize the Card
4985 *
4986 * Returns:
4987 * int
4988 */
4989 int SkDrvLeaveDiagMode(
4990 SK_AC *pAc) /* pointer to adapter control context */
4991 {
4992 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4993 sizeof(SK_PNMI_STRUCT_DATA));
4994 pAc->DiagModeActive = DIAG_NOTACTIVE;
4995 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4996 if (pAc->WasIfUp[0] == SK_TRUE) {
4997 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4998 DoPrintInterfaceChange = SK_FALSE;
4999 SkDrvInitAdapter(pAc, 0); /* first device */
5000 }
5001 if (pAc->WasIfUp[1] == SK_TRUE) {
5002 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
5003 DoPrintInterfaceChange = SK_FALSE;
5004 SkDrvInitAdapter(pAc, 1); /* second device */
5005 }
5006 return(0);
5007 }
5008
5009 /*****************************************************************************
5010 *
5011 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
5012 *
5013 * Description:
5014 * This function parses the PCI slot name information string and will
5015 * retrieve the devcie number out of it. The slot_name maintianed by
5016 * linux is in the form of '02:0a.0', whereas the first two characters
5017 * represent the bus number in hex (in the sample above this is
5018 * pci bus 0x02) and the next two characters the device number (0x0a).
5019 *
5020 * Returns:
5021 * SK_U32: The device number from the PCI slot name
5022 */
5023
5024 static SK_U32 ParseDeviceNbrFromSlotName(
5025 const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
5026 {
5027 char *CurrCharPos = (char *) SlotName;
5028 int FirstNibble = -1;
5029 int SecondNibble = -1;
5030 SK_U32 Result = 0;
5031
5032 while (*CurrCharPos != '\0') {
5033 if (*CurrCharPos == ':') {
5034 while (*CurrCharPos != '.') {
5035 CurrCharPos++;
5036 if ( (*CurrCharPos >= '0') &&
5037 (*CurrCharPos <= '9')) {
5038 if (FirstNibble == -1) {
5039 /* dec. value for '0' */
5040 FirstNibble = *CurrCharPos - 48;
5041 } else {
5042 SecondNibble = *CurrCharPos - 48;
5043 }
5044 } else if ( (*CurrCharPos >= 'a') &&
5045 (*CurrCharPos <= 'f') ) {
5046 if (FirstNibble == -1) {
5047 FirstNibble = *CurrCharPos - 87;
5048 } else {
5049 SecondNibble = *CurrCharPos - 87;
5050 }
5051 } else {
5052 Result = 0;
5053 }
5054 }
5055
5056 Result = FirstNibble;
5057 Result = Result << 4; /* first nibble is higher one */
5058 Result = Result | SecondNibble;
5059 }
5060 CurrCharPos++; /* next character */
5061 }
5062 return (Result);
5063 }
5064
5065 /****************************************************************************
5066 *
5067 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
5068 * called if Diag attaches to that card)
5069 *
5070 * Description:
5071 * Close initialized adapter.
5072 *
5073 * Returns:
5074 * 0 - on success
5075 * error code - on error
5076 */
5077 static int SkDrvDeInitAdapter(
5078 SK_AC *pAC, /* pointer to adapter context */
5079 int devNbr) /* what device is to be handled */
5080 {
5081 struct SK_NET_DEVICE *dev;
5082
5083 dev = pAC->dev[devNbr];
5084
5085 /*
5086 ** Function SkGeClose() uses MOD_DEC_USE_COUNT (2.2/2.4)
5087 ** or module_put() (2.6) to decrease the number of users for
5088 ** a device, but if a device is to be put under control of
5089 ** the DIAG, that count is OK already and does not need to
5090 ** be adapted! Hence the opposite MOD_INC_USE_COUNT or
5091 ** try_module_get() needs to be used again to correct that.
5092 */
5093 MOD_INC_USE_COUNT;
5094
5095 if (SkGeClose(dev) != 0) {
5096 MOD_DEC_USE_COUNT;
5097 return (-1);
5098 }
5099 return (0);
5100
5101 } /* SkDrvDeInitAdapter() */
5102
5103 /****************************************************************************
5104 *
5105 * SkDrvInitAdapter - Initialize adapter (this function is only
5106 * called if Diag deattaches from that card)
5107 *
5108 * Description:
5109 * Close initialized adapter.
5110 *
5111 * Returns:
5112 * 0 - on success
5113 * error code - on error
5114 */
5115 static int SkDrvInitAdapter(
5116 SK_AC *pAC, /* pointer to adapter context */
5117 int devNbr) /* what device is to be handled */
5118 {
5119 struct SK_NET_DEVICE *dev;
5120
5121 dev = pAC->dev[devNbr];
5122
5123 if (SkGeOpen(dev) != 0) {
5124 return (-1);
5125 } else {
5126 /*
5127 ** Function SkGeOpen() uses MOD_INC_USE_COUNT (2.2/2.4)
5128 ** or try_module_get() (2.6) to increase the number of
5129 ** users for a device, but if a device was just under
5130 ** control of the DIAG, that count is OK already and
5131 ** does not need to be adapted! Hence the opposite
5132 ** MOD_DEC_USE_COUNT or module_put() needs to be used
5133 ** again to correct that.
5134 */
5135 MOD_DEC_USE_COUNT;
5136 }
5137
5138 /*
5139 ** Use correct MTU size and indicate to kernel TX queue can be started
5140 */
5141 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
5142 return (-1);
5143 }
5144 return (0);
5145
5146 } /* SkDrvInitAdapter */
5147
5148 #endif
5149
5150 #ifdef DEBUG
5151 /****************************************************************************/
5152 /* "debug only" section *****************************************************/
5153 /****************************************************************************/
5154
5155
5156 /*****************************************************************************
5157 *
5158 * DumpMsg - print a frame
5159 *
5160 * Description:
5161 * This function prints frames to the system logfile/to the console.
5162 *
5163 * Returns: N/A
5164 *
5165 */
5166 static void DumpMsg(struct sk_buff *skb, char *str)
5167 {
5168 int msglen;
5169
5170 if (skb == NULL) {
5171 printk("DumpMsg(): NULL-Message\n");
5172 return;
5173 }
5174
5175 if (skb->data == NULL) {
5176 printk("DumpMsg(): Message empty\n");
5177 return;
5178 }
5179
5180 msglen = skb->len;
5181 if (msglen > 64)
5182 msglen = 64;
5183
5184 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
5185
5186 DumpData((char *)skb->data, msglen);
5187
5188 printk("------- End of message ---------\n");
5189 } /* DumpMsg */
5190
5191
5192
5193 /*****************************************************************************
5194 *
5195 * DumpData - print a data area
5196 *
5197 * Description:
5198 * This function prints a area of data to the system logfile/to the
5199 * console.
5200 *
5201 * Returns: N/A
5202 *
5203 */
5204 static void DumpData(char *p, int size)
5205 {
5206 register int i;
5207 int haddr, addr;
5208 char hex_buffer[180];
5209 char asc_buffer[180];
5210 char HEXCHAR[] = "0123456789ABCDEF";
5211
5212 addr = 0;
5213 haddr = 0;
5214 hex_buffer[0] = 0;
5215 asc_buffer[0] = 0;
5216 for (i=0; i < size; ) {
5217 if (*p >= '0' && *p <='z')
5218 asc_buffer[addr] = *p;
5219 else
5220 asc_buffer[addr] = '.';
5221 addr++;
5222 asc_buffer[addr] = 0;
5223 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
5224 haddr++;
5225 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
5226 haddr++;
5227 hex_buffer[haddr] = ' ';
5228 haddr++;
5229 hex_buffer[haddr] = 0;
5230 p++;
5231 i++;
5232 if (i%16 == 0) {
5233 printk("%s %s\n", hex_buffer, asc_buffer);
5234 addr = 0;
5235 haddr = 0;
5236 }
5237 }
5238 } /* DumpData */
5239
5240
5241 /*****************************************************************************
5242 *
5243 * DumpLong - print a data area as long values
5244 *
5245 * Description:
5246 * This function prints a area of data to the system logfile/to the
5247 * console.
5248 *
5249 * Returns: N/A
5250 *
5251 */
5252 static void DumpLong(char *pc, int size)
5253 {
5254 register int i;
5255 int haddr, addr;
5256 char hex_buffer[180];
5257 char asc_buffer[180];
5258 char HEXCHAR[] = "0123456789ABCDEF";
5259 long *p;
5260 int l;
5261
5262 addr = 0;
5263 haddr = 0;
5264 hex_buffer[0] = 0;
5265 asc_buffer[0] = 0;
5266 p = (long*) pc;
5267 for (i=0; i < size; ) {
5268 l = (long) *p;
5269 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
5270 haddr++;
5271 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
5272 haddr++;
5273 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
5274 haddr++;
5275 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
5276 haddr++;
5277 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
5278 haddr++;
5279 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
5280 haddr++;
5281 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
5282 haddr++;
5283 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
5284 haddr++;
5285 hex_buffer[haddr] = ' ';
5286 haddr++;
5287 hex_buffer[haddr] = 0;
5288 p++;
5289 i++;
5290 if (i%8 == 0) {
5291 printk("%4x %s\n", (i-8)*4, hex_buffer);
5292 haddr = 0;
5293 }
5294 }
5295 printk("------------------------\n");
5296 } /* DumpLong */
5297
5298 #endif
5299
5300 /*******************************************************************************
5301 *
5302 * End of file
5303 *
5304 ******************************************************************************/
5305