1 /* -*- c-basic-offset: 8 -*-
2  *
3  * amdtp.c - Audio and Music Data Transmission Protocol Driver
4  * Copyright (C) 2001 Kristian H�gsberg
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /* OVERVIEW
22  * --------
23  *
24  * The AMDTP driver is designed to expose the IEEE1394 bus as a
25  * regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and
26  * then your favourite MP3 player, game or whatever sound program will
27  * output to an IEEE1394 isochronous channel.  The signal destination
28  * could be a set of IEEE1394 loudspeakers (if and when such things
29  * become available) or an amplifier with IEEE1394 input (like the
30  * Sony STR-LSA1).  The driver only handles the actual streaming, some
31  * connection management is also required for this to actually work.
32  * That is outside the scope of this driver, and furthermore it is not
33  * really standardized yet.
34  *
35  * The Audio and Music Data Tranmission Protocol is available at
36  *
37  *     http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf
38  *
39  *
40  * TODO
41  * ----
42  *
43  * - We should be able to change input sample format between LE/BE, as
44  *   we already shift the bytes around when we construct the iso
45  *   packets.
46  *
47  * - Fix DMA stop after bus reset!
48  *
49  * - Clean up iso context handling in ohci1394.
50  *
51  *
52  * MAYBE TODO
53  * ----------
54  *
55  * - Receive data for local playback or recording.  Playback requires
56  *   soft syncing with the sound card.
57  *
58  * - Signal processing, i.e. receive packets, do some processing, and
59  *   transmit them again using the same packet structure and timestamps
60  *   offset by processing time.
61  *
62  * - Maybe make an ALSA interface, that is, create a file_ops
63  *   implementation that recognizes ALSA ioctls and uses defaults for
64  *   things that can't be controlled through ALSA (iso channel).
65  *
66  *   Changes:
67  *
68  * - Audit copy_from_user in amdtp_write.
69  *                           Daniele Bellucci <bellucda@tiscali.it>
70  *
71  */
72 
73 #include <linux/module.h>
74 #include <linux/list.h>
75 #include <linux/sched.h>
76 #include <linux/types.h>
77 #include <linux/fs.h>
78 #include <linux/ioctl.h>
79 #include <linux/wait.h>
80 #include <linux/pci.h>
81 #include <linux/interrupt.h>
82 #include <linux/poll.h>
83 #include <asm/uaccess.h>
84 #include <asm/atomic.h>
85 
86 #include "hosts.h"
87 #include "highlevel.h"
88 #include "ieee1394.h"
89 #include "ieee1394_core.h"
90 #include "ohci1394.h"
91 
92 #include "amdtp.h"
93 #include "cmp.h"
94 
95 #define FMT_AMDTP 0x10
96 #define FDF_AM824 0x00
97 #define FDF_SFC_32KHZ   0x00
98 #define FDF_SFC_44K1HZ  0x01
99 #define FDF_SFC_48KHZ   0x02
100 #define FDF_SFC_88K2HZ  0x03
101 #define FDF_SFC_96KHZ   0x04
102 #define FDF_SFC_176K4HZ 0x05
103 #define FDF_SFC_192KHZ  0x06
104 
105 struct descriptor_block {
106 	struct output_more_immediate {
107 		u32 control;
108 		u32 pad0;
109 		u32 skip;
110 		u32 pad1;
111 		u32 header[4];
112 	} header_desc;
113 
114 	struct output_last {
115 		u32 control;
116 		u32 data_address;
117 		u32 branch;
118 		u32 status;
119 	} payload_desc;
120 };
121 
122 struct packet {
123 	struct descriptor_block *db;
124 	dma_addr_t db_bus;
125 	struct iso_packet *payload;
126 	dma_addr_t payload_bus;
127 };
128 
129 #include <asm/byteorder.h>
130 
131 #if defined __BIG_ENDIAN_BITFIELD
132 
133 struct iso_packet {
134 	/* First quadlet */
135 	unsigned int dbs      : 8;
136 	unsigned int eoh0     : 2;
137 	unsigned int sid      : 6;
138 
139 	unsigned int dbc      : 8;
140 	unsigned int fn       : 2;
141 	unsigned int qpc      : 3;
142 	unsigned int sph      : 1;
143 	unsigned int reserved : 2;
144 
145 	/* Second quadlet */
146 	unsigned int fdf      : 8;
147 	unsigned int eoh1     : 2;
148 	unsigned int fmt      : 6;
149 
150 	unsigned int syt      : 16;
151 
152         quadlet_t data[0];
153 };
154 
155 #elif defined __LITTLE_ENDIAN_BITFIELD
156 
157 struct iso_packet {
158 	/* First quadlet */
159 	unsigned int sid      : 6;
160 	unsigned int eoh0     : 2;
161 	unsigned int dbs      : 8;
162 
163 	unsigned int reserved : 2;
164 	unsigned int sph      : 1;
165 	unsigned int qpc      : 3;
166 	unsigned int fn       : 2;
167 	unsigned int dbc      : 8;
168 
169 	/* Second quadlet */
170 	unsigned int fmt      : 6;
171 	unsigned int eoh1     : 2;
172 	unsigned int fdf      : 8;
173 
174 	unsigned int syt      : 16;
175 
176 	quadlet_t data[0];
177 };
178 
179 #else
180 
181 #error Unknown bitfield type
182 
183 #endif
184 
185 struct fraction {
186 	int integer;
187 	int numerator;
188 	int denominator;
189 };
190 
191 #define PACKET_LIST_SIZE 256
192 #define MAX_PACKET_LISTS 4
193 
194 struct packet_list {
195 	struct list_head link;
196 	int last_cycle_count;
197 	struct packet packets[PACKET_LIST_SIZE];
198 };
199 
200 #define BUFFER_SIZE 128
201 
202 /* This implements a circular buffer for incoming samples. */
203 
204 struct buffer {
205 	size_t head, tail, length, size;
206 	unsigned char data[0];
207 };
208 
209 struct stream {
210 	int iso_channel;
211 	int format;
212 	int rate;
213 	int dimension;
214 	int fdf;
215 	int mode;
216 	int sample_format;
217 	struct cmp_pcr *opcr;
218 
219 	/* Input samples are copied here. */
220 	struct buffer *input;
221 
222 	/* ISO Packer state */
223 	unsigned char dbc;
224 	struct packet_list *current_packet_list;
225 	int current_packet;
226 	struct fraction ready_samples, samples_per_cycle;
227 
228 	/* We use these to generate control bits when we are packing
229 	 * iec958 data.
230 	 */
231 	int iec958_frame_count;
232 	int iec958_rate_code;
233 
234 	/* The cycle_count and cycle_offset fields are used for the
235 	 * synchronization timestamps (syt) in the cip header.  They
236 	 * are incremented by at least a cycle every time we put a
237 	 * time stamp in a packet.  As we don't time stamp all
238 	 * packages, cycle_count isn't updated in every cycle, and
239 	 * sometimes it's incremented by 2.  Thus, we have
240 	 * cycle_count2, which is simply incremented by one with each
241 	 * packet, so we can compare it to the transmission time
242 	 * written back in the dma programs.
243 	 */
244 	atomic_t cycle_count, cycle_count2;
245 	struct fraction cycle_offset, ticks_per_syt_offset;
246 	int syt_interval;
247 	int stale_count;
248 
249 	/* Theses fields control the sample output to the DMA engine.
250 	 * The dma_packet_lists list holds packet lists currently
251 	 * queued for dma; the head of the list is currently being
252 	 * processed.  The last program in a packet list generates an
253 	 * interrupt, which removes the head from dma_packet_lists and
254 	 * puts it back on the free list.
255 	 */
256 	struct list_head dma_packet_lists;
257 	struct list_head free_packet_lists;
258         wait_queue_head_t packet_list_wait;
259 	spinlock_t packet_list_lock;
260 	struct ohci1394_iso_tasklet iso_tasklet;
261 	struct pci_pool *descriptor_pool, *packet_pool;
262 
263 	/* Streams at a host controller are chained through this field. */
264 	struct list_head link;
265 	struct amdtp_host *host;
266 };
267 
268 struct amdtp_host {
269 	struct hpsb_host *host;
270 	struct ti_ohci *ohci;
271 	struct list_head stream_list;
272 	devfs_handle_t devfs;
273 	spinlock_t stream_list_lock;
274 };
275 
276 static devfs_handle_t devfs_handle;
277 
278 static struct hpsb_highlevel amdtp_highlevel;
279 
280 /* FIXME: This doesn't belong here... */
281 
282 #define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000
283 #define OHCI1394_CONTEXT_RUN         0x00008000
284 #define OHCI1394_CONTEXT_WAKE        0x00001000
285 #define OHCI1394_CONTEXT_DEAD        0x00000800
286 #define OHCI1394_CONTEXT_ACTIVE      0x00000400
287 
ohci1394_start_it_ctx(struct ti_ohci * ohci,int ctx,dma_addr_t first_cmd,int z,int cycle_match)288 void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx,
289 			   dma_addr_t first_cmd, int z, int cycle_match)
290 {
291 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx);
292 	reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z);
293 	reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0);
294 	wmb();
295 	reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
296 		  OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) |
297 		  OHCI1394_CONTEXT_RUN);
298 }
299 
ohci1394_wake_it_ctx(struct ti_ohci * ohci,int ctx)300 void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx)
301 {
302 	reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
303 		  OHCI1394_CONTEXT_WAKE);
304 }
305 
ohci1394_stop_it_ctx(struct ti_ohci * ohci,int ctx,int synchronous)306 void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous)
307 {
308 	u32 control;
309 	int wait;
310 
311 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx);
312 	reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16,
313 		  OHCI1394_CONTEXT_RUN);
314 	wmb();
315 
316 	if (synchronous) {
317 		for (wait = 0; wait < 5; wait++) {
318 			control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16);
319 			if ((control & OHCI1394_CONTEXT_ACTIVE) == 0)
320 				break;
321 
322 			set_current_state(TASK_INTERRUPTIBLE);
323 			schedule_timeout(1);
324 		}
325 	}
326 }
327 
328 /* Note: we can test if free_packet_lists is empty without aquiring
329  * the packet_list_lock.  The interrupt handler only adds to the free
330  * list, there is no race condition between testing the list non-empty
331  * and acquiring the lock.
332  */
333 
stream_get_free_packet_list(struct stream * s)334 static struct packet_list *stream_get_free_packet_list(struct stream *s)
335 {
336 	struct packet_list *pl;
337 	unsigned long flags;
338 
339 	if (list_empty(&s->free_packet_lists))
340 		return NULL;
341 
342 	spin_lock_irqsave(&s->packet_list_lock, flags);
343 	pl = list_entry(s->free_packet_lists.next, struct packet_list, link);
344 	list_del(&pl->link);
345 	spin_unlock_irqrestore(&s->packet_list_lock, flags);
346 
347 	return pl;
348 }
349 
stream_start_dma(struct stream * s,struct packet_list * pl)350 static void stream_start_dma(struct stream *s, struct packet_list *pl)
351 {
352 	u32 syt_cycle, cycle_count, start_cycle;
353 
354 	cycle_count = reg_read(s->host->ohci,
355 			       OHCI1394_IsochronousCycleTimer) >> 12;
356 	syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f;
357 
358 	/* We program the DMA controller to start transmission at
359 	 * least 17 cycles from now - this happens when the lower four
360 	 * bits of cycle_count is 0x0f and syt_cycle is 0, in this
361 	 * case the start cycle is cycle_count - 15 + 32. */
362 	start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle;
363 	if ((start_cycle & 0x1fff) >= 8000)
364 		start_cycle = start_cycle - 8000 + 0x2000;
365 
366 	ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context,
367 			      pl->packets[0].db_bus, 3,
368 			      start_cycle & 0x7fff);
369 }
370 
stream_put_dma_packet_list(struct stream * s,struct packet_list * pl)371 static void stream_put_dma_packet_list(struct stream *s,
372 				       struct packet_list *pl)
373 {
374 	unsigned long flags;
375 	struct packet_list *prev;
376 
377 	/* Remember the cycle_count used for timestamping the last packet. */
378 	pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1;
379 	pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0;
380 
381 	spin_lock_irqsave(&s->packet_list_lock, flags);
382 	list_add_tail(&pl->link, &s->dma_packet_lists);
383 	spin_unlock_irqrestore(&s->packet_list_lock, flags);
384 
385 	prev = list_entry(pl->link.prev, struct packet_list, link);
386 	if (pl->link.prev != &s->dma_packet_lists) {
387 		struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1];
388 		last->db->payload_desc.branch = pl->packets[0].db_bus | 3;
389 		last->db->header_desc.skip = pl->packets[0].db_bus | 3;
390 		ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context);
391 	}
392 	else
393 		stream_start_dma(s, pl);
394 }
395 
stream_shift_packet_lists(unsigned long l)396 static void stream_shift_packet_lists(unsigned long l)
397 {
398 	struct stream *s = (struct stream *) l;
399 	struct packet_list *pl;
400 	struct packet *last;
401 	int diff;
402 
403 	if (list_empty(&s->dma_packet_lists)) {
404 		HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__);
405 		return;
406 	}
407 
408 	/* Now that we know the list is non-empty, we can get the head
409 	 * of the list without locking, because the process context
410 	 * only adds to the tail.
411 	 */
412 	pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
413 	last = &pl->packets[PACKET_LIST_SIZE - 1];
414 
415 	/* This is weird... if we stop dma processing in the middle of
416 	 * a packet list, the dma context immediately generates an
417 	 * interrupt if we enable it again later.  This only happens
418 	 * when amdtp_release is interrupted while waiting for dma to
419 	 * complete, though.  Anyway, we detect this by seeing that
420 	 * the status of the dma descriptor that we expected an
421 	 * interrupt from is still 0.
422 	 */
423 	if (last->db->payload_desc.status == 0) {
424 		HPSB_INFO("weird interrupt...");
425 		return;
426 	}
427 
428 	/* If the last descriptor block does not specify a branch
429 	 * address, we have a sample underflow.
430 	 */
431 	if (last->db->payload_desc.branch == 0)
432 		HPSB_INFO("FIXME: sample underflow...");
433 
434 	/* Here we check when (which cycle) the last packet was sent
435 	 * and compare it to what the iso packer was using at the
436 	 * time.  If there is a mismatch, we adjust the cycle count in
437 	 * the iso packer.  However, there are still up to
438 	 * MAX_PACKET_LISTS packet lists queued with bad time stamps,
439 	 * so we disable time stamp monitoring for the next
440 	 * MAX_PACKET_LISTS packet lists.
441 	 */
442 	diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf;
443 	if (diff > 0 && s->stale_count == 0) {
444 		atomic_add(diff, &s->cycle_count);
445 		atomic_add(diff, &s->cycle_count2);
446 		s->stale_count = MAX_PACKET_LISTS;
447 	}
448 
449 	if (s->stale_count > 0)
450 		s->stale_count--;
451 
452 	/* Finally, we move the packet list that was just processed
453 	 * back to the free list, and notify any waiters.
454 	 */
455 	spin_lock(&s->packet_list_lock);
456 	list_del(&pl->link);
457 	list_add_tail(&pl->link, &s->free_packet_lists);
458 	spin_unlock(&s->packet_list_lock);
459 
460 	wake_up_interruptible(&s->packet_list_wait);
461 }
462 
stream_current_packet(struct stream * s)463 static struct packet *stream_current_packet(struct stream *s)
464 {
465 	if (s->current_packet_list == NULL &&
466 	    (s->current_packet_list = stream_get_free_packet_list(s)) == NULL)
467 		return NULL;
468 
469 	return &s->current_packet_list->packets[s->current_packet];
470 }
471 
stream_queue_packet(struct stream * s)472 static void stream_queue_packet(struct stream *s)
473 {
474 	s->current_packet++;
475 	if (s->current_packet == PACKET_LIST_SIZE) {
476 		stream_put_dma_packet_list(s, s->current_packet_list);
477 		s->current_packet_list = NULL;
478 		s->current_packet = 0;
479 	}
480 }
481 
482 /* Integer fractional math.  When we transmit a 44k1Hz signal we must
483  * send 5 41/80 samples per isochronous cycle, as these occur 8000
484  * times a second.  Of course, we must send an integral number of
485  * samples in a packet, so we use the integer math to alternate
486  * between sending 5 and 6 samples per packet.
487  */
488 
fraction_init(struct fraction * f,int numerator,int denominator)489 static void fraction_init(struct fraction *f, int numerator, int denominator)
490 {
491 	f->integer = numerator / denominator;
492 	f->numerator = numerator % denominator;
493 	f->denominator = denominator;
494 }
495 
fraction_add(struct fraction * dst,struct fraction * src1,struct fraction * src2)496 static __inline__ void fraction_add(struct fraction *dst,
497 				    struct fraction *src1,
498 				    struct fraction *src2)
499 {
500 	/* assert: src1->denominator == src2->denominator */
501 
502 	int sum, denom;
503 
504 	/* We use these two local variables to allow gcc to optimize
505 	 * the division and the modulo into only one division. */
506 
507 	sum = src1->numerator + src2->numerator;
508 	denom = src1->denominator;
509 	dst->integer = src1->integer + src2->integer + sum / denom;
510 	dst->numerator = sum % denom;
511 	dst->denominator = denom;
512 }
513 
fraction_sub_int(struct fraction * dst,struct fraction * src,int integer)514 static __inline__ void fraction_sub_int(struct fraction *dst,
515 					struct fraction *src, int integer)
516 {
517 	dst->integer = src->integer - integer;
518 	dst->numerator = src->numerator;
519 	dst->denominator = src->denominator;
520 }
521 
fraction_floor(struct fraction * frac)522 static __inline__ int fraction_floor(struct fraction *frac)
523 {
524 	return frac->integer;
525 }
526 
fraction_ceil(struct fraction * frac)527 static __inline__ int fraction_ceil(struct fraction *frac)
528 {
529 	return frac->integer + (frac->numerator > 0 ? 1 : 0);
530 }
531 
packet_initialize(struct packet * p,struct packet * next)532 void packet_initialize(struct packet *p, struct packet *next)
533 {
534 	/* Here we initialize the dma descriptor block for
535 	 * transferring one iso packet.  We use two descriptors per
536 	 * packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the
537 	 * IEEE1394 iso packet header and an OUTPUT_LAST descriptor
538 	 * for the payload.
539 	 */
540 
541 	p->db->header_desc.control =
542 		DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8;
543 
544 	if (next) {
545 		p->db->payload_desc.control =
546 			DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH;
547 		p->db->payload_desc.branch = next->db_bus | 3;
548 		p->db->header_desc.skip = next->db_bus | 3;
549 	}
550 	else {
551 		p->db->payload_desc.control =
552 			DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH |
553 			DMA_CTL_UPDATE | DMA_CTL_IRQ;
554 		p->db->payload_desc.branch = 0;
555 		p->db->header_desc.skip = 0;
556 	}
557 	p->db->payload_desc.data_address = p->payload_bus;
558 	p->db->payload_desc.status = 0;
559 }
560 
packet_list_alloc(struct stream * s)561 struct packet_list *packet_list_alloc(struct stream *s)
562 {
563 	int i;
564 	struct packet_list *pl;
565 	struct packet *next;
566 
567 	pl = kmalloc(sizeof *pl, SLAB_KERNEL);
568 	if (pl == NULL)
569 		return NULL;
570 
571 	for (i = 0; i < PACKET_LIST_SIZE; i++) {
572 		struct packet *p = &pl->packets[i];
573 		p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL,
574 				       &p->db_bus);
575 		p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL,
576 					    &p->payload_bus);
577 	}
578 
579 	for (i = 0; i < PACKET_LIST_SIZE; i++) {
580 		if (i < PACKET_LIST_SIZE - 1)
581 			next = &pl->packets[i + 1];
582 		else
583 			next = NULL;
584 		packet_initialize(&pl->packets[i], next);
585 	}
586 
587 	return pl;
588 }
589 
packet_list_free(struct packet_list * pl,struct stream * s)590 void packet_list_free(struct packet_list *pl, struct stream *s)
591 {
592 	int i;
593 
594 	for (i = 0; i < PACKET_LIST_SIZE; i++) {
595 		struct packet *p = &pl->packets[i];
596 		pci_pool_free(s->descriptor_pool, p->db, p->db_bus);
597 		pci_pool_free(s->packet_pool, p->payload, p->payload_bus);
598 	}
599 	kfree(pl);
600 }
601 
buffer_alloc(int size)602 static struct buffer *buffer_alloc(int size)
603 {
604 	struct buffer *b;
605 
606 	b = kmalloc(sizeof *b + size, SLAB_KERNEL);
607 	if (b == NULL)
608 		return NULL;
609 	b->head = 0;
610 	b->tail = 0;
611 	b->length = 0;
612 	b->size = size;
613 
614 	return b;
615 }
616 
buffer_get_bytes(struct buffer * buffer,int size)617 static unsigned char *buffer_get_bytes(struct buffer *buffer, int size)
618 {
619 	unsigned char *p;
620 
621 	if (buffer->head + size > buffer->size)
622 		BUG();
623 
624 	p = &buffer->data[buffer->head];
625 	buffer->head += size;
626 	if (buffer->head == buffer->size)
627 		buffer->head = 0;
628 	buffer->length -= size;
629 
630 	return p;
631 }
632 
buffer_put_bytes(struct buffer * buffer,size_t max,size_t * actual)633 static unsigned char *buffer_put_bytes(struct buffer *buffer,
634 				       size_t max, size_t *actual)
635 {
636 	size_t length;
637 	unsigned char *p;
638 
639 	p = &buffer->data[buffer->tail];
640 	length = min(buffer->size - buffer->length, max);
641 	if (buffer->tail + length < buffer->size) {
642 		*actual = length;
643 		buffer->tail += length;
644 	}
645 	else {
646 		*actual = buffer->size - buffer->tail;
647 		 buffer->tail = 0;
648 	}
649 
650 	buffer->length += *actual;
651 	return p;
652 }
653 
get_iec958_header_bits(struct stream * s,int sub_frame,u32 sample)654 static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample)
655 {
656 	int csi, parity, shift;
657 	int block_start;
658 	u32 bits;
659 
660 	switch (s->iec958_frame_count) {
661 	case 1:
662 		csi = s->format == AMDTP_FORMAT_IEC958_AC3;
663 		break;
664 	case 2:
665 	case 9:
666 		csi = 1;
667 		break;
668 	case 24 ... 27:
669 		csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01;
670 		break;
671 	default:
672 		csi = 0;
673 		break;
674 	}
675 
676 	block_start = (s->iec958_frame_count == 0 && sub_frame == 0);
677 
678 	/* The parity bit is the xor of the sample bits and the
679 	 * channel status info bit. */
680 	for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1)
681 		parity ^= (parity >> shift);
682 
683 	bits =  (block_start << 5) |		/* Block start bit */
684 		((sub_frame == 0) << 4) |	/* Subframe bit */
685 		((parity & 1) << 3) |		/* Parity bit */
686 		(csi << 2);			/* Channel status info bit */
687 
688 	return bits;
689 }
690 
get_header_bits(struct stream * s,int sub_frame,u32 sample)691 static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample)
692 {
693 	switch (s->format) {
694 	case AMDTP_FORMAT_IEC958_PCM:
695 	case AMDTP_FORMAT_IEC958_AC3:
696 		return get_iec958_header_bits(s, sub_frame, sample);
697 
698 	case AMDTP_FORMAT_RAW:
699 		return 0x40;
700 
701 	default:
702 		return 0;
703 	}
704 }
705 
fill_payload_le16(struct stream * s,quadlet_t * data,int nevents)706 static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents)
707 {
708 	quadlet_t *event, sample, bits;
709 	unsigned char *p;
710 	int i, j;
711 
712 	for (i = 0, event = data; i < nevents; i++) {
713 
714 		for (j = 0; j < s->dimension; j++) {
715 			p = buffer_get_bytes(s->input, 2);
716 			sample = (p[1] << 16) | (p[0] << 8);
717 			bits = get_header_bits(s, j, sample);
718 			event[j] = cpu_to_be32((bits << 24) | sample);
719 		}
720 
721 		event += s->dimension;
722 		if (++s->iec958_frame_count == 192)
723 			s->iec958_frame_count = 0;
724 	}
725 }
726 
fill_packet(struct stream * s,struct packet * packet,int nevents)727 static void fill_packet(struct stream *s, struct packet *packet, int nevents)
728 {
729 	int syt_index, syt, size;
730 	u32 control;
731 
732 	size = (nevents * s->dimension + 2) * sizeof(quadlet_t);
733 
734 	/* Update DMA descriptors */
735 	packet->db->payload_desc.status = 0;
736 	control = packet->db->payload_desc.control & 0xffff0000;
737 	packet->db->payload_desc.control = control | size;
738 
739 	/* Fill IEEE1394 headers */
740 	packet->db->header_desc.header[0] =
741 		(IEEE1394_SPEED_100 << 16) | (0x01 << 14) |
742 		(s->iso_channel << 8) | (TCODE_ISO_DATA << 4);
743 	packet->db->header_desc.header[1] = size << 16;
744 
745 	/* Calculate synchronization timestamp (syt). First we
746 	 * determine syt_index, that is, the index in the packet of
747 	 * the sample for which the timestamp is valid. */
748 	syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1);
749 	if (syt_index < nevents) {
750 		syt = ((atomic_read(&s->cycle_count) << 12) |
751 		       s->cycle_offset.integer) & 0xffff;
752 		fraction_add(&s->cycle_offset,
753 			     &s->cycle_offset, &s->ticks_per_syt_offset);
754 
755 		/* This next addition should be modulo 8000 (0x1f40),
756 		 * but we only use the lower 4 bits of cycle_count, so
757 		 * we don't need the modulo. */
758 		atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count);
759 		s->cycle_offset.integer %= 3072;
760 	}
761 	else
762 		syt = 0xffff;
763 
764 	atomic_inc(&s->cycle_count2);
765 
766 	/* Fill cip header */
767 	packet->payload->eoh0 = 0;
768 	packet->payload->sid = s->host->host->node_id & 0x3f;
769 	packet->payload->dbs = s->dimension;
770 	packet->payload->fn = 0;
771 	packet->payload->qpc = 0;
772 	packet->payload->sph = 0;
773 	packet->payload->reserved = 0;
774 	packet->payload->dbc = s->dbc;
775 	packet->payload->eoh1 = 2;
776 	packet->payload->fmt = FMT_AMDTP;
777 	packet->payload->fdf = s->fdf;
778 	packet->payload->syt = cpu_to_be16(syt);
779 
780 	switch (s->sample_format) {
781 	case AMDTP_INPUT_LE16:
782 		fill_payload_le16(s, packet->payload->data, nevents);
783 		break;
784 	}
785 
786 	s->dbc += nevents;
787 }
788 
stream_flush(struct stream * s)789 static void stream_flush(struct stream *s)
790 {
791 	struct packet *p;
792 	int nevents;
793 	struct fraction next;
794 
795 	/* The AMDTP specifies two transmission modes: blocking and
796 	 * non-blocking.  In blocking mode you always transfer
797 	 * syt_interval or zero samples, whereas in non-blocking mode
798 	 * you send as many samples as you have available at transfer
799 	 * time.
800 	 *
801 	 * The fraction samples_per_cycle specifies the number of
802 	 * samples that become available per cycle.  We add this to
803 	 * the fraction ready_samples, which specifies the number of
804 	 * leftover samples from the previous transmission.  The sum,
805 	 * stored in the fraction next, specifies the number of
806 	 * samples available for transmission, and from this we
807 	 * determine the number of samples to actually transmit.
808 	 */
809 
810 	while (1) {
811 		fraction_add(&next, &s->ready_samples, &s->samples_per_cycle);
812 		if (s->mode == AMDTP_MODE_BLOCKING) {
813 			if (fraction_floor(&next) >= s->syt_interval)
814 				nevents = s->syt_interval;
815 			else
816 				nevents = 0;
817 		}
818 		else
819 			nevents = fraction_floor(&next);
820 
821 		p = stream_current_packet(s);
822 		if (s->input->length < nevents * s->dimension * 2 || p == NULL)
823 			break;
824 
825 		fill_packet(s, p, nevents);
826 		stream_queue_packet(s);
827 
828 		/* Now that we have successfully queued the packet for
829 		 * transmission, we update the fraction ready_samples. */
830 		fraction_sub_int(&s->ready_samples, &next, nevents);
831 	}
832 }
833 
stream_alloc_packet_lists(struct stream * s)834 static int stream_alloc_packet_lists(struct stream *s)
835 {
836 	int max_nevents, max_packet_size, i;
837 
838 	if (s->mode == AMDTP_MODE_BLOCKING)
839 		max_nevents = s->syt_interval;
840 	else
841 		max_nevents = fraction_ceil(&s->samples_per_cycle);
842 
843 	max_packet_size = max_nevents * s->dimension * 4 + 8;
844 	s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev,
845 					 max_packet_size, 0, 0 ,SLAB_KERNEL);
846 
847 	if (s->packet_pool == NULL)
848 		return -1;
849 
850 	INIT_LIST_HEAD(&s->free_packet_lists);
851 	INIT_LIST_HEAD(&s->dma_packet_lists);
852 	for (i = 0; i < MAX_PACKET_LISTS; i++) {
853 		struct packet_list *pl = packet_list_alloc(s);
854 		if (pl == NULL)
855 			break;
856 		list_add_tail(&pl->link, &s->free_packet_lists);
857 	}
858 
859 	return i < MAX_PACKET_LISTS ? -1 : 0;
860 }
861 
stream_free_packet_lists(struct stream * s)862 static void stream_free_packet_lists(struct stream *s)
863 {
864 	struct list_head *lh, *next;
865 
866 	if (s->current_packet_list != NULL)
867 		packet_list_free(s->current_packet_list, s);
868 	list_for_each_safe(lh, next, &s->dma_packet_lists)
869 		packet_list_free(list_entry(lh, struct packet_list, link), s);
870 	list_for_each_safe(lh, next, &s->free_packet_lists)
871 		packet_list_free(list_entry(lh, struct packet_list, link), s);
872 	if (s->packet_pool != NULL)
873 		pci_pool_destroy(s->packet_pool);
874 
875 	s->current_packet_list = NULL;
876 	INIT_LIST_HEAD(&s->free_packet_lists);
877 	INIT_LIST_HEAD(&s->dma_packet_lists);
878 	s->packet_pool = NULL;
879 }
880 
plug_update(struct cmp_pcr * plug,void * data)881 static void plug_update(struct cmp_pcr *plug, void *data)
882 {
883 	struct stream *s = data;
884 
885 	HPSB_INFO("plug update: p2p_count=%d, channel=%d",
886 		  plug->p2p_count, plug->channel);
887 	s->iso_channel = plug->channel;
888 	if (plug->p2p_count > 0) {
889 		struct packet_list *pl;
890 
891 		pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
892 		stream_start_dma(s, pl);
893 	}
894 	else {
895 		ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0);
896 	}
897 }
898 
stream_configure(struct stream * s,int cmd,struct amdtp_ioctl * cfg)899 static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg)
900 {
901 	const int transfer_delay = 9000;
902 
903 	if (cfg->format <= AMDTP_FORMAT_IEC958_AC3)
904 		s->format = cfg->format;
905 	else
906 		return -EINVAL;
907 
908 	switch (cfg->rate) {
909 	case 32000:
910 		s->syt_interval = 8;
911 		s->fdf = FDF_SFC_32KHZ;
912 		s->iec958_rate_code = 0x0c;
913 		break;
914 	case 44100:
915 		s->syt_interval = 8;
916 		s->fdf = FDF_SFC_44K1HZ;
917 		s->iec958_rate_code = 0x00;
918 		break;
919 	case 48000:
920 		s->syt_interval = 8;
921 		s->fdf = FDF_SFC_48KHZ;
922 		s->iec958_rate_code = 0x04;
923 		break;
924 	case 88200:
925 		s->syt_interval = 16;
926 		s->fdf = FDF_SFC_88K2HZ;
927 		s->iec958_rate_code = 0x00;
928 		break;
929 	case 96000:
930 		s->syt_interval = 16;
931 		s->fdf = FDF_SFC_96KHZ;
932 		s->iec958_rate_code = 0x00;
933 		break;
934 	case 176400:
935 		s->syt_interval = 32;
936 		s->fdf = FDF_SFC_176K4HZ;
937 		s->iec958_rate_code = 0x00;
938 		break;
939 	case 192000:
940 		s->syt_interval = 32;
941 		s->fdf = FDF_SFC_192KHZ;
942 		s->iec958_rate_code = 0x00;
943 		break;
944 
945 	default:
946 		return -EINVAL;
947 	}
948 
949 	s->rate = cfg->rate;
950 	fraction_init(&s->samples_per_cycle, s->rate, 8000);
951 	fraction_init(&s->ready_samples, 0, 8000);
952 
953 	/* The ticks_per_syt_offset is initialized to the number of
954 	 * ticks between syt_interval events.  The number of ticks per
955 	 * second is 24.576e6, so the number of ticks between
956 	 * syt_interval events is 24.576e6 * syt_interval / rate.
957 	 */
958 	fraction_init(&s->ticks_per_syt_offset,
959 		      24576000 * s->syt_interval, s->rate);
960 	fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate);
961 	atomic_set(&s->cycle_count, transfer_delay / 3072);
962 	atomic_set(&s->cycle_count2, 0);
963 
964 	s->mode = cfg->mode;
965 	s->sample_format = AMDTP_INPUT_LE16;
966 
967 	/* When using the AM824 raw subformat we can stream signals of
968 	 * any dimension.  The IEC958 subformat, however, only
969 	 * supports 2 channels.
970 	 */
971 	if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2)
972 		s->dimension = cfg->dimension;
973 	else
974 		return -EINVAL;
975 
976 	if (s->opcr != NULL) {
977 		cmp_unregister_opcr(s->host->host, s->opcr);
978 		s->opcr = NULL;
979 	}
980 
981 	switch(cmd) {
982 	case AMDTP_IOC_PLUG:
983 		s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug,
984 					   /*payload*/ 12, plug_update, s);
985 		if (s->opcr == NULL)
986 			return -EINVAL;
987 		s->iso_channel = s->opcr->channel;
988 		break;
989 
990 	case AMDTP_IOC_CHANNEL:
991 		if (cfg->u.channel >= 0 && cfg->u.channel < 64)
992 			s->iso_channel = cfg->u.channel;
993 		else
994 			return -EINVAL;
995 		break;
996 	}
997 
998 	/* The ioctl settings were all valid, so we realloc the packet
999 	 * lists to make sure the packet size is big enough.
1000 	 */
1001 	if (s->packet_pool != NULL)
1002 		stream_free_packet_lists(s);
1003 
1004 	if (stream_alloc_packet_lists(s) < 0) {
1005 		stream_free_packet_lists(s);
1006 		return -ENOMEM;
1007 	}
1008 
1009 	return 0;
1010 }
1011 
stream_alloc(struct amdtp_host * host)1012 struct stream *stream_alloc(struct amdtp_host *host)
1013 {
1014 	struct stream *s;
1015 	unsigned long flags;
1016 
1017         s = kmalloc(sizeof(struct stream), SLAB_KERNEL);
1018         if (s == NULL)
1019                 return NULL;
1020 
1021         memset(s, 0, sizeof(struct stream));
1022 	s->host = host;
1023 
1024 	s->input = buffer_alloc(BUFFER_SIZE);
1025 	if (s->input == NULL) {
1026 		kfree(s);
1027 		return NULL;
1028 	}
1029 
1030 	s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev,
1031 					     sizeof(struct descriptor_block),
1032 					     16, 0, SLAB_KERNEL);
1033 
1034 	if (s->descriptor_pool == NULL) {
1035 		kfree(s->input);
1036 		kfree(s);
1037 		return NULL;
1038 	}
1039 
1040 	INIT_LIST_HEAD(&s->free_packet_lists);
1041 	INIT_LIST_HEAD(&s->dma_packet_lists);
1042 
1043         init_waitqueue_head(&s->packet_list_wait);
1044         spin_lock_init(&s->packet_list_lock);
1045 
1046 	ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT,
1047 				  stream_shift_packet_lists,
1048 				  (unsigned long) s);
1049 
1050 	if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) {
1051 		pci_pool_destroy(s->descriptor_pool);
1052 		kfree(s->input);
1053 		kfree(s);
1054 		return NULL;
1055 	}
1056 
1057 	spin_lock_irqsave(&host->stream_list_lock, flags);
1058 	list_add_tail(&s->link, &host->stream_list);
1059 	spin_unlock_irqrestore(&host->stream_list_lock, flags);
1060 
1061 	return s;
1062 }
1063 
stream_free(struct stream * s)1064 void stream_free(struct stream *s)
1065 {
1066 	unsigned long flags;
1067 
1068 	/* Stop the DMA.  We wait for the dma packet list to become
1069 	 * empty and let the dma controller run out of programs.  This
1070 	 * seems to be more reliable than stopping it directly, since
1071 	 * that sometimes generates an it transmit interrupt if we
1072 	 * later re-enable the context.
1073 	 */
1074 	wait_event_interruptible(s->packet_list_wait,
1075 				 list_empty(&s->dma_packet_lists));
1076 
1077 	ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1);
1078 	ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet);
1079 
1080 	if (s->opcr != NULL)
1081 		cmp_unregister_opcr(s->host->host, s->opcr);
1082 
1083 	spin_lock_irqsave(&s->host->stream_list_lock, flags);
1084 	list_del(&s->link);
1085 	spin_unlock_irqrestore(&s->host->stream_list_lock, flags);
1086 
1087 	kfree(s->input);
1088 
1089 	stream_free_packet_lists(s);
1090 	pci_pool_destroy(s->descriptor_pool);
1091 
1092 	kfree(s);
1093 }
1094 
1095 /* File operations */
1096 
amdtp_write(struct file * file,const char * buffer,size_t count,loff_t * offset_is_ignored)1097 static ssize_t amdtp_write(struct file *file, const char *buffer, size_t count,
1098 			   loff_t *offset_is_ignored)
1099 {
1100 	struct stream *s = file->private_data;
1101 	unsigned char *p;
1102 	int i;
1103 	size_t length;
1104 
1105 	if (s->packet_pool == NULL)
1106 		return -EBADFD;
1107 
1108 	/* Fill the circular buffer from the input buffer and call the
1109 	 * iso packer when the buffer is full.  The iso packer may
1110 	 * leave bytes in the buffer for two reasons: either the
1111 	 * remaining bytes wasn't enough to build a new packet, or
1112 	 * there were no free packet lists.  In the first case we
1113 	 * re-fill the buffer and call the iso packer again or return
1114 	 * if we used all the data from userspace.  In the second
1115 	 * case, the wait_event_interruptible will block until the irq
1116 	 * handler frees a packet list.
1117 	 */
1118 
1119 	for (i = 0; i < count; i += length) {
1120 		p = buffer_put_bytes(s->input, count - i, &length);
1121 		if (copy_from_user(p, buffer + i, length))
1122 			return -EFAULT;
1123 		if (s->input->length < s->input->size)
1124 			continue;
1125 
1126 		stream_flush(s);
1127 
1128 		if (s->current_packet_list != NULL)
1129 			continue;
1130 
1131 		if (file->f_flags & O_NONBLOCK)
1132 			return i + length > 0 ? i + length : -EAGAIN;
1133 
1134 		if (wait_event_interruptible(s->packet_list_wait,
1135 					     !list_empty(&s->free_packet_lists)))
1136 			return -EINTR;
1137 	}
1138 
1139 	return count;
1140 }
1141 
amdtp_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)1142 static int amdtp_ioctl(struct inode *inode, struct file *file,
1143 			   unsigned int cmd, unsigned long arg)
1144 {
1145 	struct stream *s = file->private_data;
1146 	struct amdtp_ioctl cfg;
1147 
1148 	switch(cmd)
1149 	{
1150 	case AMDTP_IOC_PLUG:
1151 	case AMDTP_IOC_CHANNEL:
1152 		if (copy_from_user(&cfg, (struct amdtp_ioctl *) arg, sizeof cfg))
1153 			return -EFAULT;
1154 		else
1155 			return stream_configure(s, cmd, &cfg);
1156 
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 }
1161 
amdtp_poll(struct file * file,poll_table * pt)1162 static unsigned int amdtp_poll(struct file *file, poll_table *pt)
1163 {
1164 	struct stream *s = file->private_data;
1165 
1166 	poll_wait(file, &s->packet_list_wait, pt);
1167 
1168 	if (!list_empty(&s->free_packet_lists))
1169 		return POLLOUT | POLLWRNORM;
1170 	else
1171 		return 0;
1172 }
1173 
amdtp_open(struct inode * inode,struct file * file)1174 static int amdtp_open(struct inode *inode, struct file *file)
1175 {
1176 	struct amdtp_host *host;
1177 	int i = ieee1394_file_to_instance(file);
1178 
1179 	host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i);
1180 	if (host == NULL)
1181 		return -ENODEV;
1182 
1183 	file->private_data = stream_alloc(host);
1184 	if (file->private_data == NULL)
1185 		return -ENOMEM;
1186 
1187 	return 0;
1188 }
1189 
amdtp_release(struct inode * inode,struct file * file)1190 static int amdtp_release(struct inode *inode, struct file *file)
1191 {
1192 	struct stream *s = file->private_data;
1193 
1194 	stream_free(s);
1195 
1196 	return 0;
1197 }
1198 
1199 static struct file_operations amdtp_fops =
1200 {
1201 	.owner =	THIS_MODULE,
1202 	.write =	amdtp_write,
1203 	.poll =		amdtp_poll,
1204 	.ioctl =	amdtp_ioctl,
1205 	.open =		amdtp_open,
1206 	.release =	amdtp_release
1207 };
1208 
1209 /* IEEE1394 Subsystem functions */
1210 
amdtp_add_host(struct hpsb_host * host)1211 static void amdtp_add_host(struct hpsb_host *host)
1212 {
1213 	struct amdtp_host *ah;
1214 	int minor;
1215 	char name[16];
1216 
1217 	if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0)
1218 		return;
1219 
1220 	ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah));
1221 	if (!ah) {
1222 		HPSB_ERR("amdtp: Unable able to alloc hostinfo");
1223 		return;
1224 	}
1225 
1226 	ah->host = host;
1227 	ah->ohci = host->hostdata;
1228 
1229 	hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->ohci->id);
1230 
1231 	minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->ohci->id;
1232 
1233 	sprintf(name, "%d", ah->ohci->id);
1234 
1235 	INIT_LIST_HEAD(&ah->stream_list);
1236 	spin_lock_init(&ah->stream_list_lock);
1237 
1238 	ah->devfs = devfs_register(devfs_handle, name,
1239 				   DEVFS_FL_AUTO_OWNER,
1240 				   IEEE1394_MAJOR, minor,
1241 				   S_IFCHR | S_IRUSR | S_IWUSR,
1242 				   &amdtp_fops, NULL);
1243 }
1244 
amdtp_remove_host(struct hpsb_host * host)1245 static void amdtp_remove_host(struct hpsb_host *host)
1246 {
1247 	struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host);
1248 
1249 	if (ah)
1250 		devfs_unregister(ah->devfs);
1251 
1252 	return;
1253 }
1254 
1255 static struct hpsb_highlevel amdtp_highlevel = {
1256 	.name =		"amdtp",
1257 	.add_host =	amdtp_add_host,
1258 	.remove_host =	amdtp_remove_host,
1259 };
1260 
1261 /* Module interface */
1262 
1263 MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>");
1264 MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol "
1265 		   "on OHCI boards.");
1266 MODULE_SUPPORTED_DEVICE("amdtp");
1267 MODULE_LICENSE("GPL");
1268 
amdtp_init_module(void)1269 static int __init amdtp_init_module (void)
1270 {
1271 	if (ieee1394_register_chardev(IEEE1394_MINOR_BLOCK_AMDTP,
1272 				      THIS_MODULE, &amdtp_fops)) {
1273 		HPSB_ERR("amdtp: unable to get minor device block");
1274  		return -EIO;
1275  	}
1276 
1277 	devfs_handle = devfs_mk_dir(NULL, "amdtp", NULL);
1278 
1279 	hpsb_register_highlevel(&amdtp_highlevel);
1280 
1281 	HPSB_INFO("Loaded AMDTP driver");
1282 
1283 	return 0;
1284 }
1285 
amdtp_exit_module(void)1286 static void __exit amdtp_exit_module (void)
1287 {
1288         hpsb_unregister_highlevel(&amdtp_highlevel);
1289 	devfs_unregister(devfs_handle);
1290         ieee1394_unregister_chardev(IEEE1394_MINOR_BLOCK_AMDTP);
1291 
1292 	HPSB_INFO("Unloaded AMDTP driver");
1293 }
1294 
1295 module_init(amdtp_init_module);
1296 module_exit(amdtp_exit_module);
1297