1 /*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
21 */
22
23 /*
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
26 */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/ioport.h>
42
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/uaccess.h>
47 #include <asm/string.h>
48 #include <asm/byteorder.h>
49
50 #include "horizon.h"
51
52 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
53 #define description_string "Madge ATM Horizon [Ultra] driver"
54 #define version_string "1.2.1"
55
show_version(void)56 static inline void __init show_version (void) {
57 printk ("%s version %s\n", description_string, version_string);
58 }
59
60 /*
61
62 CREDITS
63
64 Driver and documentation by:
65
66 Chris Aston Madge Networks
67 Giuliano Procida Madge Networks
68 Simon Benham Madge Networks
69 Simon Johnson Madge Networks
70 Various Others Madge Networks
71
72 Some inspiration taken from other drivers by:
73
74 Alexandru Cucos UTBv
75 Kari Mettinen University of Helsinki
76 Werner Almesberger EPFL LRC
77
78 Theory of Operation
79
80 I Hardware, detection, initialisation and shutdown.
81
82 1. Supported Hardware
83
84 This driver should handle all variants of the PCI Madge ATM adapters
85 with the Horizon chipset. These are all PCI cards supporting PIO, BM
86 DMA and a form of MMIO (registers only, not internal RAM).
87
88 The driver is only known to work with SONET and UTP Horizon Ultra
89 cards at 155Mb/s. However, code is in place to deal with both the
90 original Horizon and 25Mb/s operation.
91
92 There are two revisions of the Horizon ASIC: the original and the
93 Ultra. Details of hardware bugs are in section III.
94
95 The ASIC version can be distinguished by chip markings but is NOT
96 indicated by the PCI revision (all adapters seem to have PCI rev 1).
97
98 I believe that:
99
100 Horizon => Collage 25 PCI Adapter (UTP and STP)
101 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
102 Ambassador x => Collage 155 PCI Server (completely different)
103
104 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
105 have a Madge B154 plus glue logic serializer. I have also found a
106 really ancient version of this with slightly different glue. It
107 comes with the revision 0 (140-025-01) ASIC.
108
109 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
110 output (UTP) or an HP HFBR 5205 output (SONET). It has either
111 Madge's SAMBA framer or a SUNI-lite device (early versions). It
112 comes with the revision 1 (140-027-01) ASIC.
113
114 2. Detection
115
116 All Horizon-based cards present with the same PCI Vendor and Device
117 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
118 to enable bus-mastering (with appropriate latency).
119
120 ATM_LAYER_STATUS in the control register distinguishes between the
121 two possible physical layers (25 and 155). It is not clear whether
122 the 155 cards can also operate at 25Mbps. We rely on the fact that a
123 card operates at 155 if and only if it has the newer Horizon Ultra
124 ASIC.
125
126 For 155 cards the two possible framers are probed for and then set
127 up for loop-timing.
128
129 3. Initialisation
130
131 The card is reset and then put into a known state. The physical
132 layer is configured for normal operation at the appropriate speed;
133 in the case of the 155 cards, the framer is initialised with
134 line-based timing; the internal RAM is zeroed and the allocation of
135 buffers for RX and TX is made; the Burnt In Address is read and
136 copied to the ATM ESI; various policy settings for RX (VPI bits,
137 unknown VCs, oam cells) are made. Ideally all policy items should be
138 configurable at module load (if not actually on-demand), however,
139 only the vpi vs vci bit allocation can be specified at insmod.
140
141 4. Shutdown
142
143 This is in response to module_cleaup. No VCs are in use and the card
144 should be idle; it is reset.
145
146 II Driver software (as it should be)
147
148 0. Traffic Parameters
149
150 The traffic classes (not an enumeration) are currently: ATM_NONE (no
151 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
152 (compatible with everything). Together with (perhaps only some of)
153 the following items they make up the traffic specification.
154
155 struct atm_trafprm {
156 unsigned char traffic_class; traffic class (ATM_UBR, ...)
157 int max_pcr; maximum PCR in cells per second
158 int pcr; desired PCR in cells per second
159 int min_pcr; minimum PCR in cells per second
160 int max_cdv; maximum CDV in microseconds
161 int max_sdu; maximum SDU in bytes
162 };
163
164 Note that these denote bandwidth available not bandwidth used; the
165 possibilities according to ATMF are:
166
167 Real Time (cdv and max CDT given)
168
169 CBR(pcr) pcr bandwidth always available
170 rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too
171
172 Non Real Time
173
174 nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too
175 UBR()
176 ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too
177
178 mbs is max burst size (bucket)
179 pcr and scr have associated cdvt values
180 mcr is like scr but has no cdtv
181 cdtv may differ at each hop
182
183 Some of the above items are qos items (as opposed to traffic
184 parameters). We have nothing to do with qos. All except ABR can have
185 their traffic parameters converted to GCRA parameters. The GCRA may
186 be implemented as a (real-number) leaky bucket. The GCRA can be used
187 in complicated ways by switches and in simpler ways by end-stations.
188 It can be used both to filter incoming cells and shape out-going
189 cells.
190
191 ATM Linux actually supports:
192
193 ATM_NONE() (no traffic in this direction)
194 ATM_UBR(max_frame_size)
195 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
196
197 0 or ATM_MAX_PCR are used to indicate maximum available PCR
198
199 A traffic specification consists of the AAL type and separate
200 traffic specifications for either direction. In ATM Linux it is:
201
202 struct atm_qos {
203 struct atm_trafprm txtp;
204 struct atm_trafprm rxtp;
205 unsigned char aal;
206 };
207
208 AAL types are:
209
210 ATM_NO_AAL AAL not specified
211 ATM_AAL0 "raw" ATM cells
212 ATM_AAL1 AAL1 (CBR)
213 ATM_AAL2 AAL2 (VBR)
214 ATM_AAL34 AAL3/4 (data)
215 ATM_AAL5 AAL5 (data)
216 ATM_SAAL signaling AAL
217
218 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
219 it does not implement AAL 3/4 SAR and it has a different notion of
220 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
221 supported by this driver.
222
223 The Horizon has limited support for ABR (including UBR), VBR and
224 CBR. Each TX channel has a bucket (containing up to 31 cell units)
225 and two timers (PCR and SCR) associated with it that can be used to
226 govern cell emissions and host notification (in the case of ABR this
227 is presumably so that RM cells may be emitted at appropriate times).
228 The timers may either be disabled or may be set to any of 240 values
229 (determined by the clock crystal, a fixed (?) per-device divider, a
230 configurable divider and a configurable timer preload value).
231
232 At the moment only UBR and CBR are supported by the driver. VBR will
233 be supported as soon as ATM for Linux supports it. ABR support is
234 very unlikely as RM cell handling is completely up to the driver.
235
236 1. TX (TX channel setup and TX transfer)
237
238 The TX half of the driver owns the TX Horizon registers. The TX
239 component in the IRQ handler is the BM completion handler. This can
240 only be entered when tx_busy is true (enforced by hardware). The
241 other TX component can only be entered when tx_busy is false
242 (enforced by driver). So TX is single-threaded.
243
244 Apart from a minor optimisation to not re-select the last channel,
245 the TX send component works as follows:
246
247 Atomic test and set tx_busy until we succeed; we should implement
248 some sort of timeout so that tx_busy will never be stuck at true.
249
250 If no TX channel is set up for this VC we wait for an idle one (if
251 necessary) and set it up.
252
253 At this point we have a TX channel ready for use. We wait for enough
254 buffers to become available then start a TX transmit (set the TX
255 descriptor, schedule transfer, exit).
256
257 The IRQ component handles TX completion (stats, free buffer, tx_busy
258 unset, exit). We also re-schedule further transfers for the same
259 frame if needed.
260
261 TX setup in more detail:
262
263 TX open is a nop, the relevant information is held in the hrz_vcc
264 (vcc->dev_data) structure and is "cached" on the card.
265
266 TX close gets the TX lock and clears the channel from the "cache".
267
268 2. RX (Data Available and RX transfer)
269
270 The RX half of the driver owns the RX registers. There are two RX
271 components in the IRQ handler: the data available handler deals with
272 fresh data that has arrived on the card, the BM completion handler
273 is very similar to the TX completion handler. The data available
274 handler grabs the rx_lock and it is only released once the data has
275 been discarded or completely transferred to the host. The BM
276 completion handler only runs when the lock is held; the data
277 available handler is locked out over the same period.
278
279 Data available on the card triggers an interrupt. If the data is not
280 suitable for our existing RX channels or we cannot allocate a buffer
281 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
282 transfers may be scheduled for the same frame.
283
284 RX setup in more detail:
285
286 RX open...
287 RX close...
288
289 III Hardware Bugs
290
291 0. Byte vs Word addressing of adapter RAM.
292
293 A design feature; see the .h file (especially the memory map).
294
295 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
296
297 The host must not start a transmit direction transfer at a
298 non-four-byte boundary in host memory. Instead the host should
299 perform a byte, or a two byte, or one byte followed by two byte
300 transfer in order to start the rest of the transfer on a four byte
301 boundary. RX is OK.
302
303 Simultaneous transmit and receive direction bus master transfers are
304 not allowed.
305
306 The simplest solution to these two is to always do PIO (never DMA)
307 in the TX direction on the original Horizon. More complicated
308 solutions are likely to hurt my brain.
309
310 2. Loss of buffer on close VC
311
312 When a VC is being closed, the buffer associated with it is not
313 returned to the pool. The host must store the reference to this
314 buffer and when opening a new VC then give it to that new VC.
315
316 The host intervention currently consists of stacking such a buffer
317 pointer at VC close and checking the stack at VC open.
318
319 3. Failure to close a VC
320
321 If a VC is currently receiving a frame then closing the VC may fail
322 and the frame continues to be received.
323
324 The solution is to make sure any received frames are flushed when
325 ready. This is currently done just before the solution to 2.
326
327 4. PCI bus (original Horizon only, fixed in Ultra)
328
329 Reading from the data port prior to initialisation will hang the PCI
330 bus. Just don't do that then! We don't.
331
332 IV To Do List
333
334 . Timer code may be broken.
335
336 . Allow users to specify buffer allocation split for TX and RX.
337
338 . Deal once and for all with buggy VC close.
339
340 . Handle interrupted and/or non-blocking operations.
341
342 . Change some macros to functions and move from .h to .c.
343
344 . Try to limit the number of TX frames each VC may have queued, in
345 order to reduce the chances of TX buffer exhaustion.
346
347 . Implement VBR (bucket and timers not understood) and ABR (need to
348 do RM cells manually); also no Linux support for either.
349
350 . Implement QoS changes on open VCs (involves extracting parts of VC open
351 and close into separate functions and using them to make changes).
352
353 */
354
355 /********** globals **********/
356
357 static hrz_dev * hrz_devs = NULL;
358 static struct timer_list housekeeping;
359
360 static unsigned short debug = 0;
361 static unsigned short vpi_bits = 0;
362 static int max_tx_size = 9000;
363 static int max_rx_size = 9000;
364 static unsigned char pci_lat = 0;
365
366 /********** access functions **********/
367
368 /* Read / Write Horizon registers */
wr_regl(const hrz_dev * dev,unsigned char reg,u32 data)369 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
370 outl (cpu_to_le32 (data), dev->iobase + reg);
371 }
372
rd_regl(const hrz_dev * dev,unsigned char reg)373 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
374 return le32_to_cpu (inl (dev->iobase + reg));
375 }
376
wr_regw(const hrz_dev * dev,unsigned char reg,u16 data)377 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
378 outw (cpu_to_le16 (data), dev->iobase + reg);
379 }
380
rd_regw(const hrz_dev * dev,unsigned char reg)381 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
382 return le16_to_cpu (inw (dev->iobase + reg));
383 }
384
wrs_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)385 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
386 outsb (dev->iobase + reg, addr, len);
387 }
388
rds_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)389 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
390 insb (dev->iobase + reg, addr, len);
391 }
392
393 /* Read / Write to a given address in Horizon buffer memory.
394 Interrupts must be disabled between the address register and data
395 port accesses as these must form an atomic operation. */
wr_mem(const hrz_dev * dev,HDW * addr,u32 data)396 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
397 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
398 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
399 wr_regl (dev, MEMORY_PORT_OFF, data);
400 }
401
rd_mem(const hrz_dev * dev,HDW * addr)402 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
403 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
404 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
405 return rd_regl (dev, MEMORY_PORT_OFF);
406 }
407
wr_framer(const hrz_dev * dev,u32 addr,u32 data)408 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
409 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
410 wr_regl (dev, MEMORY_PORT_OFF, data);
411 }
412
rd_framer(const hrz_dev * dev,u32 addr)413 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
414 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
415 return rd_regl (dev, MEMORY_PORT_OFF);
416 }
417
418 /********** specialised access functions **********/
419
420 /* RX */
421
FLUSH_RX_CHANNEL(hrz_dev * dev,u16 channel)422 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
423 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
424 return;
425 }
426
WAIT_FLUSH_RX_COMPLETE(hrz_dev * dev)427 static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
428 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
429 ;
430 return;
431 }
432
SELECT_RX_CHANNEL(hrz_dev * dev,u16 channel)433 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
434 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
435 return;
436 }
437
WAIT_UPDATE_COMPLETE(hrz_dev * dev)438 static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
439 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
440 ;
441 return;
442 }
443
444 /* TX */
445
SELECT_TX_CHANNEL(hrz_dev * dev,u16 tx_channel)446 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
447 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
448 return;
449 }
450
451 /* Update or query one configuration parameter of a particular channel. */
452
update_tx_channel_config(hrz_dev * dev,short chan,u8 mode,u16 value)453 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
454 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
455 chan * TX_CHANNEL_CONFIG_MULT | mode);
456 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
457 return;
458 }
459
query_tx_channel_config(hrz_dev * dev,short chan,u8 mode)460 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
461 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
462 chan * TX_CHANNEL_CONFIG_MULT | mode);
463 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
464 }
465
466 /********** dump functions **********/
467
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)468 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
469 #ifdef DEBUG_HORIZON
470 unsigned int i;
471 unsigned char * data = skb->data;
472 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
473 for (i=0; i<skb->len && i < 256;i++)
474 PRINTDM (DBG_DATA, "%02x ", data[i]);
475 PRINTDE (DBG_DATA,"");
476 #else
477 (void) prefix;
478 (void) vc;
479 (void) skb;
480 #endif
481 return;
482 }
483
484 #if 0 /* unused and in conflict with <asm-ppc/system.h> */
485 static inline void dump_regs (hrz_dev * dev) {
486 #ifdef DEBUG_HORIZON
487 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493 #else
494 (void) dev;
495 #endif
496 return;
497 }
498 #endif
499
dump_framer(hrz_dev * dev)500 static inline void dump_framer (hrz_dev * dev) {
501 #ifdef DEBUG_HORIZON
502 unsigned int i;
503 PRINTDB (DBG_REGS, "framer registers:");
504 for (i = 0; i < 0x10; ++i)
505 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
506 PRINTDE (DBG_REGS,"");
507 #else
508 (void) dev;
509 #endif
510 return;
511 }
512
513 /********** VPI/VCI <-> (RX) channel conversions **********/
514
515 /* RX channels are 10 bit integers, these fns are quite paranoid */
516
channel_to_vpivci(const u16 channel,short * vpi,int * vci)517 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
518 unsigned short vci_bits = 10 - vpi_bits;
519 if ((channel & RX_CHANNEL_MASK) == channel) {
520 *vci = channel & ((~0)<<vci_bits);
521 *vpi = channel >> vci_bits;
522 return channel ? 0 : -EINVAL;
523 }
524 return -EINVAL;
525 }
526
vpivci_to_channel(u16 * channel,const short vpi,const int vci)527 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
528 unsigned short vci_bits = 10 - vpi_bits;
529 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
530 *channel = vpi<<vci_bits | vci;
531 return *channel ? 0 : -EINVAL;
532 }
533 return -EINVAL;
534 }
535
536 /********** decode RX queue entries **********/
537
rx_q_entry_to_length(u32 x)538 static inline u16 rx_q_entry_to_length (u32 x) {
539 return x & RX_Q_ENTRY_LENGTH_MASK;
540 }
541
rx_q_entry_to_rx_channel(u32 x)542 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
543 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
544 }
545
546 /* Cell Transmit Rate Values
547 *
548 * the cell transmit rate (cells per sec) can be set to a variety of
549 * different values by specifying two parameters: a timer preload from
550 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
551 * an exponent from 0 to 14; the special value 15 disables the timer).
552 *
553 * cellrate = baserate / (preload * 2^divider)
554 *
555 * The maximum cell rate that can be specified is therefore just the
556 * base rate. Halving the preload is equivalent to adding 1 to the
557 * divider and so values 1 to 8 of the preload are redundant except
558 * in the case of a maximal divider (14).
559 *
560 * Given a desired cell rate, an algorithm to determine the preload
561 * and divider is:
562 *
563 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
564 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
565 * if x <= 16 then set p = x, d = 0 (high rates), done
566 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
567 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
568 * we find the range (n will be between 1 and 14), set d = n
569 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
570 *
571 * The algorithm used below is a minor variant of the above.
572 *
573 * The base rate is derived from the oscillator frequency (Hz) using a
574 * fixed divider:
575 *
576 * baserate = freq / 32 in the case of some Unknown Card
577 * baserate = freq / 8 in the case of the Horizon 25
578 * baserate = freq / 8 in the case of the Horizon Ultra 155
579 *
580 * The Horizon cards have oscillators and base rates as follows:
581 *
582 * Card Oscillator Base Rate
583 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
584 * Horizon 25 32 MHz 4 MHz
585 * Horizon Ultra 155 40 MHz 5 MHz
586 *
587 * The following defines give the base rates in Hz. These were
588 * previously a factor of 100 larger, no doubt someone was using
589 * cps*100.
590 */
591
592 #define BR_UKN 1031250l
593 #define BR_HRZ 4000000l
594 #define BR_ULT 5000000l
595
596 // d is an exponent
597 #define CR_MIND 0
598 #define CR_MAXD 14
599
600 // p ranges from 1 to a power of 2
601 #define CR_MAXPEXP 4
602
make_rate(const hrz_dev * dev,u32 c,rounding r,u16 * bits,unsigned int * actual)603 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
604 u16 * bits, unsigned int * actual) {
605
606 // note: rounding the rate down means rounding 'p' up
607
608 const unsigned long br = test_bit (ultra, (hrz_flags *) &dev->flags) ?
609 BR_ULT : BR_HRZ;
610
611 u32 div = CR_MIND;
612 u32 pre;
613
614 // local fn to build the timer bits
615 int set_cr (void) {
616 // paranoia
617 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
618 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
619 div, pre);
620 return -EINVAL;
621 } else {
622 if (bits)
623 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
624 if (actual) {
625 *actual = (br + (pre<<div) - 1) / (pre<<div);
626 PRINTD (DBG_QOS, "actual rate: %u", *actual);
627 }
628 return 0;
629 }
630 }
631
632 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
633 // the tests below. We could think harder about exact possibilities
634 // of failure...
635
636 unsigned long br_man = br;
637 unsigned int br_exp = 0;
638
639 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
640 (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest");
641
642 // avoid div by zero
643 if (!c) {
644 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
645 return -EINVAL;
646 }
647
648 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
649 br_man = br_man >> 1;
650 ++br_exp;
651 }
652 // (br >>br_exp) <<br_exp == br and
653 // br_exp <= CR_MAXPEXP+CR_MIND
654
655 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
656 // Equivalent to: B <= (c << (MAXPEXP+MIND))
657 // take care of rounding
658 switch (r) {
659 case round_down:
660 pre = (br+(c<<div)-1)/(c<<div);
661 // but p must be non-zero
662 if (!pre)
663 pre = 1;
664 break;
665 case round_nearest:
666 pre = (br+(c<<div)/2)/(c<<div);
667 // but p must be non-zero
668 if (!pre)
669 pre = 1;
670 break;
671 case round_up:
672 pre = br/(c<<div);
673 // but p must be non-zero
674 if (!pre)
675 return -EINVAL;
676 break;
677 }
678 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
679 return set_cr ();
680 }
681
682 // at this point we have
683 // d == MIND and (c << (MAXPEXP+MIND)) < B
684 while (div < CR_MAXD) {
685 div++;
686 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
687 // Equivalent to: B <= (c << (MAXPEXP+d))
688 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
689 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
690 // MAXP/2 < B/c2^d <= MAXP
691 // take care of rounding
692 switch (r) {
693 case round_down:
694 pre = (br+(c<<div)-1)/(c<<div);
695 break;
696 case round_nearest:
697 pre = (br+(c<<div)/2)/(c<<div);
698 break;
699 case round_up:
700 pre = br/(c<<div);
701 break;
702 }
703 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
704 return set_cr ();
705 }
706 }
707 // at this point we have
708 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
709 // but we cannot go any higher
710 // take care of rounding
711 switch (r) {
712 case round_down:
713 return -EINVAL;
714 break;
715 case round_nearest:
716 break;
717 case round_up:
718 break;
719 }
720 pre = 1 << CR_MAXPEXP;
721 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
722 return set_cr ();
723 }
724
make_rate_with_tolerance(const hrz_dev * dev,u32 c,rounding r,unsigned int tol,u16 * bit_pattern,unsigned int * actual)725 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
726 u16 * bit_pattern, unsigned int * actual) {
727 unsigned int my_actual;
728
729 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
730 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
731
732 if (!actual)
733 // actual rate is not returned
734 actual = &my_actual;
735
736 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
737 // should never happen as round_nearest always succeeds
738 return -1;
739
740 if (c - tol <= *actual && *actual <= c + tol)
741 // within tolerance
742 return 0;
743 else
744 // intolerant, try rounding instead
745 return make_rate (dev, c, r, bit_pattern, actual);
746 }
747
748 /********** Listen on a VC **********/
749
hrz_open_rx(hrz_dev * dev,u16 channel)750 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
751 // is there any guarantee that we don't get two simulataneous
752 // identical calls of this function from different processes? yes
753 // rate_lock
754 unsigned long flags;
755 u32 channel_type; // u16?
756
757 u16 buf_ptr = RX_CHANNEL_IDLE;
758
759 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
760
761 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
762
763 spin_lock_irqsave (&dev->mem_lock, flags);
764 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
765 spin_unlock_irqrestore (&dev->mem_lock, flags);
766
767 // very serious error, should never occur
768 if (channel_type != RX_CHANNEL_DISABLED) {
769 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
770 return -EBUSY; // clean up?
771 }
772
773 // Give back spare buffer
774 if (dev->noof_spare_buffers) {
775 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
776 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
777 // should never occur
778 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
779 // but easy to recover from
780 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
781 buf_ptr = RX_CHANNEL_IDLE;
782 }
783 } else {
784 PRINTD (DBG_VCC, "using IDLE buffer pointer");
785 }
786
787 // Channel is currently disabled so change its status to idle
788
789 // do we really need to save the flags again?
790 spin_lock_irqsave (&dev->mem_lock, flags);
791
792 wr_mem (dev, &rx_desc->wr_buf_type,
793 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
794 if (buf_ptr != RX_CHANNEL_IDLE)
795 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
796
797 spin_unlock_irqrestore (&dev->mem_lock, flags);
798
799 // rxer->rate = make_rate (qos->peak_cells);
800
801 PRINTD (DBG_FLOW, "hrz_open_rx ok");
802
803 return 0;
804 }
805
806 #if 0
807 /********** change vc rate for a given vc **********/
808
809 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
810 rxer->rate = make_rate (qos->peak_cells);
811 }
812 #endif
813
814 /********** free an skb (as per ATM device driver documentation) **********/
815
hrz_kfree_skb(struct sk_buff * skb)816 static inline void hrz_kfree_skb (struct sk_buff * skb) {
817 if (ATM_SKB(skb)->vcc->pop) {
818 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
819 } else {
820 dev_kfree_skb_any (skb);
821 }
822 }
823
824 /********** cancel listen on a VC **********/
825
hrz_close_rx(hrz_dev * dev,u16 vc)826 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
827 unsigned long flags;
828
829 u32 value;
830
831 u32 r1, r2;
832
833 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
834
835 int was_idle = 0;
836
837 spin_lock_irqsave (&dev->mem_lock, flags);
838 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
839 spin_unlock_irqrestore (&dev->mem_lock, flags);
840
841 if (value == RX_CHANNEL_DISABLED) {
842 // I suppose this could happen once we deal with _NONE traffic properly
843 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
844 return;
845 }
846 if (value == RX_CHANNEL_IDLE)
847 was_idle = 1;
848
849 spin_lock_irqsave (&dev->mem_lock, flags);
850
851 for (;;) {
852 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
853
854 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
855 break;
856
857 was_idle = 0;
858 }
859
860 if (was_idle) {
861 spin_unlock_irqrestore (&dev->mem_lock, flags);
862 return;
863 }
864
865 WAIT_FLUSH_RX_COMPLETE(dev);
866
867 // XXX Is this all really necessary? We can rely on the rx_data_av
868 // handler to discard frames that remain queued for delivery. If the
869 // worry is that immediately reopening the channel (perhaps by a
870 // different process) may cause some data to be mis-delivered then
871 // there may still be a simpler solution (such as busy-waiting on
872 // rx_busy once the channel is disabled or before a new one is
873 // opened - does this leave any holes?). Arguably setting up and
874 // tearing down the TX and RX halves of each virtual circuit could
875 // most safely be done within ?x_busy protected regions.
876
877 // OK, current changes are that Simon's marker is disabled and we DO
878 // look for NULL rxer elsewhere. The code here seems flush frames
879 // and then remember the last dead cell belonging to the channel
880 // just disabled - the cell gets relinked at the next vc_open.
881 // However, when all VCs are closed or only a few opened there are a
882 // handful of buffers that are unusable.
883
884 // Does anyone feel like documenting spare_buffers properly?
885 // Does anyone feel like fixing this in a nicer way?
886
887 // Flush any data which is left in the channel
888 for (;;) {
889 // Change the rx channel port to something different to the RX
890 // channel we are trying to close to force Horizon to flush the rx
891 // channel read and write pointers.
892
893 u16 other = vc^(RX_CHANS/2);
894
895 SELECT_RX_CHANNEL (dev, other);
896 WAIT_UPDATE_COMPLETE (dev);
897
898 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
899
900 // Select this RX channel. Flush doesn't seem to work unless we
901 // select an RX channel before hand
902
903 SELECT_RX_CHANNEL (dev, vc);
904 WAIT_UPDATE_COMPLETE (dev);
905
906 // Attempt to flush a frame on this RX channel
907
908 FLUSH_RX_CHANNEL (dev, vc);
909 WAIT_FLUSH_RX_COMPLETE (dev);
910
911 // Force Horizon to flush rx channel read and write pointers as before
912
913 SELECT_RX_CHANNEL (dev, other);
914 WAIT_UPDATE_COMPLETE (dev);
915
916 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
917
918 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
919
920 if (r1 == r2) {
921 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
922 break;
923 }
924 }
925
926 #if 0
927 {
928 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
929 rx_q_entry * rd_ptr = dev->rx_q_entry;
930
931 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
932
933 while (rd_ptr != wr_ptr) {
934 u32 x = rd_mem (dev, (HDW *) rd_ptr);
935
936 if (vc == rx_q_entry_to_rx_channel (x)) {
937 x |= SIMONS_DODGEY_MARKER;
938
939 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
940
941 wr_mem (dev, (HDW *) rd_ptr, x);
942 }
943
944 if (rd_ptr == dev->rx_q_wrap)
945 rd_ptr = dev->rx_q_reset;
946 else
947 rd_ptr++;
948 }
949 }
950 #endif
951
952 spin_unlock_irqrestore (&dev->mem_lock, flags);
953
954 return;
955 }
956
957 /********** schedule RX transfers **********/
958
959 // Note on tail recursion: a GCC developer said that it is not likely
960 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
961 // are sure it does as you may otherwise overflow the kernel stack.
962
963 // giving this fn a return value would help GCC, alledgedly
964
rx_schedule(hrz_dev * dev,int irq)965 static void rx_schedule (hrz_dev * dev, int irq) {
966 unsigned int rx_bytes;
967
968 int pio_instead = 0;
969 #ifndef TAILRECURSIONWORKS
970 pio_instead = 1;
971 while (pio_instead) {
972 #endif
973 // bytes waiting for RX transfer
974 rx_bytes = dev->rx_bytes;
975
976 #if 0
977 spin_count = 0;
978 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
979 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
980 if (++spin_count > 10) {
981 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
982 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
983 clear_bit (rx_busy, &dev->flags);
984 hrz_kfree_skb (dev->rx_skb);
985 return;
986 }
987 }
988 #endif
989
990 // this code follows the TX code but (at the moment) there is only
991 // one region - the skb itself. I don't know if this will change,
992 // but it doesn't hurt to have the code here, disabled.
993
994 if (rx_bytes) {
995 // start next transfer within same region
996 if (rx_bytes <= MAX_PIO_COUNT) {
997 PRINTD (DBG_RX|DBG_BUS, "(pio)");
998 pio_instead = 1;
999 }
1000 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1001 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
1002 dev->rx_bytes = 0;
1003 } else {
1004 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
1005 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1006 rx_bytes = MAX_TRANSFER_COUNT;
1007 }
1008 } else {
1009 // rx_bytes == 0 -- we're between regions
1010 // regions remaining to transfer
1011 #if 0
1012 unsigned int rx_regions = dev->rx_regions;
1013 #else
1014 unsigned int rx_regions = 0;
1015 #endif
1016
1017 if (rx_regions) {
1018 #if 0
1019 // start a new region
1020 dev->rx_addr = dev->rx_iovec->iov_base;
1021 rx_bytes = dev->rx_iovec->iov_len;
1022 ++dev->rx_iovec;
1023 dev->rx_regions = rx_regions - 1;
1024
1025 if (rx_bytes <= MAX_PIO_COUNT) {
1026 PRINTD (DBG_RX|DBG_BUS, "(pio)");
1027 pio_instead = 1;
1028 }
1029 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1030 PRINTD (DBG_RX|DBG_BUS, "(full region)");
1031 dev->rx_bytes = 0;
1032 } else {
1033 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1034 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1035 rx_bytes = MAX_TRANSFER_COUNT;
1036 }
1037 #endif
1038 } else {
1039 // rx_regions == 0
1040 // that's all folks - end of frame
1041 struct sk_buff * skb = dev->rx_skb;
1042 // dev->rx_iovec = 0;
1043
1044 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1045
1046 dump_skb ("<<<", dev->rx_channel, skb);
1047
1048 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1049
1050 {
1051 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1052 // VC layer stats
1053 atomic_inc(&vcc->stats->rx);
1054 skb->stamp = xtime;
1055 // end of our responsability
1056 vcc->push (vcc, skb);
1057 }
1058 }
1059 }
1060
1061 // note: writing RX_COUNT clears any interrupt condition
1062 if (rx_bytes) {
1063 if (pio_instead) {
1064 if (irq)
1065 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1066 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1067 } else {
1068 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1069 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1070 }
1071 dev->rx_addr += rx_bytes;
1072 } else {
1073 if (irq)
1074 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1075 // allow another RX thread to start
1076 YELLOW_LED_ON(dev);
1077 clear_bit (rx_busy, &dev->flags);
1078 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1079 }
1080
1081 #ifdef TAILRECURSIONWORKS
1082 // and we all bless optimised tail calls
1083 if (pio_instead)
1084 return rx_schedule (dev, 0);
1085 return;
1086 #else
1087 // grrrrrrr!
1088 irq = 0;
1089 }
1090 return;
1091 #endif
1092 }
1093
1094 /********** handle RX bus master complete events **********/
1095
rx_bus_master_complete_handler(hrz_dev * dev)1096 static inline void rx_bus_master_complete_handler (hrz_dev * dev) {
1097 if (test_bit (rx_busy, &dev->flags)) {
1098 rx_schedule (dev, 1);
1099 } else {
1100 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1101 // clear interrupt condition on adapter
1102 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1103 }
1104 return;
1105 }
1106
1107 /********** (queue to) become the next TX thread **********/
1108
tx_hold(hrz_dev * dev)1109 static inline int tx_hold (hrz_dev * dev) {
1110 while (test_and_set_bit (tx_busy, &dev->flags)) {
1111 PRINTD (DBG_TX, "sleeping at tx lock %p %u", dev, dev->flags);
1112 interruptible_sleep_on (&dev->tx_queue);
1113 PRINTD (DBG_TX, "woken at tx lock %p %u", dev, dev->flags);
1114 if (signal_pending (current))
1115 return -1;
1116 }
1117 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1118 return 0;
1119 }
1120
1121 /********** allow another TX thread to start **********/
1122
tx_release(hrz_dev * dev)1123 static inline void tx_release (hrz_dev * dev) {
1124 clear_bit (tx_busy, &dev->flags);
1125 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1126 wake_up_interruptible (&dev->tx_queue);
1127 }
1128
1129 /********** schedule TX transfers **********/
1130
tx_schedule(hrz_dev * const dev,int irq)1131 static void tx_schedule (hrz_dev * const dev, int irq) {
1132 unsigned int tx_bytes;
1133
1134 int append_desc = 0;
1135
1136 int pio_instead = 0;
1137 #ifndef TAILRECURSIONWORKS
1138 pio_instead = 1;
1139 while (pio_instead) {
1140 #endif
1141 // bytes in current region waiting for TX transfer
1142 tx_bytes = dev->tx_bytes;
1143
1144 #if 0
1145 spin_count = 0;
1146 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1147 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1148 if (++spin_count > 10) {
1149 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1150 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1151 tx_release (dev);
1152 hrz_kfree_skb (dev->tx_skb);
1153 return;
1154 }
1155 }
1156 #endif
1157
1158 if (tx_bytes) {
1159 // start next transfer within same region
1160 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1161 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1162 pio_instead = 1;
1163 }
1164 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1165 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1166 if (!dev->tx_iovec) {
1167 // end of last region
1168 append_desc = 1;
1169 }
1170 dev->tx_bytes = 0;
1171 } else {
1172 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1173 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1174 tx_bytes = MAX_TRANSFER_COUNT;
1175 }
1176 } else {
1177 // tx_bytes == 0 -- we're between regions
1178 // regions remaining to transfer
1179 unsigned int tx_regions = dev->tx_regions;
1180
1181 if (tx_regions) {
1182 // start a new region
1183 dev->tx_addr = dev->tx_iovec->iov_base;
1184 tx_bytes = dev->tx_iovec->iov_len;
1185 ++dev->tx_iovec;
1186 dev->tx_regions = tx_regions - 1;
1187
1188 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1189 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1190 pio_instead = 1;
1191 }
1192 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1193 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1194 dev->tx_bytes = 0;
1195 } else {
1196 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1197 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1198 tx_bytes = MAX_TRANSFER_COUNT;
1199 }
1200 } else {
1201 // tx_regions == 0
1202 // that's all folks - end of frame
1203 struct sk_buff * skb = dev->tx_skb;
1204 dev->tx_iovec = 0;
1205
1206 // VC layer stats
1207 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1208
1209 // free the skb
1210 hrz_kfree_skb (skb);
1211 }
1212 }
1213
1214 // note: writing TX_COUNT clears any interrupt condition
1215 if (tx_bytes) {
1216 if (pio_instead) {
1217 if (irq)
1218 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1219 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1220 if (append_desc)
1221 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1222 } else {
1223 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1224 if (append_desc)
1225 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1226 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1227 append_desc
1228 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1229 : tx_bytes);
1230 }
1231 dev->tx_addr += tx_bytes;
1232 } else {
1233 if (irq)
1234 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1235 YELLOW_LED_ON(dev);
1236 tx_release (dev);
1237 }
1238
1239 #ifdef TAILRECURSIONWORKS
1240 // and we all bless optimised tail calls
1241 if (pio_instead)
1242 return tx_schedule (dev, 0);
1243 return;
1244 #else
1245 // grrrrrrr!
1246 irq = 0;
1247 }
1248 return;
1249 #endif
1250 }
1251
1252 /********** handle TX bus master complete events **********/
1253
tx_bus_master_complete_handler(hrz_dev * dev)1254 static inline void tx_bus_master_complete_handler (hrz_dev * dev) {
1255 if (test_bit (tx_busy, &dev->flags)) {
1256 tx_schedule (dev, 1);
1257 } else {
1258 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1259 // clear interrupt condition on adapter
1260 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1261 }
1262 return;
1263 }
1264
1265 /********** move RX Q pointer to next item in circular buffer **********/
1266
1267 // called only from IRQ sub-handler
rx_queue_entry_next(hrz_dev * dev)1268 static inline u32 rx_queue_entry_next (hrz_dev * dev) {
1269 u32 rx_queue_entry;
1270 spin_lock (&dev->mem_lock);
1271 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1272 if (dev->rx_q_entry == dev->rx_q_wrap)
1273 dev->rx_q_entry = dev->rx_q_reset;
1274 else
1275 dev->rx_q_entry++;
1276 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1277 spin_unlock (&dev->mem_lock);
1278 return rx_queue_entry;
1279 }
1280
1281 /********** handle RX disabled by device **********/
1282
rx_disabled_handler(hrz_dev * dev)1283 static inline void rx_disabled_handler (hrz_dev * dev) {
1284 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1285 // count me please
1286 PRINTK (KERN_WARNING, "RX was disabled!");
1287 }
1288
1289 /********** handle RX data received by device **********/
1290
1291 // called from IRQ handler
rx_data_av_handler(hrz_dev * dev)1292 static inline void rx_data_av_handler (hrz_dev * dev) {
1293 u32 rx_queue_entry;
1294 u32 rx_queue_entry_flags;
1295 u16 rx_len;
1296 u16 rx_channel;
1297
1298 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1299
1300 // try to grab rx lock (not possible during RX bus mastering)
1301 if (test_and_set_bit (rx_busy, &dev->flags)) {
1302 PRINTD (DBG_RX, "locked out of rx lock");
1303 return;
1304 }
1305 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1306 // lock is cleared if we fail now, o/w after bus master completion
1307
1308 YELLOW_LED_OFF(dev);
1309
1310 rx_queue_entry = rx_queue_entry_next (dev);
1311
1312 rx_len = rx_q_entry_to_length (rx_queue_entry);
1313 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1314
1315 WAIT_FLUSH_RX_COMPLETE (dev);
1316
1317 SELECT_RX_CHANNEL (dev, rx_channel);
1318
1319 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1320 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1321
1322 if (!rx_len) {
1323 // (at least) bus-mastering breaks if we try to handle a
1324 // zero-length frame, besides AAL5 does not support them
1325 PRINTK (KERN_ERR, "zero-length frame!");
1326 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1327 }
1328
1329 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1330 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1331 }
1332 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1333 struct atm_vcc * atm_vcc;
1334
1335 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1336
1337 atm_vcc = dev->rxer[rx_channel];
1338 // if no vcc is assigned to this channel, we should drop the frame
1339 // (is this what SIMONS etc. was trying to achieve?)
1340
1341 if (atm_vcc) {
1342
1343 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1344
1345 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1346
1347 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1348 if (skb) {
1349 // remember this so we can push it later
1350 dev->rx_skb = skb;
1351 // remember this so we can flush it later
1352 dev->rx_channel = rx_channel;
1353
1354 // prepare socket buffer
1355 skb_put (skb, rx_len);
1356 ATM_SKB(skb)->vcc = atm_vcc;
1357
1358 // simple transfer
1359 // dev->rx_regions = 0;
1360 // dev->rx_iovec = 0;
1361 dev->rx_bytes = rx_len;
1362 dev->rx_addr = skb->data;
1363 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1364 skb->data, rx_len);
1365
1366 // do the business
1367 rx_schedule (dev, 0);
1368 return;
1369
1370 } else {
1371 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1372 }
1373
1374 } else {
1375 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1376 // do we count this?
1377 }
1378
1379 } else {
1380 PRINTK (KERN_WARNING, "dropped over-size frame");
1381 // do we count this?
1382 }
1383
1384 } else {
1385 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1386 // do we count this?
1387 }
1388
1389 } else {
1390 // Wait update complete ? SPONG
1391 }
1392
1393 // RX was aborted
1394 YELLOW_LED_ON(dev);
1395
1396 FLUSH_RX_CHANNEL (dev,rx_channel);
1397 clear_bit (rx_busy, &dev->flags);
1398
1399 return;
1400 }
1401
1402 /********** interrupt handler **********/
1403
interrupt_handler(int irq,void * dev_id,struct pt_regs * pt_regs)1404 static void interrupt_handler (int irq, void * dev_id, struct pt_regs * pt_regs) {
1405 hrz_dev * dev = hrz_devs;
1406 u32 int_source;
1407 unsigned int irq_ok;
1408 (void) pt_regs;
1409
1410 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1411
1412 if (!dev_id) {
1413 PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq);
1414 return;
1415 }
1416 // Did one of our cards generate the interrupt?
1417 while (dev) {
1418 if (dev == dev_id)
1419 break;
1420 dev = dev->prev;
1421 }
1422 if (!dev) {
1423 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
1424 return;
1425 }
1426 if (irq != dev->irq) {
1427 PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq);
1428 return;
1429 }
1430
1431 // definitely for us
1432 irq_ok = 0;
1433 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1434 & INTERESTING_INTERRUPTS)) {
1435 // In the interests of fairness, the (inline) handlers below are
1436 // called in sequence and without immediate return to the head of
1437 // the while loop. This is only of issue for slow hosts (or when
1438 // debugging messages are on). Really slow hosts may find a fast
1439 // sender keeps them permanently in the IRQ handler. :(
1440
1441 // (only an issue for slow hosts) RX completion goes before
1442 // rx_data_av as the former implies rx_busy and so the latter
1443 // would just abort. If it reschedules another transfer
1444 // (continuing the same frame) then it will not clear rx_busy.
1445
1446 // (only an issue for slow hosts) TX completion goes before RX
1447 // data available as it is a much shorter routine - there is the
1448 // chance that any further transfers it schedules will be complete
1449 // by the time of the return to the head of the while loop
1450
1451 if (int_source & RX_BUS_MASTER_COMPLETE) {
1452 ++irq_ok;
1453 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1454 rx_bus_master_complete_handler (dev);
1455 }
1456 if (int_source & TX_BUS_MASTER_COMPLETE) {
1457 ++irq_ok;
1458 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1459 tx_bus_master_complete_handler (dev);
1460 }
1461 if (int_source & RX_DATA_AV) {
1462 ++irq_ok;
1463 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1464 rx_data_av_handler (dev);
1465 }
1466 }
1467 if (irq_ok) {
1468 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1469 } else {
1470 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1471 }
1472
1473 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1474 }
1475
1476 /********** housekeeping **********/
1477
set_timer(struct timer_list * timer,unsigned int delay)1478 static void set_timer (struct timer_list * timer, unsigned int delay) {
1479 timer->expires = jiffies + delay;
1480 add_timer (timer);
1481 return;
1482 }
1483
do_housekeeping(unsigned long arg)1484 static void do_housekeeping (unsigned long arg) {
1485 // just stats at the moment
1486 hrz_dev * dev = hrz_devs;
1487 (void) arg;
1488 // data is set to zero at module unload
1489 if (housekeeping.data) {
1490 while (dev) {
1491 // collect device-specific (not driver/atm-linux) stats here
1492 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1493 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1494 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1495 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1496 dev = dev->prev;
1497 }
1498 set_timer (&housekeeping, HZ/10);
1499 }
1500 return;
1501 }
1502
1503 /********** find an idle channel for TX and set it up **********/
1504
1505 // called with tx_busy set
setup_idle_tx_channel(hrz_dev * dev,hrz_vcc * vcc)1506 static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1507 unsigned short idle_channels;
1508 short tx_channel = -1;
1509 unsigned int spin_count;
1510 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1511
1512 // better would be to fail immediately, the caller can then decide whether
1513 // to wait or drop (depending on whether this is UBR etc.)
1514 spin_count = 0;
1515 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1516 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1517 // delay a bit here
1518 if (++spin_count > 100) {
1519 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1520 return -EBUSY;
1521 }
1522 }
1523
1524 // got an idle channel
1525 {
1526 // tx_idle ensures we look for idle channels in RR order
1527 int chan = dev->tx_idle;
1528
1529 int keep_going = 1;
1530 while (keep_going) {
1531 if (idle_channels & (1<<chan)) {
1532 tx_channel = chan;
1533 keep_going = 0;
1534 }
1535 ++chan;
1536 if (chan == TX_CHANS)
1537 chan = 0;
1538 }
1539
1540 dev->tx_idle = chan;
1541 }
1542
1543 // set up the channel we found
1544 {
1545 // Initialise the cell header in the transmit channel descriptor
1546 // a.k.a. prepare the channel and remember that we have done so.
1547
1548 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1549 u16 rd_ptr;
1550 u16 wr_ptr;
1551 u16 channel = vcc->channel;
1552
1553 unsigned long flags;
1554 spin_lock_irqsave (&dev->mem_lock, flags);
1555
1556 // Update the transmit channel record.
1557 dev->tx_channel_record[tx_channel] = channel;
1558
1559 // xBR channel
1560 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1561 vcc->tx_xbr_bits);
1562
1563 // Update the PCR counter preload value etc.
1564 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1565 vcc->tx_pcr_bits);
1566
1567 #if 0
1568 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1569 // SCR timer
1570 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1571 vcc->tx_scr_bits);
1572
1573 // Bucket size...
1574 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1575 vcc->tx_bucket_bits);
1576
1577 // ... and fullness
1578 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1579 vcc->tx_bucket_bits);
1580 }
1581 #endif
1582
1583 // Initialise the read and write buffer pointers
1584 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1585 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1586
1587 // idle TX channels should have identical pointers
1588 if (rd_ptr != wr_ptr) {
1589 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1590 // spin_unlock... return -E...
1591 // I wonder if gcc would get rid of one of the pointer aliases
1592 }
1593 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1594 rd_ptr, wr_ptr);
1595
1596 switch (vcc->aal) {
1597 case aal0:
1598 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1599 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1600 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1601 break;
1602 case aal34:
1603 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1604 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1605 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1606 break;
1607 case aal5:
1608 rd_ptr |= CHANNEL_TYPE_AAL5;
1609 wr_ptr |= CHANNEL_TYPE_AAL5;
1610 // Initialise the CRC
1611 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1612 break;
1613 }
1614
1615 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1616 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1617
1618 // Write the Cell Header
1619 // Payload Type, CLP and GFC would go here if non-zero
1620 wr_mem (dev, &tx_desc->cell_header, channel);
1621
1622 spin_unlock_irqrestore (&dev->mem_lock, flags);
1623 }
1624
1625 return tx_channel;
1626 }
1627
1628 /********** send a frame **********/
1629
hrz_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1630 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1631 unsigned int spin_count;
1632 int free_buffers;
1633 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1634 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1635 u16 channel = vcc->channel;
1636
1637 u32 buffers_required;
1638
1639 /* signed for error return */
1640 short tx_channel;
1641
1642 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1643 channel, skb->data, skb->len);
1644
1645 dump_skb (">>>", channel, skb);
1646
1647 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1648 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1649 hrz_kfree_skb (skb);
1650 return -EIO;
1651 }
1652
1653 // don't understand this
1654 ATM_SKB(skb)->vcc = atm_vcc;
1655
1656 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1657 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1658 hrz_kfree_skb (skb);
1659 return -EIO;
1660 }
1661
1662 if (!channel) {
1663 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1664 hrz_kfree_skb (skb);
1665 return -EIO;
1666 }
1667
1668 #if 0
1669 {
1670 // where would be a better place for this? housekeeping?
1671 u16 status;
1672 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1673 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1674 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1675 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1676 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1677 if (test_bit (tx_busy, &dev->flags)) {
1678 hrz_kfree_skb (dev->tx_skb);
1679 tx_release (dev);
1680 }
1681 }
1682 }
1683 #endif
1684
1685 #ifdef DEBUG_HORIZON
1686 /* wey-hey! */
1687 if (channel == 1023) {
1688 unsigned int i;
1689 unsigned short d = 0;
1690 char * s = skb->data;
1691 if (*s++ == 'D') {
1692 for (i = 0; i < 4; ++i) {
1693 d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10));
1694 ++s;
1695 }
1696 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1697 }
1698 }
1699 #endif
1700
1701 // wait until TX is free and grab lock
1702 if (tx_hold (dev)) {
1703 hrz_kfree_skb (skb);
1704 return -ERESTARTSYS;
1705 }
1706
1707 // Wait for enough space to be available in transmit buffer memory.
1708
1709 // should be number of cells needed + 2 (according to hardware docs)
1710 // = ((framelen+8)+47) / 48 + 2
1711 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1712 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1713
1714 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1715 spin_count = 0;
1716 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1717 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1718 free_buffers, buffers_required);
1719 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1720 // mdelay (1);
1721 // what happens if we kill (current_pid, SIGKILL) ?
1722 schedule();
1723 if (++spin_count > 1000) {
1724 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1725 free_buffers, buffers_required);
1726 tx_release (dev);
1727 hrz_kfree_skb (skb);
1728 return -ERESTARTSYS;
1729 }
1730 }
1731
1732 // Select a channel to transmit the frame on.
1733 if (channel == dev->last_vc) {
1734 PRINTD (DBG_TX, "last vc hack: hit");
1735 tx_channel = dev->tx_last;
1736 } else {
1737 PRINTD (DBG_TX, "last vc hack: miss");
1738 // Are we currently transmitting this VC on one of the channels?
1739 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1740 if (dev->tx_channel_record[tx_channel] == channel) {
1741 PRINTD (DBG_TX, "vc already on channel: hit");
1742 break;
1743 }
1744 if (tx_channel == TX_CHANS) {
1745 PRINTD (DBG_TX, "vc already on channel: miss");
1746 // Find and set up an idle channel.
1747 tx_channel = setup_idle_tx_channel (dev, vcc);
1748 if (tx_channel < 0) {
1749 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1750 tx_release (dev);
1751 return tx_channel;
1752 }
1753 }
1754
1755 PRINTD (DBG_TX, "got channel");
1756 SELECT_TX_CHANNEL(dev, tx_channel);
1757
1758 dev->last_vc = channel;
1759 dev->tx_last = tx_channel;
1760 }
1761
1762 PRINTD (DBG_TX, "using channel %u", tx_channel);
1763
1764 YELLOW_LED_OFF(dev);
1765
1766 // TX start transfer
1767
1768 {
1769 unsigned int tx_len = skb->len;
1770 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1771 // remember this so we can free it later
1772 dev->tx_skb = skb;
1773
1774 if (tx_iovcnt) {
1775 // scatter gather transfer
1776 dev->tx_regions = tx_iovcnt;
1777 dev->tx_iovec = 0; /* @@@ needs rewritten */
1778 dev->tx_bytes = 0;
1779 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1780 skb->data, tx_len);
1781 tx_release (dev);
1782 hrz_kfree_skb (skb);
1783 return -EIO;
1784 } else {
1785 // simple transfer
1786 dev->tx_regions = 0;
1787 dev->tx_iovec = 0;
1788 dev->tx_bytes = tx_len;
1789 dev->tx_addr = skb->data;
1790 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1791 skb->data, tx_len);
1792 }
1793
1794 // and do the business
1795 tx_schedule (dev, 0);
1796
1797 }
1798
1799 return 0;
1800 }
1801
1802 /********** reset a card **********/
1803
hrz_reset(const hrz_dev * dev)1804 static void __init hrz_reset (const hrz_dev * dev) {
1805 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1806
1807 // why not set RESET_HORIZON to one and wait for the card to
1808 // reassert that bit as zero? Like so:
1809 control_0_reg = control_0_reg & RESET_HORIZON;
1810 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1811 while (control_0_reg & RESET_HORIZON)
1812 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1813
1814 // old reset code retained:
1815 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1816 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1817 // just guessing here
1818 udelay (1000);
1819
1820 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1821 }
1822
1823 /********** read the burnt in address **********/
1824
read_bia(const hrz_dev * dev,u16 addr)1825 static u16 __init read_bia (const hrz_dev * dev, u16 addr) {
1826
1827 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1828
1829 void WRITE_IT_WAIT (void) {
1830 wr_regl (dev, CONTROL_0_REG, ctrl);
1831 udelay (5);
1832 }
1833
1834 void CLOCK_IT (void) {
1835 // DI must be valid around rising SK edge
1836 ctrl &= ~SEEPROM_SK;
1837 WRITE_IT_WAIT();
1838 ctrl |= SEEPROM_SK;
1839 WRITE_IT_WAIT();
1840 }
1841
1842 const unsigned int addr_bits = 6;
1843 const unsigned int data_bits = 16;
1844
1845 unsigned int i;
1846
1847 u16 res;
1848
1849 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1850 WRITE_IT_WAIT();
1851
1852 // wake Serial EEPROM and send 110 (READ) command
1853 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1854 CLOCK_IT();
1855
1856 ctrl |= SEEPROM_DI;
1857 CLOCK_IT();
1858
1859 ctrl &= ~SEEPROM_DI;
1860 CLOCK_IT();
1861
1862 for (i=0; i<addr_bits; i++) {
1863 if (addr & (1 << (addr_bits-1)))
1864 ctrl |= SEEPROM_DI;
1865 else
1866 ctrl &= ~SEEPROM_DI;
1867
1868 CLOCK_IT();
1869
1870 addr = addr << 1;
1871 }
1872
1873 // we could check that we have DO = 0 here
1874 ctrl &= ~SEEPROM_DI;
1875
1876 res = 0;
1877 for (i=0;i<data_bits;i++) {
1878 res = res >> 1;
1879
1880 CLOCK_IT();
1881
1882 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1883 res |= (1 << (data_bits-1));
1884 }
1885
1886 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1887 WRITE_IT_WAIT();
1888
1889 return res;
1890 }
1891
1892 /********** initialise a card **********/
1893
hrz_init(hrz_dev * dev)1894 static int __init hrz_init (hrz_dev * dev) {
1895 int onefivefive;
1896
1897 u16 chan;
1898
1899 int buff_count;
1900
1901 HDW * mem;
1902
1903 cell_buf * tx_desc;
1904 cell_buf * rx_desc;
1905
1906 u32 ctrl;
1907
1908 ctrl = rd_regl (dev, CONTROL_0_REG);
1909 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1910 onefivefive = ctrl & ATM_LAYER_STATUS;
1911
1912 if (onefivefive)
1913 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1914 else
1915 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1916
1917 printk (":");
1918 // Reset the card to get everything in a known state
1919
1920 printk (" reset");
1921 hrz_reset (dev);
1922
1923 // Clear all the buffer memory
1924
1925 printk (" clearing memory");
1926
1927 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1928 wr_mem (dev, mem, 0);
1929
1930 printk (" tx channels");
1931
1932 // All transmit eight channels are set up as AAL5 ABR channels with
1933 // a 16us cell spacing. Why?
1934
1935 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1936 // buffer at 110h etc.
1937
1938 for (chan = 0; chan < TX_CHANS; ++chan) {
1939 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1940 cell_buf * buf = &memmap->inittxbufs[chan];
1941
1942 // initialise the read and write buffer pointers
1943 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1944 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1945
1946 // set the status of the initial buffers to empty
1947 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1948 }
1949
1950 // Use space bufn3 at the moment for tx buffers
1951
1952 printk (" tx buffers");
1953
1954 tx_desc = memmap->bufn3;
1955
1956 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1957
1958 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1959 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1960 tx_desc++;
1961 }
1962
1963 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1964
1965 // Initialise the transmit free buffer count
1966 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1967
1968 printk (" rx channels");
1969
1970 // Initialise all of the receive channels to be AAL5 disabled with
1971 // an interrupt threshold of 0
1972
1973 for (chan = 0; chan < RX_CHANS; ++chan) {
1974 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1975
1976 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1977 }
1978
1979 printk (" rx buffers");
1980
1981 // Use space bufn4 at the moment for rx buffers
1982
1983 rx_desc = memmap->bufn4;
1984
1985 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1986
1987 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1988 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1989
1990 rx_desc++;
1991 }
1992
1993 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1994
1995 // Initialise the receive free buffer count
1996 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1997
1998 // Initialize Horizons registers
1999
2000 // TX config
2001 wr_regw (dev, TX_CONFIG_OFF,
2002 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
2003
2004 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
2005 wr_regw (dev, RX_CONFIG_OFF,
2006 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
2007
2008 // RX line config
2009 wr_regw (dev, RX_LINE_CONFIG_OFF,
2010 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
2011
2012 // Set the max AAL5 cell count to be just enough to contain the
2013 // largest AAL5 frame that the user wants to receive
2014 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
2015 (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD);
2016
2017 // Enable receive
2018 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
2019
2020 printk (" control");
2021
2022 // Drive the OE of the LEDs then turn the green LED on
2023 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
2024 wr_regl (dev, CONTROL_0_REG, ctrl);
2025
2026 // Test for a 155-capable card
2027
2028 if (onefivefive) {
2029 // Select 155 mode... make this a choice (or: how do we detect
2030 // external line speed and switch?)
2031 ctrl |= ATM_LAYER_SELECT;
2032 wr_regl (dev, CONTROL_0_REG, ctrl);
2033
2034 // test SUNI-lite vs SAMBA
2035
2036 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
2037 // they will always be zero for the SAMBA. Ha! Bloody hardware
2038 // engineers. It'll never work.
2039
2040 if (rd_framer (dev, 0) & 0x00f0) {
2041 // SUNI
2042 printk (" SUNI");
2043
2044 // Reset, just in case
2045 wr_framer (dev, 0x00, 0x0080);
2046 wr_framer (dev, 0x00, 0x0000);
2047
2048 // Configure transmit FIFO
2049 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2050
2051 // Set line timed mode
2052 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2053 } else {
2054 // SAMBA
2055 printk (" SAMBA");
2056
2057 // Reset, just in case
2058 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2059 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2060
2061 // Turn off diagnostic loopback and enable line-timed mode
2062 wr_framer (dev, 0, 0x0002);
2063
2064 // Turn on transmit outputs
2065 wr_framer (dev, 2, 0x0B80);
2066 }
2067 } else {
2068 // Select 25 mode
2069 ctrl &= ~ATM_LAYER_SELECT;
2070
2071 // Madge B154 setup
2072 // none required?
2073 }
2074
2075 printk (" LEDs");
2076
2077 GREEN_LED_ON(dev);
2078 YELLOW_LED_ON(dev);
2079
2080 printk (" ESI=");
2081
2082 {
2083 u16 b = 0;
2084 int i;
2085 u8 * esi = dev->atm_dev->esi;
2086
2087 // in the card I have, EEPROM
2088 // addresses 0, 1, 2 contain 0
2089 // addresess 5, 6 etc. contain ffff
2090 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2091 // the read_bia routine gets the BIA in Ethernet bit order
2092
2093 for (i=0; i < ESI_LEN; ++i) {
2094 if (i % 2 == 0)
2095 b = read_bia (dev, i/2 + 2);
2096 else
2097 b = b >> 8;
2098 esi[i] = b & 0xFF;
2099 printk ("%02x", esi[i]);
2100 }
2101 }
2102
2103 // Enable RX_Q and ?X_COMPLETE interrupts only
2104 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2105 printk (" IRQ on");
2106
2107 printk (".\n");
2108
2109 return onefivefive;
2110 }
2111
2112 /********** check max_sdu **********/
2113
check_max_sdu(hrz_aal aal,struct atm_trafprm * tp,unsigned int max_frame_size)2114 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2115 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2116
2117 switch (aal) {
2118 case aal0:
2119 if (!(tp->max_sdu)) {
2120 PRINTD (DBG_QOS, "defaulting max_sdu");
2121 tp->max_sdu = ATM_AAL0_SDU;
2122 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2123 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2124 return -EINVAL;
2125 }
2126 break;
2127 case aal34:
2128 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2129 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2130 tp->max_sdu = ATM_MAX_AAL34_PDU;
2131 }
2132 break;
2133 case aal5:
2134 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2135 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2136 tp->max_sdu = max_frame_size;
2137 }
2138 break;
2139 }
2140 return 0;
2141 }
2142
2143 /********** check pcr **********/
2144
2145 // something like this should be part of ATM Linux
atm_pcr_check(struct atm_trafprm * tp,unsigned int pcr)2146 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2147 // we are assuming non-UBR, and non-special values of pcr
2148 if (tp->min_pcr == ATM_MAX_PCR)
2149 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2150 else if (tp->min_pcr < 0)
2151 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2152 else if (tp->min_pcr && tp->min_pcr > pcr)
2153 PRINTD (DBG_QOS, "pcr less than min_pcr");
2154 else
2155 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2156 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2157 // [this would get rid of next two conditionals]
2158 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2159 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2160 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2161 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2162 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2163 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2164 else {
2165 // each limit unspecified or not violated
2166 PRINTD (DBG_QOS, "xBR(pcr) OK");
2167 return 0;
2168 }
2169 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2170 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2171 return -EINVAL;
2172 }
2173
2174 /********** open VC **********/
2175
hrz_open(struct atm_vcc * atm_vcc,short vpi,int vci)2176 static int hrz_open (struct atm_vcc * atm_vcc, short vpi, int vci) {
2177 int error;
2178 u16 channel;
2179
2180 struct atm_qos * qos;
2181 struct atm_trafprm * txtp;
2182 struct atm_trafprm * rxtp;
2183
2184 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2185 hrz_vcc vcc;
2186 hrz_vcc * vccp; // allocated late
2187 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2188
2189 #ifdef ATM_VPI_UNSPEC
2190 // UNSPEC is deprecated, remove this code eventually
2191 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2192 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2193 return -EINVAL;
2194 }
2195 #endif
2196
2197 // deal with possibly wildcarded VCs
2198 error = atm_find_ci (atm_vcc, &vpi, &vci);
2199 if (error) {
2200 PRINTD (DBG_WARN|DBG_VCC, "atm_find_ci failed!");
2201 return error;
2202 }
2203 PRINTD (DBG_VCC, "atm_find_ci gives %x %x", vpi, vci);
2204
2205 error = vpivci_to_channel (&channel, vpi, vci);
2206 if (error) {
2207 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2208 return error;
2209 }
2210
2211 vcc.channel = channel;
2212 // max speed for the moment
2213 vcc.tx_rate = 0x0;
2214
2215 qos = &atm_vcc->qos;
2216
2217 // check AAL and remember it
2218 switch (qos->aal) {
2219 case ATM_AAL0:
2220 // we would if it were 48 bytes and not 52!
2221 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2222 vcc.aal = aal0;
2223 break;
2224 case ATM_AAL34:
2225 // we would if I knew how do the SAR!
2226 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2227 vcc.aal = aal34;
2228 break;
2229 case ATM_AAL5:
2230 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2231 vcc.aal = aal5;
2232 break;
2233 default:
2234 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2235 return -EINVAL;
2236 break;
2237 }
2238
2239 // TX traffic parameters
2240
2241 // there are two, interrelated problems here: 1. the reservation of
2242 // PCR is not a binary choice, we are given bounds and/or a
2243 // desirable value; 2. the device is only capable of certain values,
2244 // most of which are not integers. It is almost certainly acceptable
2245 // to be off by a maximum of 1 to 10 cps.
2246
2247 // Pragmatic choice: always store an integral PCR as that which has
2248 // been allocated, even if we allocate a little (or a lot) less,
2249 // after rounding. The actual allocation depends on what we can
2250 // manage with our rate selection algorithm. The rate selection
2251 // algorithm is given an integral PCR and a tolerance and told
2252 // whether it should round the value up or down if the tolerance is
2253 // exceeded; it returns: a) the actual rate selected (rounded up to
2254 // the nearest integer), b) a bit pattern to feed to the timer
2255 // register, and c) a failure value if no applicable rate exists.
2256
2257 // Part of the job is done by atm_pcr_goal which gives us a PCR
2258 // specification which says: EITHER grab the maximum available PCR
2259 // (and perhaps a lower bound which we musn't pass), OR grab this
2260 // amount, rounding down if you have to (and perhaps a lower bound
2261 // which we musn't pass) OR grab this amount, rounding up if you
2262 // have to (and perhaps an upper bound which we musn't pass). If any
2263 // bounds ARE passed we fail. Note that rounding is only rounding to
2264 // match device limitations, we do not round down to satisfy
2265 // bandwidth availability even if this would not violate any given
2266 // lower bound.
2267
2268 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2269 // (say) so this is not even a binary fixpoint cell rate (but this
2270 // device can do it). To avoid this sort of hassle we use a
2271 // tolerance parameter (currently fixed at 10 cps).
2272
2273 PRINTD (DBG_QOS, "TX:");
2274
2275 txtp = &qos->txtp;
2276
2277 // set up defaults for no traffic
2278 vcc.tx_rate = 0;
2279 // who knows what would actually happen if you try and send on this?
2280 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2281 vcc.tx_pcr_bits = CLOCK_DISABLE;
2282 #if 0
2283 vcc.tx_scr_bits = CLOCK_DISABLE;
2284 vcc.tx_bucket_bits = 0;
2285 #endif
2286
2287 if (txtp->traffic_class != ATM_NONE) {
2288 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2289 if (error) {
2290 PRINTD (DBG_QOS, "TX max_sdu check failed");
2291 return error;
2292 }
2293
2294 switch (txtp->traffic_class) {
2295 case ATM_UBR: {
2296 // we take "the PCR" as a rate-cap
2297 // not reserved
2298 vcc.tx_rate = 0;
2299 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2300 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2301 break;
2302 }
2303 #if 0
2304 case ATM_ABR: {
2305 // reserve min, allow up to max
2306 vcc.tx_rate = 0; // ?
2307 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2308 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2309 break;
2310 }
2311 #endif
2312 case ATM_CBR: {
2313 int pcr = atm_pcr_goal (txtp);
2314 rounding r;
2315 if (!pcr) {
2316 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2317 // should really have: once someone gets unlimited bandwidth
2318 // that no more non-UBR channels can be opened until the
2319 // unlimited one closes?? For the moment, round_down means
2320 // greedy people actually get something and not nothing
2321 r = round_down;
2322 // slight race (no locking) here so we may get -EAGAIN
2323 // later; the greedy bastards would deserve it :)
2324 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2325 pcr = dev->tx_avail;
2326 } else if (pcr < 0) {
2327 r = round_down;
2328 pcr = -pcr;
2329 } else {
2330 r = round_up;
2331 }
2332 error = make_rate_with_tolerance (dev, pcr, r, 10,
2333 &vcc.tx_pcr_bits, &vcc.tx_rate);
2334 if (error) {
2335 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2336 return error;
2337 }
2338 // not really clear what further checking is needed
2339 error = atm_pcr_check (txtp, vcc.tx_rate);
2340 if (error) {
2341 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2342 return error;
2343 }
2344 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2345 break;
2346 }
2347 #if 0
2348 case ATM_VBR: {
2349 int pcr = atm_pcr_goal (txtp);
2350 // int scr = atm_scr_goal (txtp);
2351 int scr = pcr/2; // just for fun
2352 unsigned int mbs = 60; // just for fun
2353 rounding pr;
2354 rounding sr;
2355 unsigned int bucket;
2356 if (!pcr) {
2357 pr = round_nearest;
2358 pcr = 1<<30;
2359 } else if (pcr < 0) {
2360 pr = round_down;
2361 pcr = -pcr;
2362 } else {
2363 pr = round_up;
2364 }
2365 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2366 &vcc.tx_pcr_bits, 0);
2367 if (!scr) {
2368 // see comments for PCR with CBR above
2369 sr = round_down;
2370 // slight race (no locking) here so we may get -EAGAIN
2371 // later; the greedy bastards would deserve it :)
2372 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2373 scr = dev->tx_avail;
2374 } else if (scr < 0) {
2375 sr = round_down;
2376 scr = -scr;
2377 } else {
2378 sr = round_up;
2379 }
2380 error = make_rate_with_tolerance (dev, scr, sr, 10,
2381 &vcc.tx_scr_bits, &vcc.tx_rate);
2382 if (error) {
2383 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2384 return error;
2385 }
2386 // not really clear what further checking is needed
2387 // error = atm_scr_check (txtp, vcc.tx_rate);
2388 if (error) {
2389 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2390 return error;
2391 }
2392 // bucket calculations (from a piece of paper...) cell bucket
2393 // capacity must be largest integer smaller than m(p-s)/p + 1
2394 // where m = max burst size, p = pcr, s = scr
2395 bucket = mbs*(pcr-scr)/pcr;
2396 if (bucket*pcr != mbs*(pcr-scr))
2397 bucket += 1;
2398 if (bucket > BUCKET_MAX_SIZE) {
2399 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2400 bucket, BUCKET_MAX_SIZE);
2401 bucket = BUCKET_MAX_SIZE;
2402 }
2403 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2404 vcc.tx_bucket_bits = bucket;
2405 break;
2406 }
2407 #endif
2408 default: {
2409 PRINTD (DBG_QOS, "unsupported TX traffic class");
2410 return -EINVAL;
2411 break;
2412 }
2413 }
2414 }
2415
2416 // RX traffic parameters
2417
2418 PRINTD (DBG_QOS, "RX:");
2419
2420 rxtp = &qos->rxtp;
2421
2422 // set up defaults for no traffic
2423 vcc.rx_rate = 0;
2424
2425 if (rxtp->traffic_class != ATM_NONE) {
2426 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2427 if (error) {
2428 PRINTD (DBG_QOS, "RX max_sdu check failed");
2429 return error;
2430 }
2431 switch (rxtp->traffic_class) {
2432 case ATM_UBR: {
2433 // not reserved
2434 break;
2435 }
2436 #if 0
2437 case ATM_ABR: {
2438 // reserve min
2439 vcc.rx_rate = 0; // ?
2440 break;
2441 }
2442 #endif
2443 case ATM_CBR: {
2444 int pcr = atm_pcr_goal (rxtp);
2445 if (!pcr) {
2446 // slight race (no locking) here so we may get -EAGAIN
2447 // later; the greedy bastards would deserve it :)
2448 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2449 pcr = dev->rx_avail;
2450 } else if (pcr < 0) {
2451 pcr = -pcr;
2452 }
2453 vcc.rx_rate = pcr;
2454 // not really clear what further checking is needed
2455 error = atm_pcr_check (rxtp, vcc.rx_rate);
2456 if (error) {
2457 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2458 return error;
2459 }
2460 break;
2461 }
2462 #if 0
2463 case ATM_VBR: {
2464 // int scr = atm_scr_goal (rxtp);
2465 int scr = 1<<16; // just for fun
2466 if (!scr) {
2467 // slight race (no locking) here so we may get -EAGAIN
2468 // later; the greedy bastards would deserve it :)
2469 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2470 scr = dev->rx_avail;
2471 } else if (scr < 0) {
2472 scr = -scr;
2473 }
2474 vcc.rx_rate = scr;
2475 // not really clear what further checking is needed
2476 // error = atm_scr_check (rxtp, vcc.rx_rate);
2477 if (error) {
2478 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2479 return error;
2480 }
2481 break;
2482 }
2483 #endif
2484 default: {
2485 PRINTD (DBG_QOS, "unsupported RX traffic class");
2486 return -EINVAL;
2487 break;
2488 }
2489 }
2490 }
2491
2492
2493 // late abort useful for diagnostics
2494 if (vcc.aal != aal5) {
2495 PRINTD (DBG_QOS, "AAL not supported");
2496 return -EINVAL;
2497 }
2498
2499 // get space for our vcc stuff and copy parameters into it
2500 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2501 if (!vccp) {
2502 PRINTK (KERN_ERR, "out of memory!");
2503 return -ENOMEM;
2504 }
2505 *vccp = vcc;
2506
2507 // clear error and grab cell rate resource lock
2508 error = 0;
2509 spin_lock (&dev->rate_lock);
2510
2511 if (vcc.tx_rate > dev->tx_avail) {
2512 PRINTD (DBG_QOS, "not enough TX PCR left");
2513 error = -EAGAIN;
2514 }
2515
2516 if (vcc.rx_rate > dev->rx_avail) {
2517 PRINTD (DBG_QOS, "not enough RX PCR left");
2518 error = -EAGAIN;
2519 }
2520
2521 if (!error) {
2522 // really consume cell rates
2523 dev->tx_avail -= vcc.tx_rate;
2524 dev->rx_avail -= vcc.rx_rate;
2525 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2526 vcc.tx_rate, vcc.rx_rate);
2527 }
2528
2529 // release lock and exit on error
2530 spin_unlock (&dev->rate_lock);
2531 if (error) {
2532 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2533 kfree (vccp);
2534 return error;
2535 }
2536
2537 // this is "immediately before allocating the connection identifier
2538 // in hardware" - so long as the next call does not fail :)
2539 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2540
2541 // any errors here are very serious and should never occur
2542
2543 if (rxtp->traffic_class != ATM_NONE) {
2544 if (dev->rxer[channel]) {
2545 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2546 error = -EBUSY;
2547 }
2548 if (!error)
2549 error = hrz_open_rx (dev, channel);
2550 if (error) {
2551 kfree (vccp);
2552 return error;
2553 }
2554 // this link allows RX frames through
2555 dev->rxer[channel] = atm_vcc;
2556 }
2557
2558 // success, set elements of atm_vcc
2559 atm_vcc->vpi = vpi;
2560 atm_vcc->vci = vci;
2561 atm_vcc->dev_data = (void *) vccp;
2562
2563 // indicate readiness
2564 set_bit(ATM_VF_READY,&atm_vcc->flags);
2565
2566 return 0;
2567 }
2568
2569 /********** close VC **********/
2570
hrz_close(struct atm_vcc * atm_vcc)2571 static void hrz_close (struct atm_vcc * atm_vcc) {
2572 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2573 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2574 u16 channel = vcc->channel;
2575 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2576
2577 // indicate unreadiness
2578 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2579
2580 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2581 unsigned int i;
2582
2583 // let any TX on this channel that has started complete
2584 // no restart, just keep trying
2585 while (tx_hold (dev))
2586 ;
2587 // remove record of any tx_channel having been setup for this channel
2588 for (i = 0; i < TX_CHANS; ++i)
2589 if (dev->tx_channel_record[i] == channel) {
2590 dev->tx_channel_record[i] = -1;
2591 break;
2592 }
2593 if (dev->last_vc == channel)
2594 dev->tx_last = -1;
2595 tx_release (dev);
2596 }
2597
2598 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2599 // disable RXing - it tries quite hard
2600 hrz_close_rx (dev, channel);
2601 // forget the vcc - no more skbs will be pushed
2602 if (atm_vcc != dev->rxer[channel])
2603 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2604 "arghhh! we're going to die!",
2605 atm_vcc, dev->rxer[channel]);
2606 dev->rxer[channel] = 0;
2607 }
2608
2609 // atomically release our rate reservation
2610 spin_lock (&dev->rate_lock);
2611 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2612 vcc->tx_rate, vcc->rx_rate);
2613 dev->tx_avail += vcc->tx_rate;
2614 dev->rx_avail += vcc->rx_rate;
2615 spin_unlock (&dev->rate_lock);
2616
2617 // free our structure
2618 kfree (vcc);
2619 // say the VPI/VCI is free again
2620 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2621 }
2622
2623 #if 0
2624 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2625 void *optval, int optlen) {
2626 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2627 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2628 switch (level) {
2629 case SOL_SOCKET:
2630 switch (optname) {
2631 // case SO_BCTXOPT:
2632 // break;
2633 // case SO_BCRXOPT:
2634 // break;
2635 default:
2636 return -ENOPROTOOPT;
2637 break;
2638 };
2639 break;
2640 }
2641 return -EINVAL;
2642 }
2643
2644 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2645 void *optval, int optlen) {
2646 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2647 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2648 switch (level) {
2649 case SOL_SOCKET:
2650 switch (optname) {
2651 // case SO_BCTXOPT:
2652 // break;
2653 // case SO_BCRXOPT:
2654 // break;
2655 default:
2656 return -ENOPROTOOPT;
2657 break;
2658 };
2659 break;
2660 }
2661 return -EINVAL;
2662 }
2663 #endif
2664
hrz_sg_send(struct atm_vcc * atm_vcc,unsigned long start,unsigned long size)2665 static int hrz_sg_send (struct atm_vcc * atm_vcc,
2666 unsigned long start,
2667 unsigned long size) {
2668 if (atm_vcc->qos.aal == ATM_AAL5) {
2669 PRINTD (DBG_FLOW|DBG_VCC, "hrz_sg_send: yes");
2670 return 1;
2671 } else {
2672 PRINTD (DBG_FLOW|DBG_VCC, "hrz_sg_send: no");
2673 return 0;
2674 }
2675 }
2676
2677 #if 0
2678 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2679 hrz_dev * dev = HRZ_DEV(atm_dev);
2680 PRINTD (DBG_FLOW, "hrz_ioctl");
2681 return -1;
2682 }
2683
2684 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2685 hrz_dev * dev = HRZ_DEV(atm_dev);
2686 PRINTD (DBG_FLOW, "hrz_phy_get");
2687 return 0;
2688 }
2689
2690 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2691 unsigned long addr) {
2692 hrz_dev * dev = HRZ_DEV(atm_dev);
2693 PRINTD (DBG_FLOW, "hrz_phy_put");
2694 }
2695
2696 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2697 hrz_dev * dev = HRZ_DEV(vcc->dev);
2698 PRINTD (DBG_FLOW, "hrz_change_qos");
2699 return -1;
2700 }
2701 #endif
2702
2703 /********** proc file contents **********/
2704
hrz_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)2705 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2706 hrz_dev * dev = HRZ_DEV(atm_dev);
2707 int left = *pos;
2708 PRINTD (DBG_FLOW, "hrz_proc_read");
2709
2710 /* more diagnostics here? */
2711
2712 #if 0
2713 if (!left--) {
2714 unsigned int count = sprintf (page, "vbr buckets:");
2715 unsigned int i;
2716 for (i = 0; i < TX_CHANS; ++i)
2717 count += sprintf (page, " %u/%u",
2718 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2719 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2720 count += sprintf (page+count, ".\n");
2721 return count;
2722 }
2723 #endif
2724
2725 if (!left--)
2726 return sprintf (page,
2727 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2728 dev->tx_cell_count, dev->rx_cell_count,
2729 dev->hec_error_count, dev->unassigned_cell_count);
2730
2731 if (!left--)
2732 return sprintf (page,
2733 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2734 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2735 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2736 dev->noof_spare_buffers);
2737
2738 if (!left--)
2739 return sprintf (page,
2740 "cps remaining: TX %u, RX %u\n",
2741 dev->tx_avail, dev->rx_avail);
2742
2743 return 0;
2744 }
2745
2746 static const struct atmdev_ops hrz_ops = {
2747 open: hrz_open,
2748 close: hrz_close,
2749 send: hrz_send,
2750 sg_send: hrz_sg_send,
2751 proc_read: hrz_proc_read,
2752 owner: THIS_MODULE,
2753 };
2754
hrz_probe(void)2755 static int __init hrz_probe (void) {
2756 struct pci_dev * pci_dev;
2757 int devs;
2758
2759 PRINTD (DBG_FLOW, "hrz_probe");
2760
2761 devs = 0;
2762 pci_dev = NULL;
2763 while ((pci_dev = pci_find_device
2764 (PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, pci_dev)
2765 )) {
2766 hrz_dev * dev;
2767
2768 // adapter slot free, read resources from PCI configuration space
2769 u32 iobase = pci_resource_start (pci_dev, 0);
2770 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2771 u8 irq = pci_dev->irq;
2772
2773 /* XXX DEV_LABEL is a guess */
2774 if (!request_region (iobase, HRZ_IO_EXTENT, DEV_LABEL))
2775 continue;
2776
2777 if (pci_enable_device (pci_dev))
2778 continue;
2779
2780 dev = kmalloc (sizeof(hrz_dev), GFP_KERNEL);
2781 if (!dev) {
2782 // perhaps we should be nice: deregister all adapters and abort?
2783 PRINTD (DBG_ERR, "out of memory");
2784 continue;
2785 }
2786
2787 memset (dev, 0, sizeof(hrz_dev));
2788
2789 // grab IRQ and install handler - move this someplace more sensible
2790 if (request_irq (irq,
2791 interrupt_handler,
2792 SA_SHIRQ, /* irqflags guess */
2793 DEV_LABEL, /* name guess */
2794 dev)) {
2795 PRINTD (DBG_WARN, "request IRQ failed!");
2796 // free_irq is at "endif"
2797 } else {
2798
2799 PRINTD (DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2800 iobase, irq, membase);
2801
2802 dev->atm_dev = atm_dev_register (DEV_LABEL, &hrz_ops, -1, NULL);
2803 if (!(dev->atm_dev)) {
2804 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2805 } else {
2806 unsigned char lat;
2807
2808 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2809 dev->atm_dev->number, dev, dev->atm_dev);
2810 dev->atm_dev->dev_data = (void *) dev;
2811 dev->pci_dev = pci_dev;
2812
2813 // enable bus master accesses
2814 pci_set_master (pci_dev);
2815
2816 // frobnicate latency (upwards, usually)
2817 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2818 if (pci_lat) {
2819 PRINTD (DBG_INFO, "%s PCI latency timer from %hu to %hu",
2820 "changing", lat, pci_lat);
2821 pci_write_config_byte (pci_dev, PCI_LATENCY_TIMER, pci_lat);
2822 } else if (lat < MIN_PCI_LATENCY) {
2823 PRINTK (KERN_INFO, "%s PCI latency timer from %hu to %hu",
2824 "increasing", lat, MIN_PCI_LATENCY);
2825 pci_write_config_byte (pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2826 }
2827
2828 dev->iobase = iobase;
2829 dev->irq = irq;
2830 dev->membase = membase;
2831
2832 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2833 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2834
2835 // these next three are performance hacks
2836 dev->last_vc = -1;
2837 dev->tx_last = -1;
2838 dev->tx_idle = 0;
2839
2840 dev->tx_regions = 0;
2841 dev->tx_bytes = 0;
2842 dev->tx_skb = 0;
2843 dev->tx_iovec = 0;
2844
2845 dev->tx_cell_count = 0;
2846 dev->rx_cell_count = 0;
2847 dev->hec_error_count = 0;
2848 dev->unassigned_cell_count = 0;
2849
2850 dev->noof_spare_buffers = 0;
2851
2852 {
2853 unsigned int i;
2854 for (i = 0; i < TX_CHANS; ++i)
2855 dev->tx_channel_record[i] = -1;
2856 }
2857
2858 dev->flags = 0;
2859
2860 // Allocate cell rates and remember ASIC version
2861 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2862 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2863 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2864
2865 if (hrz_init (dev)) {
2866 // to be really pedantic, this should be ATM_OC3c_PCR
2867 dev->tx_avail = ATM_OC3_PCR;
2868 dev->rx_avail = ATM_OC3_PCR;
2869 set_bit (ultra, &dev->flags); // NOT "|= ultra" !
2870 } else {
2871 dev->tx_avail = ((25600000/8)*26)/(27*53);
2872 dev->rx_avail = ((25600000/8)*26)/(27*53);
2873 PRINTD (DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2874 }
2875
2876 // rate changes spinlock
2877 spin_lock_init (&dev->rate_lock);
2878
2879 // on-board memory access spinlock; we want atomic reads and
2880 // writes to adapter memory (handles IRQ and SMP)
2881 spin_lock_init (&dev->mem_lock);
2882
2883 #if LINUX_VERSION_CODE >= 0x20303
2884 init_waitqueue_head (&dev->tx_queue);
2885 #else
2886 dev->tx_queue = 0;
2887 #endif
2888
2889 // vpi in 0..4, vci in 6..10
2890 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2891 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2892
2893 // update count and linked list
2894 ++devs;
2895 dev->prev = hrz_devs;
2896 hrz_devs = dev;
2897 // success
2898 continue;
2899
2900 /* not currently reached */
2901 atm_dev_deregister (dev->atm_dev);
2902 } /* atm_dev_register */
2903 free_irq (irq, dev);
2904
2905 } /* request_irq */
2906 kfree (dev);
2907 release_region(iobase, HRZ_IO_EXTENT);
2908 } /* kmalloc and while */
2909 return devs;
2910 }
2911
hrz_check_args(void)2912 static void __init hrz_check_args (void) {
2913 #ifdef DEBUG_HORIZON
2914 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2915 #else
2916 if (debug)
2917 PRINTK (KERN_NOTICE, "no debug support in this image");
2918 #endif
2919
2920 if (vpi_bits > HRZ_MAX_VPI)
2921 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2922 vpi_bits = HRZ_MAX_VPI);
2923
2924 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2925 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2926 max_tx_size = TX_AAL5_LIMIT);
2927
2928 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2929 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2930 max_rx_size = RX_AAL5_LIMIT);
2931
2932 return;
2933 }
2934
2935 #ifdef MODULE
2936 EXPORT_NO_SYMBOLS;
2937
2938 MODULE_AUTHOR(maintainer_string);
2939 MODULE_DESCRIPTION(description_string);
2940 MODULE_LICENSE("GPL");
2941 MODULE_PARM(debug, "h");
2942 MODULE_PARM(vpi_bits, "h");
2943 MODULE_PARM(max_tx_size, "i");
2944 MODULE_PARM(max_rx_size, "i");
2945 MODULE_PARM(pci_lat, "b");
2946 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2947 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2948 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2949 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2950 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2951
2952 /********** module entry **********/
2953
init_module(void)2954 int init_module (void) {
2955 int devs;
2956
2957 // sanity check - cast is needed since printk does not support %Zu
2958 if (sizeof(struct MEMMAP) != 128*1024/4) {
2959 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2960 (unsigned long) sizeof(struct MEMMAP));
2961 return -ENOMEM;
2962 }
2963
2964 show_version();
2965
2966 // check arguments
2967 hrz_check_args();
2968
2969 // get the juice
2970 devs = hrz_probe();
2971
2972 if (devs) {
2973 init_timer (&housekeeping);
2974 housekeeping.function = do_housekeeping;
2975 // paranoia
2976 housekeeping.data = 1;
2977 set_timer (&housekeeping, 0);
2978 } else {
2979 PRINTK (KERN_ERR, "no (usable) adapters found");
2980 }
2981
2982 return devs ? 0 : -ENODEV;
2983 }
2984
2985 /********** module exit **********/
2986
cleanup_module(void)2987 void cleanup_module (void) {
2988 hrz_dev * dev;
2989 PRINTD (DBG_FLOW, "cleanup_module");
2990
2991 // paranoia
2992 housekeeping.data = 0;
2993 del_timer (&housekeeping);
2994
2995 while (hrz_devs) {
2996 dev = hrz_devs;
2997 hrz_devs = dev->prev;
2998
2999 PRINTD (DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
3000 hrz_reset (dev);
3001 atm_dev_deregister (dev->atm_dev);
3002 free_irq (dev->irq, dev);
3003 release_region (dev->iobase, HRZ_IO_EXTENT);
3004 kfree (dev);
3005 }
3006
3007 return;
3008 }
3009
3010 #else
3011
3012 /********** monolithic entry **********/
3013
hrz_detect(void)3014 int __init hrz_detect (void) {
3015 int devs;
3016
3017 // sanity check - cast is needed since printk does not support %Zu
3018 if (sizeof(struct MEMMAP) != 128*1024/4) {
3019 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
3020 (unsigned long) sizeof(struct MEMMAP));
3021 return 0;
3022 }
3023
3024 show_version();
3025
3026 // what about command line arguments?
3027 // check arguments
3028 hrz_check_args();
3029
3030 // get the juice
3031 devs = hrz_probe();
3032
3033 if (devs) {
3034 init_timer (&housekeeping);
3035 housekeeping.function = do_housekeeping;
3036 // paranoia
3037 housekeeping.data = 1;
3038 set_timer (&housekeeping, 0);
3039 } else {
3040 PRINTK (KERN_ERR, "no (usable) adapters found");
3041 }
3042
3043 return devs;
3044 }
3045
3046 #endif
3047