1.file "libm_lgammaf.s"
2
3
4// Copyright (c) 2002 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
25// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
28// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code,and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38//
39//*********************************************************************
40//
41// History:
42// 01/10/02  Initial version
43// 01/25/02  Corrected parameter store, load, and tag for __libm_error_support
44// 02/01/02  Added support of SIGN(GAMMA(x)) calculation
45// 05/20/02  Cleaned up namespace and sf0 syntax
46// 09/16/02  Improved accuracy on intervals reduced to [1;1.25]
47// 10/21/02  Now it returns SIGN(GAMMA(x))=-1 for negative zero
48// 02/10/03  Reordered header: .section, .global, .proc, .align
49// 07/22/03  Reformatted some data tables
50// 03/31/05  Reformatted delimiters between data tables
51//
52//*********************************************************************
53//
54//*********************************************************************
55//
56// Function: __libm_lgammaf(float x, int* signgam, int szsigngam)
57// computes the principle value of the logarithm of the GAMMA function
58// of x. Signum of GAMMA(x) is stored to memory starting at the address
59// specified by the signgam.
60//
61//*********************************************************************
62//
63// Resources Used:
64//
65//    Floating-Point Registers: f6-f15
66//                              f32-f97
67//
68//    General Purpose Registers:
69//      r8-r11
70//      r14-r30
71//      r32-r36
72//      r37-r40 (Used to pass arguments to error handling routine)
73//
74//    Predicate Registers:      p6-p15
75//
76//*********************************************************************
77//
78// IEEE Special Conditions:
79//
80//    lgamma(+inf) = +inf
81//    lgamma(-inf) = +inf
82//    lgamma(+/-0) = +inf
83//    lgamma(x<0, x - integer) = +inf
84//    lgamma(SNaN) = QNaN
85//    lgamma(QNaN) = QNaN
86//
87//*********************************************************************
88//
89// Overview
90//
91// The method consists of three cases.
92//
93// If      2^13 <= x < OVERFLOW_BOUNDARY  use case lgammaf_pstirling;
94// else if 1 < x < 2^13                   use case lgammaf_regular;
95// else if -9 < x < 1                     use case lgammaf_negrecursion;
96// else if -2^13 <  x < -9                use case lgammaf_negpoly;
97// else if x < -2^13                      use case lgammaf_negstirling;
98// else if x is close to negative
99//         roots of ln(GAMMA(x))          use case lgammaf_negroots;
100//
101//
102// Case 2^13 <= x < OVERFLOW_BOUNDARY
103// ----------------------------------
104//   Here we use algorithm based on the Stirling formula:
105//     ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)*ln(x) - x
106//
107// Case 1 < x < 2^13
108// -----------------
109//   To calculate ln(GAMMA(x)) for such arguments we use polynomial
110//   approximation on following intervals: [1.0; 1.25), [1.25; 1.5),
111//   [1.5, 1.75), [1.75; 2), [2; 4), [2^i; 2^(i+1)), i=1..8
112//
113//   Following variants of approximation and argument reduction are used:
114//    1. [1.0; 1.25)
115//       ln(GAMMA(x)) ~ (x-1.0)*P7(x)
116//
117//    2. [1.25; 1.5)
118//       ln(GAMMA(x)) ~ ln(GAMMA(x0))+(x-x0)*P8(x-x0),
119//       where x0 - point of local minimum on [1;2] rounded to nearest double
120//       precision number.
121//
122//    3. [1.5; 1.75)
123//       ln(GAMMA(x)) ~ P8(x)
124//
125//    4. [1.75; 2.0)
126//       ln(GAMMA(x)) ~ (x-2)*P7(x)
127//
128//    5. [2; 4)
129//       ln(GAMMA(x)) ~ (x-2)*P10(x)
130//
131//    6. [2^i; 2^(i+1)), i=2..8
132//       ln(GAMMA(x)) ~ P10((x-2^i)/2^i)
133//
134// Case -9 < x < 1
135// ---------------
136//   Here we use the recursive formula:
137//   ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
138//
139//   Using this formula we reduce argument to base interval [1.0; 2.0]
140//
141// Case -2^13 < x < -9
142// --------------------
143//   Here we use the formula:
144//   ln(GAMMA(x)) = ln(Pi/(|x|*GAMMA(|x|)*sin(Pi*|x|))) =
145//   = -ln(|x|) - ln((GAMMA(|x|)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
146//   where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
147//   ln(sin(Pi*r)/(Pi*r)) is approximated by 8-degree polynomial of r^2
148//
149// Case x < -2^13
150// --------------
151//   Here we use algorithm based on the Stirling formula:
152//   ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (|x|-0.5)ln(x) - |x| -
153//   - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
154//   where r = x - rounded_to_nearest(x).
155//
156// Neighbourhoods of negative roots
157// --------------------------------
158//   Here we use polynomial approximation
159//   ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
160//   where x0 is a root of ln(GAMMA(x)) rounded to nearest double
161//   precision number.
162//
163//
164// Claculation of logarithm
165// ------------------------
166//   Consider  x = 2^N * xf so
167//   ln(x) = ln(frcpa(x)*x/frcpa(x))
168//         = ln(1/frcpa(x)) + ln(frcpa(x)*x)
169//
170//   frcpa(x) = 2^(-N) * frcpa(xf)
171//
172//   ln(1/frcpa(x)) = -ln(2^(-N)) - ln(frcpa(xf))
173//                  = N*ln(2) - ln(frcpa(xf))
174//                  = N*ln(2) + ln(1/frcpa(xf))
175//
176//   ln(x) = ln(1/frcpa(x)) + ln(frcpa(x)*x) =
177//         = N*ln(2) + ln(1/frcpa(xf)) + ln(frcpa(x)*x)
178//         = N*ln(2) + T + ln(frcpa(x)*x)
179//
180//   Let r = 1 - frcpa(x)*x, note that r is quite small by
181//   absolute value so
182//
183//   ln(x) = N*ln(2) + T + ln(1+r) ~ N*ln(2) + T + Series(r),
184//   where T - is precomputed tabular value,
185//   Series(r) = (P3*r + P2)*r^2 + (P1*r + 1)
186//
187//*********************************************************************
188
189GR_TAG                 = r8
190GR_ad_Data             = r8
191GR_ad_Co               = r9
192GR_ad_SignGam          = r10
193GR_ad_Ce               = r10
194GR_SignExp             = r11
195
196GR_ad_C650             = r14
197GR_ad_RootCo           = r14
198GR_ad_C0               = r15
199GR_Dx                  = r15
200GR_Ind                 = r16
201GR_Offs                = r17
202GR_IntNum              = r17
203GR_ExpBias             = r18
204GR_ExpMask             = r19
205GR_Ind4T               = r20
206GR_RootInd             = r20
207GR_Sig                 = r21
208GR_Exp                 = r22
209GR_PureExp             = r23
210GR_ad_C43              = r24
211GR_StirlBound          = r25
212GR_ad_T                = r25
213GR_IndX8               = r25
214GR_Neg2                = r25
215GR_2xDx                = r25
216GR_SingBound           = r26
217GR_IndX2               = r26
218GR_Neg4                = r26
219GR_ad_RootCe           = r26
220GR_Arg                 = r27
221GR_ExpOf2              = r28
222GR_fff7                = r28
223GR_Root                = r28
224GR_ReqBound            = r28
225GR_N                   = r29
226GR_ad_Root             = r30
227GR_ad_OvfBound         = r30
228GR_SignOfGamma         = r31
229
230GR_SAVE_B0             = r33
231GR_SAVE_PFS            = r34
232GR_SAVE_GP             = r35
233GR_SAVE_SP             = r36
234
235GR_Parameter_X         = r37
236GR_Parameter_Y         = r38
237GR_Parameter_RESULT    = r39
238GR_Parameter_TAG       = r40
239
240//*********************************************************************
241
242FR_X                   = f10
243FR_Y                   = f1 // lgammaf is single argument function
244FR_RESULT              = f8
245
246FR_x                   = f6
247FR_x2                  = f7
248
249FR_x3                  = f9
250FR_x4                  = f10
251FR_xm2                 = f11
252FR_w                   = f11
253FR_w2                  = f12
254FR_Q32                 = f13
255FR_Q10                 = f14
256FR_InvX                = f15
257
258FR_NormX               = f32
259
260FR_A0                  = f33
261FR_A1                  = f34
262FR_A2                  = f35
263FR_A3                  = f36
264FR_A4                  = f37
265FR_A5                  = f38
266FR_A6                  = f39
267FR_A7                  = f40
268FR_A8                  = f41
269FR_A9                  = f42
270FR_A10                 = f43
271
272FR_int_N               = f44
273FR_P3                  = f45
274FR_P2                  = f46
275FR_P1                  = f47
276FR_LocalMin            = f48
277FR_Ln2                 = f49
278FR_05                  = f50
279FR_LnSqrt2Pi           = f51
280FR_3                   = f52
281FR_r                   = f53
282FR_r2                  = f54
283FR_T                   = f55
284FR_N                   = f56
285FR_xm05                = f57
286FR_int_Ln              = f58
287FR_P32                 = f59
288FR_P10                 = f60
289
290FR_Xf                  = f61
291FR_InvXf               = f62
292FR_rf                  = f63
293FR_rf2                 = f64
294FR_Tf                  = f65
295FR_Nf                  = f66
296FR_xm05f               = f67
297FR_P32f                = f68
298FR_P10f                = f69
299FR_Lnf                 = f70
300FR_Xf2                 = f71
301FR_Xf4                 = f72
302FR_Xf8                 = f73
303FR_Ln                  = f74
304FR_xx                  = f75
305FR_Root                = f75
306FR_Req                 = f76
307FR_1pXf                = f77
308
309FR_S16                 = f78
310FR_R3                  = f78
311FR_S14                 = f79
312FR_R2                  = f79
313FR_S12                 = f80
314FR_R1                  = f80
315FR_S10                 = f81
316FR_R0                  = f81
317FR_S8                  = f82
318FR_rx                  = f82
319FR_S6                  = f83
320FR_rx2                 = f84
321FR_S4                  = f84
322FR_S2                  = f85
323
324FR_Xp1                 = f86
325FR_Xp2                 = f87
326FR_Xp3                 = f88
327FR_Xp4                 = f89
328FR_Xp5                 = f90
329FR_Xp6                 = f91
330FR_Xp7                 = f92
331FR_Xp8                 = f93
332FR_OverflowBound       = f93
333
334FR_2                   = f94
335FR_tmp                 = f95
336FR_int_Ntrunc          = f96
337FR_Ntrunc              = f97
338
339//*********************************************************************
340
341RODATA
342.align 32
343LOCAL_OBJECT_START(lgammaf_data)
344log_table_1:
345data8 0xbfd0001008f39d59 // P3
346data8 0x3fd5556073e0c45a // P2
347data8 0x3fe62e42fefa39ef // ln(2)
348data8 0x3fe0000000000000 // 0.5
349//
350data8 0x3F60040155D5889E //ln(1/frcpa(1+   0/256)
351data8 0x3F78121214586B54 //ln(1/frcpa(1+   1/256)
352data8 0x3F841929F96832F0 //ln(1/frcpa(1+   2/256)
353data8 0x3F8C317384C75F06 //ln(1/frcpa(1+   3/256)
354data8 0x3F91A6B91AC73386 //ln(1/frcpa(1+   4/256)
355data8 0x3F95BA9A5D9AC039 //ln(1/frcpa(1+   5/256)
356data8 0x3F99D2A8074325F4 //ln(1/frcpa(1+   6/256)
357data8 0x3F9D6B2725979802 //ln(1/frcpa(1+   7/256)
358data8 0x3FA0C58FA19DFAAA //ln(1/frcpa(1+   8/256)
359data8 0x3FA2954C78CBCE1B //ln(1/frcpa(1+   9/256)
360data8 0x3FA4A94D2DA96C56 //ln(1/frcpa(1+  10/256)
361data8 0x3FA67C94F2D4BB58 //ln(1/frcpa(1+  11/256)
362data8 0x3FA85188B630F068 //ln(1/frcpa(1+  12/256)
363data8 0x3FAA6B8ABE73AF4C //ln(1/frcpa(1+  13/256)
364data8 0x3FAC441E06F72A9E //ln(1/frcpa(1+  14/256)
365data8 0x3FAE1E6713606D07 //ln(1/frcpa(1+  15/256)
366data8 0x3FAFFA6911AB9301 //ln(1/frcpa(1+  16/256)
367data8 0x3FB0EC139C5DA601 //ln(1/frcpa(1+  17/256)
368data8 0x3FB1DBD2643D190B //ln(1/frcpa(1+  18/256)
369data8 0x3FB2CC7284FE5F1C //ln(1/frcpa(1+  19/256)
370data8 0x3FB3BDF5A7D1EE64 //ln(1/frcpa(1+  20/256)
371data8 0x3FB4B05D7AA012E0 //ln(1/frcpa(1+  21/256)
372data8 0x3FB580DB7CEB5702 //ln(1/frcpa(1+  22/256)
373data8 0x3FB674F089365A7A //ln(1/frcpa(1+  23/256)
374data8 0x3FB769EF2C6B568D //ln(1/frcpa(1+  24/256)
375data8 0x3FB85FD927506A48 //ln(1/frcpa(1+  25/256)
376data8 0x3FB9335E5D594989 //ln(1/frcpa(1+  26/256)
377data8 0x3FBA2B0220C8E5F5 //ln(1/frcpa(1+  27/256)
378data8 0x3FBB0004AC1A86AC //ln(1/frcpa(1+  28/256)
379data8 0x3FBBF968769FCA11 //ln(1/frcpa(1+  29/256)
380data8 0x3FBCCFEDBFEE13A8 //ln(1/frcpa(1+  30/256)
381data8 0x3FBDA727638446A2 //ln(1/frcpa(1+  31/256)
382data8 0x3FBEA3257FE10F7A //ln(1/frcpa(1+  32/256)
383data8 0x3FBF7BE9FEDBFDE6 //ln(1/frcpa(1+  33/256)
384data8 0x3FC02AB352FF25F4 //ln(1/frcpa(1+  34/256)
385data8 0x3FC097CE579D204D //ln(1/frcpa(1+  35/256)
386data8 0x3FC1178E8227E47C //ln(1/frcpa(1+  36/256)
387data8 0x3FC185747DBECF34 //ln(1/frcpa(1+  37/256)
388data8 0x3FC1F3B925F25D41 //ln(1/frcpa(1+  38/256)
389data8 0x3FC2625D1E6DDF57 //ln(1/frcpa(1+  39/256)
390data8 0x3FC2D1610C86813A //ln(1/frcpa(1+  40/256)
391data8 0x3FC340C59741142E //ln(1/frcpa(1+  41/256)
392data8 0x3FC3B08B6757F2A9 //ln(1/frcpa(1+  42/256)
393data8 0x3FC40DFB08378003 //ln(1/frcpa(1+  43/256)
394data8 0x3FC47E74E8CA5F7C //ln(1/frcpa(1+  44/256)
395data8 0x3FC4EF51F6466DE4 //ln(1/frcpa(1+  45/256)
396data8 0x3FC56092E02BA516 //ln(1/frcpa(1+  46/256)
397data8 0x3FC5D23857CD74D5 //ln(1/frcpa(1+  47/256)
398data8 0x3FC6313A37335D76 //ln(1/frcpa(1+  48/256)
399data8 0x3FC6A399DABBD383 //ln(1/frcpa(1+  49/256)
400data8 0x3FC70337DD3CE41B //ln(1/frcpa(1+  50/256)
401data8 0x3FC77654128F6127 //ln(1/frcpa(1+  51/256)
402data8 0x3FC7E9D82A0B022D //ln(1/frcpa(1+  52/256)
403data8 0x3FC84A6B759F512F //ln(1/frcpa(1+  53/256)
404data8 0x3FC8AB47D5F5A310 //ln(1/frcpa(1+  54/256)
405data8 0x3FC91FE49096581B //ln(1/frcpa(1+  55/256)
406data8 0x3FC981634011AA75 //ln(1/frcpa(1+  56/256)
407data8 0x3FC9F6C407089664 //ln(1/frcpa(1+  57/256)
408data8 0x3FCA58E729348F43 //ln(1/frcpa(1+  58/256)
409data8 0x3FCABB55C31693AD //ln(1/frcpa(1+  59/256)
410data8 0x3FCB1E104919EFD0 //ln(1/frcpa(1+  60/256)
411data8 0x3FCB94EE93E367CB //ln(1/frcpa(1+  61/256)
412data8 0x3FCBF851C067555F //ln(1/frcpa(1+  62/256)
413data8 0x3FCC5C0254BF23A6 //ln(1/frcpa(1+  63/256)
414data8 0x3FCCC000C9DB3C52 //ln(1/frcpa(1+  64/256)
415data8 0x3FCD244D99C85674 //ln(1/frcpa(1+  65/256)
416data8 0x3FCD88E93FB2F450 //ln(1/frcpa(1+  66/256)
417data8 0x3FCDEDD437EAEF01 //ln(1/frcpa(1+  67/256)
418data8 0x3FCE530EFFE71012 //ln(1/frcpa(1+  68/256)
419data8 0x3FCEB89A1648B971 //ln(1/frcpa(1+  69/256)
420data8 0x3FCF1E75FADF9BDE //ln(1/frcpa(1+  70/256)
421data8 0x3FCF84A32EAD7C35 //ln(1/frcpa(1+  71/256)
422data8 0x3FCFEB2233EA07CD //ln(1/frcpa(1+  72/256)
423data8 0x3FD028F9C7035C1C //ln(1/frcpa(1+  73/256)
424data8 0x3FD05C8BE0D9635A //ln(1/frcpa(1+  74/256)
425data8 0x3FD085EB8F8AE797 //ln(1/frcpa(1+  75/256)
426data8 0x3FD0B9C8E32D1911 //ln(1/frcpa(1+  76/256)
427data8 0x3FD0EDD060B78081 //ln(1/frcpa(1+  77/256)
428data8 0x3FD122024CF0063F //ln(1/frcpa(1+  78/256)
429data8 0x3FD14BE2927AECD4 //ln(1/frcpa(1+  79/256)
430data8 0x3FD180618EF18ADF //ln(1/frcpa(1+  80/256)
431data8 0x3FD1B50BBE2FC63B //ln(1/frcpa(1+  81/256)
432data8 0x3FD1DF4CC7CF242D //ln(1/frcpa(1+  82/256)
433data8 0x3FD214456D0EB8D4 //ln(1/frcpa(1+  83/256)
434data8 0x3FD23EC5991EBA49 //ln(1/frcpa(1+  84/256)
435data8 0x3FD2740D9F870AFB //ln(1/frcpa(1+  85/256)
436data8 0x3FD29ECDABCDFA04 //ln(1/frcpa(1+  86/256)
437data8 0x3FD2D46602ADCCEE //ln(1/frcpa(1+  87/256)
438data8 0x3FD2FF66B04EA9D4 //ln(1/frcpa(1+  88/256)
439data8 0x3FD335504B355A37 //ln(1/frcpa(1+  89/256)
440data8 0x3FD360925EC44F5D //ln(1/frcpa(1+  90/256)
441data8 0x3FD38BF1C3337E75 //ln(1/frcpa(1+  91/256)
442data8 0x3FD3C25277333184 //ln(1/frcpa(1+  92/256)
443data8 0x3FD3EDF463C1683E //ln(1/frcpa(1+  93/256)
444data8 0x3FD419B423D5E8C7 //ln(1/frcpa(1+  94/256)
445data8 0x3FD44591E0539F49 //ln(1/frcpa(1+  95/256)
446data8 0x3FD47C9175B6F0AD //ln(1/frcpa(1+  96/256)
447data8 0x3FD4A8B341552B09 //ln(1/frcpa(1+  97/256)
448data8 0x3FD4D4F3908901A0 //ln(1/frcpa(1+  98/256)
449data8 0x3FD501528DA1F968 //ln(1/frcpa(1+  99/256)
450data8 0x3FD52DD06347D4F6 //ln(1/frcpa(1+ 100/256)
451data8 0x3FD55A6D3C7B8A8A //ln(1/frcpa(1+ 101/256)
452data8 0x3FD5925D2B112A59 //ln(1/frcpa(1+ 102/256)
453data8 0x3FD5BF406B543DB2 //ln(1/frcpa(1+ 103/256)
454data8 0x3FD5EC433D5C35AE //ln(1/frcpa(1+ 104/256)
455data8 0x3FD61965CDB02C1F //ln(1/frcpa(1+ 105/256)
456data8 0x3FD646A84935B2A2 //ln(1/frcpa(1+ 106/256)
457data8 0x3FD6740ADD31DE94 //ln(1/frcpa(1+ 107/256)
458data8 0x3FD6A18DB74A58C5 //ln(1/frcpa(1+ 108/256)
459data8 0x3FD6CF31058670EC //ln(1/frcpa(1+ 109/256)
460data8 0x3FD6F180E852F0BA //ln(1/frcpa(1+ 110/256)
461data8 0x3FD71F5D71B894F0 //ln(1/frcpa(1+ 111/256)
462data8 0x3FD74D5AEFD66D5C //ln(1/frcpa(1+ 112/256)
463data8 0x3FD77B79922BD37E //ln(1/frcpa(1+ 113/256)
464data8 0x3FD7A9B9889F19E2 //ln(1/frcpa(1+ 114/256)
465data8 0x3FD7D81B037EB6A6 //ln(1/frcpa(1+ 115/256)
466data8 0x3FD8069E33827231 //ln(1/frcpa(1+ 116/256)
467data8 0x3FD82996D3EF8BCB //ln(1/frcpa(1+ 117/256)
468data8 0x3FD85855776DCBFB //ln(1/frcpa(1+ 118/256)
469data8 0x3FD8873658327CCF //ln(1/frcpa(1+ 119/256)
470data8 0x3FD8AA75973AB8CF //ln(1/frcpa(1+ 120/256)
471data8 0x3FD8D992DC8824E5 //ln(1/frcpa(1+ 121/256)
472data8 0x3FD908D2EA7D9512 //ln(1/frcpa(1+ 122/256)
473data8 0x3FD92C59E79C0E56 //ln(1/frcpa(1+ 123/256)
474data8 0x3FD95BD750EE3ED3 //ln(1/frcpa(1+ 124/256)
475data8 0x3FD98B7811A3EE5B //ln(1/frcpa(1+ 125/256)
476data8 0x3FD9AF47F33D406C //ln(1/frcpa(1+ 126/256)
477data8 0x3FD9DF270C1914A8 //ln(1/frcpa(1+ 127/256)
478data8 0x3FDA0325ED14FDA4 //ln(1/frcpa(1+ 128/256)
479data8 0x3FDA33440224FA79 //ln(1/frcpa(1+ 129/256)
480data8 0x3FDA57725E80C383 //ln(1/frcpa(1+ 130/256)
481data8 0x3FDA87D0165DD199 //ln(1/frcpa(1+ 131/256)
482data8 0x3FDAAC2E6C03F896 //ln(1/frcpa(1+ 132/256)
483data8 0x3FDADCCC6FDF6A81 //ln(1/frcpa(1+ 133/256)
484data8 0x3FDB015B3EB1E790 //ln(1/frcpa(1+ 134/256)
485data8 0x3FDB323A3A635948 //ln(1/frcpa(1+ 135/256)
486data8 0x3FDB56FA04462909 //ln(1/frcpa(1+ 136/256)
487data8 0x3FDB881AA659BC93 //ln(1/frcpa(1+ 137/256)
488data8 0x3FDBAD0BEF3DB165 //ln(1/frcpa(1+ 138/256)
489data8 0x3FDBD21297781C2F //ln(1/frcpa(1+ 139/256)
490data8 0x3FDC039236F08819 //ln(1/frcpa(1+ 140/256)
491data8 0x3FDC28CB1E4D32FD //ln(1/frcpa(1+ 141/256)
492data8 0x3FDC4E19B84723C2 //ln(1/frcpa(1+ 142/256)
493data8 0x3FDC7FF9C74554C9 //ln(1/frcpa(1+ 143/256)
494data8 0x3FDCA57B64E9DB05 //ln(1/frcpa(1+ 144/256)
495data8 0x3FDCCB130A5CEBB0 //ln(1/frcpa(1+ 145/256)
496data8 0x3FDCF0C0D18F326F //ln(1/frcpa(1+ 146/256)
497data8 0x3FDD232075B5A201 //ln(1/frcpa(1+ 147/256)
498data8 0x3FDD490246DEFA6B //ln(1/frcpa(1+ 148/256)
499data8 0x3FDD6EFA918D25CD //ln(1/frcpa(1+ 149/256)
500data8 0x3FDD9509707AE52F //ln(1/frcpa(1+ 150/256)
501data8 0x3FDDBB2EFE92C554 //ln(1/frcpa(1+ 151/256)
502data8 0x3FDDEE2F3445E4AF //ln(1/frcpa(1+ 152/256)
503data8 0x3FDE148A1A2726CE //ln(1/frcpa(1+ 153/256)
504data8 0x3FDE3AFC0A49FF40 //ln(1/frcpa(1+ 154/256)
505data8 0x3FDE6185206D516E //ln(1/frcpa(1+ 155/256)
506data8 0x3FDE882578823D52 //ln(1/frcpa(1+ 156/256)
507data8 0x3FDEAEDD2EAC990C //ln(1/frcpa(1+ 157/256)
508data8 0x3FDED5AC5F436BE3 //ln(1/frcpa(1+ 158/256)
509data8 0x3FDEFC9326D16AB9 //ln(1/frcpa(1+ 159/256)
510data8 0x3FDF2391A2157600 //ln(1/frcpa(1+ 160/256)
511data8 0x3FDF4AA7EE03192D //ln(1/frcpa(1+ 161/256)
512data8 0x3FDF71D627C30BB0 //ln(1/frcpa(1+ 162/256)
513data8 0x3FDF991C6CB3B379 //ln(1/frcpa(1+ 163/256)
514data8 0x3FDFC07ADA69A910 //ln(1/frcpa(1+ 164/256)
515data8 0x3FDFE7F18EB03D3E //ln(1/frcpa(1+ 165/256)
516data8 0x3FE007C053C5002E //ln(1/frcpa(1+ 166/256)
517data8 0x3FE01B942198A5A1 //ln(1/frcpa(1+ 167/256)
518data8 0x3FE02F74400C64EB //ln(1/frcpa(1+ 168/256)
519data8 0x3FE04360BE7603AD //ln(1/frcpa(1+ 169/256)
520data8 0x3FE05759AC47FE34 //ln(1/frcpa(1+ 170/256)
521data8 0x3FE06B5F1911CF52 //ln(1/frcpa(1+ 171/256)
522data8 0x3FE078BF0533C568 //ln(1/frcpa(1+ 172/256)
523data8 0x3FE08CD9687E7B0E //ln(1/frcpa(1+ 173/256)
524data8 0x3FE0A10074CF9019 //ln(1/frcpa(1+ 174/256)
525data8 0x3FE0B5343A234477 //ln(1/frcpa(1+ 175/256)
526data8 0x3FE0C974C89431CE //ln(1/frcpa(1+ 176/256)
527data8 0x3FE0DDC2305B9886 //ln(1/frcpa(1+ 177/256)
528data8 0x3FE0EB524BAFC918 //ln(1/frcpa(1+ 178/256)
529data8 0x3FE0FFB54213A476 //ln(1/frcpa(1+ 179/256)
530data8 0x3FE114253DA97D9F //ln(1/frcpa(1+ 180/256)
531data8 0x3FE128A24F1D9AFF //ln(1/frcpa(1+ 181/256)
532data8 0x3FE1365252BF0865 //ln(1/frcpa(1+ 182/256)
533data8 0x3FE14AE558B4A92D //ln(1/frcpa(1+ 183/256)
534data8 0x3FE15F85A19C765B //ln(1/frcpa(1+ 184/256)
535data8 0x3FE16D4D38C119FA //ln(1/frcpa(1+ 185/256)
536data8 0x3FE18203C20DD133 //ln(1/frcpa(1+ 186/256)
537data8 0x3FE196C7BC4B1F3B //ln(1/frcpa(1+ 187/256)
538data8 0x3FE1A4A738B7A33C //ln(1/frcpa(1+ 188/256)
539data8 0x3FE1B981C0C9653D //ln(1/frcpa(1+ 189/256)
540data8 0x3FE1CE69E8BB106B //ln(1/frcpa(1+ 190/256)
541data8 0x3FE1DC619DE06944 //ln(1/frcpa(1+ 191/256)
542data8 0x3FE1F160A2AD0DA4 //ln(1/frcpa(1+ 192/256)
543data8 0x3FE2066D7740737E //ln(1/frcpa(1+ 193/256)
544data8 0x3FE2147DBA47A394 //ln(1/frcpa(1+ 194/256)
545data8 0x3FE229A1BC5EBAC3 //ln(1/frcpa(1+ 195/256)
546data8 0x3FE237C1841A502E //ln(1/frcpa(1+ 196/256)
547data8 0x3FE24CFCE6F80D9A //ln(1/frcpa(1+ 197/256)
548data8 0x3FE25B2C55CD5762 //ln(1/frcpa(1+ 198/256)
549data8 0x3FE2707F4D5F7C41 //ln(1/frcpa(1+ 199/256)
550data8 0x3FE285E0842CA384 //ln(1/frcpa(1+ 200/256)
551data8 0x3FE294294708B773 //ln(1/frcpa(1+ 201/256)
552data8 0x3FE2A9A2670AFF0C //ln(1/frcpa(1+ 202/256)
553data8 0x3FE2B7FB2C8D1CC1 //ln(1/frcpa(1+ 203/256)
554data8 0x3FE2C65A6395F5F5 //ln(1/frcpa(1+ 204/256)
555data8 0x3FE2DBF557B0DF43 //ln(1/frcpa(1+ 205/256)
556data8 0x3FE2EA64C3F97655 //ln(1/frcpa(1+ 206/256)
557data8 0x3FE3001823684D73 //ln(1/frcpa(1+ 207/256)
558data8 0x3FE30E97E9A8B5CD //ln(1/frcpa(1+ 208/256)
559data8 0x3FE32463EBDD34EA //ln(1/frcpa(1+ 209/256)
560data8 0x3FE332F4314AD796 //ln(1/frcpa(1+ 210/256)
561data8 0x3FE348D90E7464D0 //ln(1/frcpa(1+ 211/256)
562data8 0x3FE35779F8C43D6E //ln(1/frcpa(1+ 212/256)
563data8 0x3FE36621961A6A99 //ln(1/frcpa(1+ 213/256)
564data8 0x3FE37C299F3C366A //ln(1/frcpa(1+ 214/256)
565data8 0x3FE38AE2171976E7 //ln(1/frcpa(1+ 215/256)
566data8 0x3FE399A157A603E7 //ln(1/frcpa(1+ 216/256)
567data8 0x3FE3AFCCFE77B9D1 //ln(1/frcpa(1+ 217/256)
568data8 0x3FE3BE9D503533B5 //ln(1/frcpa(1+ 218/256)
569data8 0x3FE3CD7480B4A8A3 //ln(1/frcpa(1+ 219/256)
570data8 0x3FE3E3C43918F76C //ln(1/frcpa(1+ 220/256)
571data8 0x3FE3F2ACB27ED6C7 //ln(1/frcpa(1+ 221/256)
572data8 0x3FE4019C2125CA93 //ln(1/frcpa(1+ 222/256)
573data8 0x3FE4181061389722 //ln(1/frcpa(1+ 223/256)
574data8 0x3FE42711518DF545 //ln(1/frcpa(1+ 224/256)
575data8 0x3FE436194E12B6BF //ln(1/frcpa(1+ 225/256)
576data8 0x3FE445285D68EA69 //ln(1/frcpa(1+ 226/256)
577data8 0x3FE45BCC464C893A //ln(1/frcpa(1+ 227/256)
578data8 0x3FE46AED21F117FC //ln(1/frcpa(1+ 228/256)
579data8 0x3FE47A1527E8A2D3 //ln(1/frcpa(1+ 229/256)
580data8 0x3FE489445EFFFCCC //ln(1/frcpa(1+ 230/256)
581data8 0x3FE4A018BCB69835 //ln(1/frcpa(1+ 231/256)
582data8 0x3FE4AF5A0C9D65D7 //ln(1/frcpa(1+ 232/256)
583data8 0x3FE4BEA2A5BDBE87 //ln(1/frcpa(1+ 233/256)
584data8 0x3FE4CDF28F10AC46 //ln(1/frcpa(1+ 234/256)
585data8 0x3FE4DD49CF994058 //ln(1/frcpa(1+ 235/256)
586data8 0x3FE4ECA86E64A684 //ln(1/frcpa(1+ 236/256)
587data8 0x3FE503C43CD8EB68 //ln(1/frcpa(1+ 237/256)
588data8 0x3FE513356667FC57 //ln(1/frcpa(1+ 238/256)
589data8 0x3FE522AE0738A3D8 //ln(1/frcpa(1+ 239/256)
590data8 0x3FE5322E26867857 //ln(1/frcpa(1+ 240/256)
591data8 0x3FE541B5CB979809 //ln(1/frcpa(1+ 241/256)
592data8 0x3FE55144FDBCBD62 //ln(1/frcpa(1+ 242/256)
593data8 0x3FE560DBC45153C7 //ln(1/frcpa(1+ 243/256)
594data8 0x3FE5707A26BB8C66 //ln(1/frcpa(1+ 244/256)
595data8 0x3FE587F60ED5B900 //ln(1/frcpa(1+ 245/256)
596data8 0x3FE597A7977C8F31 //ln(1/frcpa(1+ 246/256)
597data8 0x3FE5A760D634BB8B //ln(1/frcpa(1+ 247/256)
598data8 0x3FE5B721D295F10F //ln(1/frcpa(1+ 248/256)
599data8 0x3FE5C6EA94431EF9 //ln(1/frcpa(1+ 249/256)
600data8 0x3FE5D6BB22EA86F6 //ln(1/frcpa(1+ 250/256)
601data8 0x3FE5E6938645D390 //ln(1/frcpa(1+ 251/256)
602data8 0x3FE5F673C61A2ED2 //ln(1/frcpa(1+ 252/256)
603data8 0x3FE6065BEA385926 //ln(1/frcpa(1+ 253/256)
604data8 0x3FE6164BFA7CC06B //ln(1/frcpa(1+ 254/256)
605data8 0x3FE62643FECF9743 //ln(1/frcpa(1+ 255/256)
606//
607// [2;4)
608data8 0xBEB2CC7A38B9355F,0x3F035F2D1833BF4C // A10,A9
609data8 0xBFF51BAA7FD27785,0x3FFC9D5D5B6CDEFF // A2,A1
610data8 0xBF421676F9CB46C7,0x3F7437F2FA1436C6 // A8,A7
611data8 0xBFD7A7041DE592FE,0x3FE9F107FEE8BD29 // A4,A3
612// [4;8)
613data8 0x3F6BBBD68451C0CD,0xBF966EC3272A16F7 // A10,A9
614data8 0x40022A24A39AD769,0x4014190EDF49C8C5 // A2,A1
615data8 0x3FB130FD016EE241,0xBFC151B46E635248 // A8,A7
616data8 0x3FDE8F611965B5FE,0xBFEB5110EB265E3D // A4,A3
617// [8;16)
618data8 0x3F736EF93508626A,0xBF9FE5DBADF58AF1 // A10,A9
619data8 0x40110A9FC5192058,0x40302008A6F96B29 // A2,A1
620data8 0x3FB8E74E0CE1E4B5,0xBFC9B5DA78873656 // A8,A7
621data8 0x3FE99D0DF10022DC,0xBFF829C0388F9484 // A4,A3
622// [16;32)
623data8 0x3F7FFF9D6D7E9269,0xBFAA780A249AEDB1 // A10,A9
624data8 0x402082A807AEA080,0x4045ED9868408013 // A2,A1
625data8 0x3FC4E1E54C2F99B7,0xBFD5DE2D6FFF1490 // A8,A7
626data8 0x3FF75FC89584AE87,0xC006B4BADD886CAE // A4,A3
627// [32;64)
628data8 0x3F8CE54375841A5F,0xBFB801ABCFFA1BE2 // A10,A9
629data8 0x403040A8B1815BDA,0x405B99A917D24B7A // A2,A1
630data8 0x3FD30CAB81BFFA03,0xBFE41AEF61ECF48B // A8,A7
631data8 0x400650CC136BEC43,0xC016022046E8292B // A4,A3
632// [64;128)
633data8 0x3F9B69BD22CAA8B8,0xBFC6D48875B7A213 // A10,A9
634data8 0x40402028CCAA2F6D,0x40709AACEB3CBE0F // A2,A1
635data8 0x3FE22C6A5924761E,0xBFF342F5F224523D // A8,A7
636data8 0x4015CD405CCA331F,0xC025AAD10482C769 // A4,A3
637// [128;256)
638data8 0x3FAAAD9CD0E40D06,0xBFD63FC8505D80CB // A10,A9
639data8 0x40501008D56C2648,0x408364794B0F4376 // A2,A1
640data8 0x3FF1BE0126E00284,0xC002D8E3F6F7F7CA // A8,A7
641data8 0x40258C757E95D860,0xC0357FA8FD398011 // A4,A3
642// [256;512)
643data8 0x3FBA4DAC59D49FEB,0xBFE5F476D1C43A77 // A10,A9
644data8 0x40600800D890C7C6,0x40962C42AAEC8EF0 // A2,A1
645data8 0x40018680ECF19B89,0xC012A3EB96FB7BA4 // A8,A7
646data8 0x40356C4CDD3B60F9,0xC0456A34BF18F440 // A4,A3
647// [512;1024)
648data8 0x3FCA1B54F6225A5A,0xBFF5CD67BA10E048 // A10,A9
649data8 0x407003FED94C58C2,0x40A8F30B4ACBCD22 // A2,A1
650data8 0x40116A135EB66D8C,0xC022891B1CED527E // A8,A7
651data8 0x40455C4617FDD8BC,0xC0555F82729E59C4 // A4,A3
652// [1024;2048)
653data8 0x3FD9FFF9095C6EC9,0xC005B88CB25D76C9 // A10,A9
654data8 0x408001FE58FA734D,0x40BBB953BAABB0F3 // A2,A1
655data8 0x40215B2F9FEB5D87,0xC0327B539DEA5058 // A8,A7
656data8 0x40555444B3E8D64D,0xC0655A2B26F9FC8A // A4,A3
657// [2048;4096)
658data8 0x3FE9F065A1C3D6B1,0xC015ACF6FAE8D78D // A10,A9
659data8 0x409000FE383DD2B7,0x40CE7F5C1E8BCB8B // A2,A1
660data8 0x40315324E5DB2EBE,0xC04274194EF70D18 // A8,A7
661data8 0x4065504353FF2207,0xC075577FE1BFE7B6 // A4,A3
662// [4096;8192)
663data8 0x3FF9E6FBC6B1C70D,0xC025A62DAF76F85D // A10,A9
664data8 0x40A0007E2F61EBE8,0x40E0A2A23FB5F6C3 // A2,A1
665data8 0x40414E9BC0A0141A,0xC0527030F2B69D43 // A8,A7
666data8 0x40754E417717B45B,0xC085562A447258E5 // A4,A3
667//
668data8 0xbfdffffffffaea15 // P1
669data8 0x3FDD8B618D5AF8FE // point of local minimum on [1;2]
670data8 0x3FED67F1C864BEB5 // ln(sqrt(2*Pi))
671data8 0x4008000000000000 // 3.0
672//
673data8 0xBF9E1C289FB224AB,0x3FBF7422445C9460 // A6,A5
674data8 0xBFF01E76D66F8D8A // A0
675data8 0xBFE2788CFC6F91DA // A1 [1.0;1.25)
676data8 0x3FCB8CC69000EB5C,0xBFD41997A0C2C641 // A6,A5
677data8 0x3FFCAB0BFA0EA462 // A0
678data8 0xBFBF19B9BCC38A42 // A0 [1.25;1.5)
679data8 0x3FD51EE4DE0A364C,0xBFE00D7F98A16E4B // A6,A5
680data8 0x40210CE1F327E9E4 // A0
681data8 0x4001DB08F9DFA0CC // A0 [1.5;1.75)
682data8 0x3FE24F606742D252,0xBFEC81D7D12574EC // A6,A5
683data8 0x403BE636A63A9C27 // A0
684data8 0x4000A0CB38D6CF0A // A0 [1.75;2.0)
685data8 0x3FF1029A9DD542B4,0xBFFAD37C209D3B25 // A6,A5
686data8 0x405385E6FD9BE7EA // A0
687data8 0x478895F1C0000000 // Overflow boundary
688data8 0x400062D97D26B523,0xC00A03E1529FF023 // A6,A5
689data8 0x4069204C51E566CE // A0
690data8 0x0000000000000000 // pad
691data8 0x40101476B38FD501,0xC0199DE7B387C0FC // A6,A5
692data8 0x407EB8DAEC83D759 // A0
693data8 0x0000000000000000 // pad
694data8 0x401FDB008D65125A,0xC0296B506E665581 // A6,A5
695data8 0x409226D93107EF66 // A0
696data8 0x0000000000000000 // pad
697data8 0x402FB3EAAF3E7B2D,0xC039521142AD8E0D // A6,A5
698data8 0x40A4EFA4F072792E // A0
699data8 0x0000000000000000 // pad
700data8 0x403FA024C66B2563,0xC0494569F250E691 // A6,A5
701data8 0x40B7B747C9235BB8 // A0
702data8 0x0000000000000000 // pad
703data8 0x404F9607D6DA512C,0xC0593F0B2EDDB4BC // A6,A5
704data8 0x40CA7E29C5F16DE2 // A0
705data8 0x0000000000000000 // pad
706data8 0x405F90C5F613D98D,0xC0693BD130E50AAF // A6,A5
707data8 0x40DD4495238B190C // A0
708data8 0x0000000000000000 // pad
709//
710// polynomial approximation of ln(sin(Pi*x)/(Pi*x)), |x| <= 0.5
711data8 0xBFD58731A486E820,0xBFA4452CC28E15A9 // S16,S14
712data8 0xBFD013F6E1B86C4F,0xBFD5B3F19F7A341F // S8,S6
713data8 0xBFC86A0D5252E778,0xBFC93E08C9EE284B // S12,S10
714data8 0xBFE15132555C9EDD,0xBFFA51A662480E35 // S4,S2
715//
716// [1.0;1.25)
717data8 0xBFA697D6775F48EA,0x3FB9894B682A98E7 // A9,A8
718data8 0xBFCA8969253CFF55,0x3FD15124EFB35D9D // A5,A4
719data8 0xBFC1B00158AB719D,0x3FC5997D04E7F1C1 // A7,A6
720data8 0xBFD9A4D50BAFF989,0x3FEA51A661F5176A // A3,A2
721// [1.25;1.5)
722data8 0x3F838E0D35A6171A,0xBF831BBBD61313B7 // A8,A7
723data8 0x3FB08B40196425D0,0xBFC2E427A53EB830 // A4,A3
724data8 0x3F9285DDDC20D6C3,0xBFA0C90C9C223044 // A6,A5
725data8 0x3FDEF72BC8F5287C,0x3D890B3DAEBC1DFC // A2,A1
726// [1.5;1.75)
727data8 0x3F65D5A7EB31047F,0xBFA44EAC9BFA7FDE // A8,A7
728data8 0x40051FEFE7A663D8,0xC012A5CFE00A2522 // A4,A3
729data8 0x3FD0E1583AB00E08,0xBFF084AF95883BA5 // A6,A5
730data8 0x40185982877AE0A2,0xC015F83DB73B57B7 // A2,A1
731// [1.75;2.0)
732data8 0x3F4A9222032EB39A,0xBF8CBC9587EEA5A3 // A8,A7
733data8 0x3FF795400783BE49,0xC00851BC418B8A25 // A4,A3
734data8 0x3FBBC992783E8C5B,0xBFDFA67E65E89B29 // A6,A5
735data8 0x4012B408F02FAF88,0xC013284CE7CB0C39 // A2,A1
736//
737// roots
738data8 0xC003A7FC9600F86C // -2.4570247382208005860
739data8 0xC009260DBC9E59AF // -3.1435808883499798405
740data8 0xC005FB410A1BD901 // -2.7476826467274126919
741data8 0xC00FA471547C2FE5 // -3.9552942848585979085
742//
743// polynomial approximation of ln(GAMMA(x)) near roots
744// near -2.4570247382208005860
745data8 0x3FF694A6058D9592,0x40136EEBB003A92B // R3,R2
746data8 0x3FF83FE966AF5360,0x3C90323B6D1FE86D // R1,R0
747// near -3.1435808883499798405
748data8 0x405C11371268DA38,0x4039D4D2977D2C23 // R3,R2
749data8 0x401F20A65F2FAC62,0x3CDE9605E3AE7A62 // R1,R0
750// near -2.7476826467274126919
751data8 0xC034185AC31314FF,0x4023267F3C28DFE3 // R3,R2
752data8 0xBFFEA12DA904B194,0x3CA8FB8530BA7689 // R1,R0
753// near -2.7476826467274126919
754data8 0xC0AD25359E70C888,0x406F76DEAEA1B8C6 // R3,R2
755data8 0xC034B99D966C5644,0xBCBDDC0336980B58 // R1,R0
756LOCAL_OBJECT_END(lgammaf_data)
757
758//*********************************************************************
759
760.section .text
761GLOBAL_LIBM_ENTRY(__libm_lgammaf)
762{ .mfi
763      getf.exp      GR_SignExp = f8
764      frcpa.s1      FR_InvX,p0 = f1,f8
765      mov           GR_ExpOf2 = 0x10000
766}
767{ .mfi
768      addl          GR_ad_Data = @ltoff(lgammaf_data),gp
769      fcvt.fx.s1    FR_int_N = f8
770      mov           GR_ExpMask = 0x1ffff
771};;
772{ .mfi
773      getf.sig      GR_Sig = f8
774      fclass.m      p13,p0 = f8,0x1EF // is x NaTVal, NaN,
775                                      // +/-0, +/-INF or +/-deno?
776      mov           GR_ExpBias = 0xffff
777}
778{ .mfi
779      ld8           GR_ad_Data = [GR_ad_Data]
780      fma.s1        FR_Xp1 = f8,f1,f1
781      mov           GR_StirlBound = 0x1000C
782};;
783{ .mfi
784      setf.exp      FR_2 = GR_ExpOf2
785      fmerge.se     FR_x = f1,f8
786      dep.z         GR_Ind = GR_SignExp,3,4
787}
788{ .mfi
789      cmp.eq        p8,p0 = GR_SignExp,GR_ExpBias
790      fcvt.fx.trunc.s1 FR_int_Ntrunc = f8
791      and           GR_Exp = GR_ExpMask,GR_SignExp
792};;
793{ .mfi
794      add           GR_ad_C650 = 0xB20,GR_ad_Data
795      fcmp.lt.s1    p14,p15 = f8,f0
796      extr.u        GR_Ind4T = GR_Sig,55,8
797}
798{ .mfb
799      sub           GR_PureExp = GR_Exp,GR_ExpBias
800      fnorm.s1      FR_NormX = f8
801      // jump if x is NaTVal, NaN, +/-0, +/-INF or +/-deno
802(p13) br.cond.spnt  lgammaf_spec
803};;
804lgammaf_core:
805{ .mfi
806      ldfpd         FR_P1,FR_LocalMin = [GR_ad_C650],16
807      fms.s1        FR_xm2 = f8,f1,f1
808      add           GR_ad_Co = 0x820,GR_ad_Data
809}
810{ .mib
811      ldfpd         FR_P3,FR_P2 = [GR_ad_Data],16
812      cmp.ltu       p9,p0 = GR_SignExp,GR_ExpBias
813      // jump if x is from the interval [1; 2)
814(p8)  br.cond.spnt  lgammaf_1_2
815};;
816{ .mfi
817      setf.sig      FR_int_Ln = GR_PureExp
818      fms.s1        FR_r = FR_InvX,f8,f1
819      shladd        GR_ad_Co = GR_Ind,3,GR_ad_Co
820}
821{ .mib
822      ldfpd         FR_LnSqrt2Pi,FR_3 = [GR_ad_C650],16
823      cmp.lt        p13,p12 = GR_Exp,GR_StirlBound
824      // jump if x is from the interval (0; 1)
825(p9)  br.cond.spnt  lgammaf_0_1
826};;
827{ .mfi
828      ldfpd         FR_Ln2,FR_05 = [GR_ad_Data],16
829      fma.s1        FR_Xp2 = f1,f1,FR_Xp1 // (x+2)
830      shladd        GR_ad_C650 = GR_Ind,2,GR_ad_C650
831}
832{ .mfi
833      add           GR_ad_Ce = 0x20,GR_ad_Co
834      nop.f         0
835      add           GR_ad_C43 = 0x30,GR_ad_Co
836};;
837{ .mfi
838      // load coefficients of polynomial approximation
839      // of ln(GAMMA(x)), 2 <= x < 2^13
840(p13) ldfpd         FR_A10,FR_A9 = [GR_ad_Co],16
841      fcvt.xf       FR_N = FR_int_N
842      cmp.eq.unc    p6,p7 = GR_ExpOf2,GR_SignExp
843}
844{ .mib
845(p13) ldfpd         FR_A8,FR_A7 = [GR_ad_Ce]
846(p14) cmp.le.unc    p9,p0 = GR_StirlBound,GR_Exp
847      // jump if x is less or equal to -2^13
848(p9)  br.cond.spnt  lgammaf_negstirling
849};;
850.pred.rel "mutex",p6,p7
851{ .mfi
852(p13) ldfpd         FR_A6,FR_A5 = [GR_ad_C650],16
853(p6)  fma.s1        FR_x = f0,f0,FR_NormX
854      shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
855}
856{ .mfi
857(p13) ldfpd         FR_A4,FR_A3 = [GR_ad_C43]
858(p7)  fms.s1        FR_x = FR_x,f1,f1
859(p14) mov           GR_ReqBound = 0x20005
860};;
861{ .mfi
862(p13) ldfpd         FR_A2,FR_A1 = [GR_ad_Co],16
863      fms.s1        FR_xm2 = FR_xm2,f1,f1
864(p14) extr.u        GR_Arg = GR_Sig,60,4
865}
866{ .mfi
867      mov           GR_SignOfGamma = 1 // set sign of gamma(x) to 1
868      fcvt.xf       FR_Ntrunc = FR_int_Ntrunc
869      nop.i         0
870};;
871{ .mfi
872      ldfd          FR_T = [GR_ad_T]
873      fma.s1        FR_r2 = FR_r,FR_r,f0
874      shl           GR_ReqBound = GR_ReqBound,3
875}
876{ .mfi
877      add           GR_ad_Co = 0xCA0,GR_ad_Data
878      fnma.s1       FR_Req = FR_Xp1,FR_NormX,f0 // -x*(x+1)
879(p14) shladd        GR_Arg = GR_Exp,4,GR_Arg
880};;
881{ .mfi
882(p13) ldfd          FR_A0 = [GR_ad_C650]
883      fma.s1        FR_Xp3 = FR_2,f1,FR_Xp1 // (x+3)
884(p14) cmp.le.unc    p9,p0 = GR_Arg,GR_ReqBound
885}
886{ .mfi
887(p14) add           GR_ad_Ce = 0x20,GR_ad_Co
888      fma.s1        FR_Xp4 = FR_2,FR_2,FR_NormX // (x+4)
889(p15) add           GR_ad_OvfBound = 0xBB8,GR_ad_Data
890};;
891{ .mfi
892      // load coefficients of polynomial approximation
893      // of ln(sin(Pi*xf)/(Pi*xf)), |xf| <= 0.5
894(p14) ldfpd         FR_S16,FR_S14 = [GR_ad_Co],16
895(p14) fms.s1        FR_Xf = FR_NormX,f1,FR_N  // xf = x - [x]
896(p14) sub           GR_SignOfGamma = r0,GR_SignOfGamma // set sign of
897                                                       // gamma(x) to -1
898}
899{ .mfb
900(p14) ldfpd         FR_S12,FR_S10 = [GR_ad_Ce],16
901      fma.s1        FR_Xp5 = FR_2,FR_2,FR_Xp1 // (x+5)
902      // jump if x is from the interval (-9; 0)
903(p9)  br.cond.spnt  lgammaf_negrecursion
904};;
905{ .mfi
906(p14) ldfpd         FR_S8,FR_S6 = [GR_ad_Co],16
907      fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
908      nop.i         0
909}
910{ .mfb
911(p14) ldfpd         FR_S4,FR_S2 = [GR_ad_Ce],16
912      fma.s1        FR_x2 = FR_x,FR_x,f0
913      // jump if x is from the interval (-2^13; -9)
914(p14) br.cond.spnt  lgammaf_negpoly
915};;
916{ .mfi
917      ldfd          FR_OverflowBound = [GR_ad_OvfBound]
918(p12) fcvt.xf       FR_N = FR_int_Ln
919      // set p9  if signgum is 32-bit int
920      // set p10 if signgum is 64-bit int
921      cmp.eq        p10,p9 = 8,r34
922}
923{ .mfi
924      nop.m         0
925(p12) fma.s1        FR_P10 = FR_P1,FR_r,f1
926      nop.i         0
927};;
928.pred.rel "mutex",p6,p7
929.pred.rel "mutex",p9,p10
930{ .mfi
931      // store sign of gamma(x) as 32-bit int
932(p9)  st4           [r33] = GR_SignOfGamma
933(p6)  fma.s1        FR_xx = FR_x,FR_xm2,f0
934      nop.i         0
935}
936{ .mfi
937      // store sign of gamma(x) as 64-bit int
938(p10) st8           [r33] = GR_SignOfGamma
939(p7)  fma.s1        FR_xx = f0,f0,FR_x
940      nop.i         0
941};;
942{ .mfi
943      nop.m         0
944(p13) fma.s1        FR_A9 = FR_A10,FR_x,FR_A9
945      nop.i         0
946}
947{ .mfi
948      nop.m         0
949(p13) fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
950      nop.i         0
951};;
952{ .mfi
953      nop.m         0
954(p13) fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
955      nop.i         0
956}
957{ .mfi
958      nop.m         0
959(p13) fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
960      nop.i         0
961};;
962{ .mfi
963      nop.m         0
964(p15) fcmp.eq.unc.s1 p8,p0 = FR_NormX,FR_2 // is input argument 2.0?
965      nop.i         0
966}
967{ .mfi
968      nop.m         0
969(p13) fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
970      nop.i         0
971};;
972{ .mfi
973      nop.m         0
974(p12) fma.s1        FR_T = FR_N,FR_Ln2,FR_T
975      nop.i         0
976}
977{ .mfi
978      nop.m         0
979(p12) fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
980      nop.i         0
981};;
982{ .mfi
983      nop.m         0
984(p13) fma.s1        FR_x4 = FR_x2,FR_x2,f0
985      nop.i         0
986}
987{ .mfi
988      nop.m         0
989(p13) fma.s1        FR_x3 = FR_x2,FR_xx,f0
990      nop.i         0
991};;
992{ .mfi
993      nop.m         0
994(p13) fma.s1        FR_A7 = FR_A9,FR_x2,FR_A7
995      nop.i         0
996}
997{ .mfb
998      nop.m         0
999(p8)  fma.s.s0      f8 = f0,f0,f0
1000(p8)  br.ret.spnt   b0 // fast exit for 2.0
1001};;
1002{ .mfi
1003      nop.m         0
1004(p6)  fma.s1        FR_A0 = FR_A0,FR_xm2,f0
1005      nop.i         0
1006}
1007{ .mfi
1008      nop.m         0
1009(p13) fma.s1        FR_A3 = FR_A5,FR_x2,FR_A3
1010      nop.i         0
1011};;
1012{ .mfi
1013      nop.m         0
1014(p15) fcmp.le.unc.s1 p8,p0 = FR_OverflowBound,FR_NormX // overflow test
1015      nop.i         0
1016}
1017{ .mfi
1018      nop.m         0
1019(p12) fms.s1        FR_xm05 = FR_NormX,f1,FR_05
1020      nop.i         0
1021};;
1022{ .mfi
1023      nop.m         0
1024(p12) fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1025      nop.i         0
1026}
1027{ .mfi
1028      nop.m         0
1029(p12) fms.s1        FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX
1030      nop.i         0
1031};;
1032{ .mfi
1033      nop.m         0
1034(p13) fma.s1        FR_A0 = FR_A1,FR_xx,FR_A0
1035      nop.i         0
1036}
1037{ .mfb
1038      nop.m         0
1039(p13) fma.s1        FR_A3 = FR_A7,FR_x4,FR_A3
1040      // jump if result overflows
1041(p8)  br.cond.spnt  lgammaf_overflow
1042};;
1043.pred.rel "mutex",p12,p13
1044{ .mfi
1045      nop.m         0
1046(p12) fma.s.s0      f8 = FR_Ln,FR_xm05,FR_LnSqrt2Pi
1047      nop.i         0
1048}
1049{ .mfb
1050      nop.m         0
1051(p13) fma.s.s0      f8 = FR_A3,FR_x3,FR_A0
1052      br.ret.sptk   b0
1053};;
1054// branch for calculating of ln(GAMMA(x)) for 0 < x < 1
1055//---------------------------------------------------------------------
1056.align 32
1057lgammaf_0_1:
1058{ .mfi
1059      getf.sig      GR_Ind = FR_Xp1
1060      fma.s1        FR_r2 = FR_r,FR_r,f0
1061      mov           GR_fff7 = 0xFFF7
1062}
1063{ .mfi
1064      ldfpd         FR_Ln2,FR_05 = [GR_ad_Data],16
1065      fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1066      // input argument can't be equal to 1.0
1067      cmp.eq        p0,p14 = r0,r0
1068};;
1069{ .mfi
1070      getf.exp      GR_Exp = FR_w
1071      fcvt.xf       FR_N = FR_int_Ln
1072      add           GR_ad_Co = 0xCE0,GR_ad_Data
1073}
1074{ .mfi
1075      shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1076      fma.s1        FR_P10 = FR_P1,FR_r,f1
1077      add           GR_ad_Ce = 0xD00,GR_ad_Data
1078};;
1079{ .mfi
1080      ldfd          FR_T = [GR_ad_T]
1081      fma.s1        FR_w2 = FR_w,FR_w,f0
1082      extr.u        GR_Ind = GR_Ind,61,2
1083}
1084{ .mfi
1085      nop.m         0
1086      fma.s1        FR_Q32 = FR_P3,FR_w,FR_P2
1087////      add           GR_ad_C0 = 0xB30,GR_ad_Data
1088      add           GR_ad_C0 = 0xB38,GR_ad_Data
1089};;
1090{ .mfi
1091      and           GR_Exp = GR_Exp,GR_ExpMask
1092      nop.f         0
1093      shladd        GR_IndX8 = GR_Ind,3,r0
1094}
1095{ .mfi
1096      shladd        GR_IndX2 = GR_Ind,1,r0
1097      fma.s1        FR_Q10 = FR_P1,FR_w,f1
1098      cmp.eq        p6,p15 = 0,GR_Ind
1099};;
1100{ .mfi
1101      shladd        GR_ad_Co = GR_IndX8,3,GR_ad_Co
1102(p6)  fma.s1        FR_x = f0,f0,FR_NormX
1103      shladd        GR_ad_C0 = GR_IndX2,4,GR_ad_C0
1104}
1105{ .mfi
1106      shladd        GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
1107      nop.f         0
1108(p15) cmp.eq.unc    p7,p8 = 1,GR_Ind
1109};;
1110.pred.rel "mutex",p7,p8
1111{ .mfi
1112      ldfpd         FR_A8,FR_A7 = [GR_ad_Co],16
1113(p7)  fms.s1        FR_x = FR_NormX,f1,FR_LocalMin
1114      cmp.ge        p10,p11 = GR_Exp,GR_fff7
1115}
1116{ .mfb
1117      ldfpd         FR_A6,FR_A5 = [GR_ad_Ce],16
1118(p8)  fma.s1        FR_x = f1,f1,FR_NormX
1119      br.cond.sptk  lgamma_0_2_core
1120};;
1121// branch for calculating of ln(GAMMA(x)) for 1 <= x < 2
1122//---------------------------------------------------------------------
1123.align 32
1124lgammaf_1_2:
1125{ .mfi
1126      add           GR_ad_Co = 0xCF0,GR_ad_Data
1127      fcmp.eq.s1    p14,p0 = f1,FR_NormX // is input argument 1.0?
1128      extr.u        GR_Ind = GR_Sig,61,2
1129}
1130{ .mfi
1131      add           GR_ad_Ce = 0xD10,GR_ad_Data
1132      nop.f         0
1133////      add           GR_ad_C0 = 0xB40,GR_ad_Data
1134      add           GR_ad_C0 = 0xB48,GR_ad_Data
1135};;
1136{ .mfi
1137      shladd        GR_IndX8 = GR_Ind,3,r0
1138      nop.f         0
1139      shladd        GR_IndX2 = GR_Ind,1,r0
1140}
1141{ .mfi
1142      cmp.eq        p6,p15 = 0,GR_Ind // p6 <- x from [1;1.25)
1143      nop.f         0
1144      cmp.ne        p9,p0 = r0,r0
1145};;
1146{ .mfi
1147      shladd        GR_ad_Co = GR_IndX8,3,GR_ad_Co
1148(p6)  fms.s1        FR_x = FR_NormX,f1,f1 // reduced x for [1;1.25)
1149      shladd        GR_ad_C0 = GR_IndX2,4,GR_ad_C0
1150}
1151{ .mfi
1152      shladd        GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
1153(p14) fma.s.s0      f8 = f0,f0,f0
1154(p15) cmp.eq.unc    p7,p8 = 1,GR_Ind // p7 <- x from [1.25;1.5)
1155};;
1156.pred.rel "mutex",p7,p8
1157{ .mfi
1158      ldfpd         FR_A8,FR_A7 = [GR_ad_Co],16
1159(p7)  fms.s1        FR_x = FR_xm2,f1,FR_LocalMin
1160      nop.i         0
1161}
1162{ .mfi
1163      ldfpd         FR_A6,FR_A5 = [GR_ad_Ce],16
1164(p8)  fma.s1        FR_x = f0,f0,FR_NormX
1165(p9)  cmp.eq.unc    p10,p11 = r0,r0
1166};;
1167lgamma_0_2_core:
1168{ .mmi
1169      ldfpd         FR_A4,FR_A3 = [GR_ad_Co],16
1170      ldfpd         FR_A2,FR_A1 = [GR_ad_Ce],16
1171      mov           GR_SignOfGamma = 1 // set sign of gamma(x) to 1
1172};;
1173{ .mfi
1174//      add           GR_ad_C0 = 8,GR_ad_C0
1175      ldfd          FR_A0 = [GR_ad_C0]
1176      nop.f         0
1177      // set p13 if signgum is 32-bit int
1178      // set p15 if signgum is 64-bit int
1179      cmp.eq        p15,p13 = 8,r34
1180};;
1181.pred.rel "mutex",p13,p15
1182{ .mmf
1183      // store sign of gamma(x)
1184(p13) st4           [r33] = GR_SignOfGamma // as 32-bit int
1185(p15) st8           [r33] = GR_SignOfGamma // as 64-bit int
1186(p11) fma.s1        FR_Q32 = FR_Q32,FR_w2,FR_Q10
1187};;
1188{ .mfb
1189      nop.m         0
1190(p10) fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1191(p14) br.ret.spnt   b0 // fast exit for 1.0
1192};;
1193{ .mfi
1194      nop.m         0
1195(p10) fma.s1        FR_T = FR_N,FR_Ln2,FR_T
1196      cmp.eq        p6,p7 = 0,GR_Ind // p6 <- x from [1;1.25)
1197}
1198{ .mfi
1199      nop.m         0
1200      fma.s1        FR_x2 = FR_x,FR_x,f0
1201      cmp.eq        p8,p0 = r0,r0 // set p8 to 1 that means we on [1;2]
1202};;
1203{ .mfi
1204      nop.m         0
1205(p11) fma.s1        FR_Ln = FR_Q32,FR_w,f0
1206      nop.i         0
1207}
1208{ .mfi
1209      nop.m         0
1210      nop.f         0
1211      nop.i         0
1212};;
1213.pred.rel "mutex",p6,p7
1214{ .mfi
1215      nop.m         0
1216(p6)  fma.s1        FR_xx = f0,f0,FR_x
1217      nop.i         0
1218}
1219{ .mfi
1220      nop.m         0
1221(p7)  fma.s1        FR_xx = f0,f0,f1
1222      nop.i         0
1223};;
1224{ .mfi
1225      nop.m         0
1226      fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
1227      nop.i         0
1228}
1229{ .mfi
1230      nop.m         0
1231      fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
1232(p9)  cmp.ne        p8,p0 = r0,r0 // set p8 to 0 that means we on [0;1]
1233};;
1234{ .mfi
1235      nop.m         0
1236      fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
1237      nop.i         0
1238}
1239{ .mfi
1240      nop.m         0
1241      fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
1242      nop.i         0
1243};;
1244{ .mfi
1245      nop.m         0
1246      fma.s1        FR_x4 = FR_x2,FR_x2,f0
1247      nop.i         0
1248}
1249{ .mfi
1250      nop.m         0
1251(p10) fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1252      nop.i         0
1253};;
1254{ .mfi
1255      nop.m         0
1256      fma.s1        FR_A5 = FR_A7,FR_x2,FR_A5
1257      nop.i         0
1258}
1259{ .mfi
1260      nop.m         0
1261      fma.s1        FR_A1 = FR_A3,FR_x2,FR_A1
1262      nop.i         0
1263};;
1264.pred.rel "mutex",p9,p8
1265{ .mfi
1266      nop.m         0
1267(p9)  fms.d.s1      FR_A0 = FR_A0,FR_xx,FR_Ln
1268      nop.i         0
1269}
1270{ .mfi
1271      nop.m         0
1272(p8)  fms.s1        FR_A0 = FR_A0,FR_xx,f0
1273      nop.i         0
1274};;
1275{ .mfi
1276      nop.m         0
1277      fma.d.s1      FR_A1 = FR_A5,FR_x4,FR_A1
1278      nop.i         0
1279}
1280{ .mfi
1281      nop.m         0
1282      nop.f         0
1283      nop.i         0
1284};;
1285.pred.rel "mutex",p6,p7
1286{ .mfi
1287      nop.m         0
1288(p6)  fma.s.s0      f8 = FR_A1,FR_x2,FR_A0
1289      nop.i         0
1290}
1291{ .mfb
1292      nop.m         0
1293(p7)  fma.s.s0      f8 = FR_A1,FR_x,FR_A0
1294      br.ret.sptk   b0
1295};;
1296// branch for calculating of ln(GAMMA(x)) for -9 < x < 1
1297//---------------------------------------------------------------------
1298.align 32
1299lgammaf_negrecursion:
1300{ .mfi
1301      getf.sig      GR_N = FR_int_Ntrunc
1302      fms.s1        FR_1pXf = FR_Xp2,f1,FR_Ntrunc // 1 + (x+1) - [x]
1303      mov           GR_Neg2 = 2
1304}
1305{ .mfi
1306      add           GR_ad_Co = 0xCE0,GR_ad_Data
1307      fms.s1        FR_Xf = FR_Xp1,f1,FR_Ntrunc // (x+1) - [x]
1308      mov           GR_Neg4 = 4
1309};;
1310{ .mfi
1311      add           GR_ad_Ce = 0xD00,GR_ad_Data
1312      fma.s1        FR_Xp6 = FR_2,FR_2,FR_Xp2 // (x+6)
1313      add           GR_ad_C0 = 0xB30,GR_ad_Data
1314}
1315{ .mfi
1316      sub           GR_Neg2 = r0,GR_Neg2
1317      fma.s1        FR_Xp7 = FR_2,FR_3,FR_Xp1 // (x+7)
1318      sub           GR_Neg4 = r0,GR_Neg4
1319};;
1320{ .mfi
1321      cmp.ne        p8,p0 = r0,GR_N
1322      fcmp.eq.s1    p13,p0 = FR_NormX,FR_Ntrunc
1323      and           GR_IntNum = 0xF,GR_N
1324}
1325{ .mfi
1326      cmp.lt        p6,p0 = GR_N,GR_Neg2
1327      fma.s1        FR_Xp8 = FR_2,FR_3,FR_Xp2 // (x+8)
1328      cmp.lt        p7,p0 = GR_N,GR_Neg4
1329};;
1330{ .mfi
1331      getf.d        GR_Arg = FR_NormX
1332(p6)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp3,f0
1333(p8)  tbit.z.unc    p14,p15 = GR_IntNum,0
1334}
1335{ .mfi
1336      sub           GR_RootInd = 0xE,GR_IntNum
1337(p7)  fma.s1        FR_Xp4 = FR_Xp4,FR_Xp5,f0
1338      add           GR_ad_Root = 0xDE0,GR_ad_Data
1339};;
1340{ .mfi
1341      shladd        GR_ad_Root = GR_RootInd,3,GR_ad_Root
1342      fms.s1        FR_x = FR_Xp1,f1,FR_Ntrunc // (x+1) - [x]
1343      nop.i         0
1344}
1345{ .mfb
1346      nop.m         0
1347      nop.f         0
1348(p13) br.cond.spnt  lgammaf_singularity
1349};;
1350.pred.rel "mutex",p14,p15
1351{ .mfi
1352      cmp.gt        p6,p0 = 0xA,GR_IntNum
1353(p14) fma.s1        FR_Req = FR_Req,FR_Xf,f0
1354      cmp.gt        p7,p0 = 0xD,GR_IntNum
1355}
1356{ .mfi
1357(p15) mov           GR_SignOfGamma = 1 // set sign of gamma(x) to 1
1358(p15) fnma.s1       FR_Req = FR_Req,FR_Xf,f0
1359      cmp.leu       p0,p13 = 2,GR_RootInd
1360};;
1361{ .mfi
1362      nop.m         0
1363(p6)  fma.s1        FR_Xp6 = FR_Xp6,FR_Xp7,f0
1364(p13) add           GR_ad_RootCo = 0xE00,GR_ad_Data
1365};;
1366{ .mfi
1367      nop.m         0
1368      fcmp.eq.s1    p12,p11 = FR_1pXf,FR_2
1369      nop.i         0
1370};;
1371{ .mfi
1372      getf.sig      GR_Sig = FR_1pXf
1373      fcmp.le.s1    p9,p0 = FR_05,FR_Xf
1374      nop.i         0
1375}
1376{ .mfi
1377(p13) shladd        GR_RootInd = GR_RootInd,4,r0
1378(p7)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp4,f0
1379(p8)  cmp.gt.unc    p10,p0 = 0x9,GR_IntNum
1380};;
1381.pred.rel "mutex",p11,p12
1382{ .mfi
1383      nop.m         0
1384(p10) fma.s1        FR_Req = FR_Req,FR_Xp8,f0
1385(p11) extr.u        GR_Ind = GR_Sig,61,2
1386}
1387{ .mfi
1388(p13) add           GR_RootInd = GR_RootInd,GR_RootInd
1389      nop.f         0
1390(p12) mov           GR_Ind = 3
1391};;
1392{ .mfi
1393      shladd        GR_IndX2 = GR_Ind,1,r0
1394      nop.f         0
1395      cmp.gt        p14,p0 = 2,GR_Ind
1396}
1397{ .mfi
1398      shladd        GR_IndX8 = GR_Ind,3,r0
1399      nop.f         0
1400      cmp.eq        p6,p0 = 1,GR_Ind
1401};;
1402.pred.rel "mutex",p6,p9
1403{ .mfi
1404      shladd        GR_ad_Co = GR_IndX8,3,GR_ad_Co
1405(p6)  fms.s1        FR_x = FR_Xf,f1,FR_LocalMin
1406      cmp.gt        p10,p0 = 0xB,GR_IntNum
1407}
1408{ .mfi
1409      shladd        GR_ad_Ce = GR_IndX8,3,GR_ad_Ce
1410(p9)  fma.s1        FR_x = f0,f0,FR_1pXf
1411      shladd        GR_ad_C0 = GR_IndX2,4,GR_ad_C0
1412};;
1413{ .mfi
1414      // load coefficients of polynomial approximation
1415      // of ln(GAMMA(x)), 1 <= x < 2
1416      ldfpd         FR_A8,FR_A7 = [GR_ad_Co],16
1417(p10) fma.s1        FR_Xp2 = FR_Xp2,FR_Xp6,f0
1418      add           GR_ad_C0 = 8,GR_ad_C0
1419}
1420{ .mfi
1421      ldfpd         FR_A6,FR_A5 = [GR_ad_Ce],16
1422      nop.f         0
1423(p14) add           GR_ad_Root = 0x10,GR_ad_Root
1424};;
1425{ .mfi
1426      ldfpd         FR_A4,FR_A3 = [GR_ad_Co],16
1427      nop.f         0
1428      add           GR_ad_RootCe = 0xE10,GR_ad_Data
1429}
1430{ .mfi
1431      ldfpd         FR_A2,FR_A1 = [GR_ad_Ce],16
1432      nop.f         0
1433(p14) add           GR_RootInd = 0x40,GR_RootInd
1434};;
1435{ .mmi
1436      ldfd          FR_A0 = [GR_ad_C0]
1437(p13) add           GR_ad_RootCo = GR_ad_RootCo,GR_RootInd
1438(p13) add           GR_ad_RootCe = GR_ad_RootCe,GR_RootInd
1439};;
1440{ .mmi
1441(p13) ld8           GR_Root = [GR_ad_Root]
1442(p13) ldfd          FR_Root = [GR_ad_Root]
1443      mov           GR_ExpBias = 0xffff
1444};;
1445{ .mfi
1446      nop.m         0
1447      fma.s1        FR_x2 = FR_x,FR_x,f0
1448      nop.i         0
1449}
1450{ .mlx
1451(p8)  cmp.gt.unc    p10,p0 = 0xF,GR_IntNum
1452      movl          GR_Dx = 0x000000014F8B588E
1453};;
1454{ .mfi
1455      // load coefficients of polynomial approximation
1456      // of ln(GAMMA(x)), x is close to one of negative roots
1457(p13) ldfpd         FR_R3,FR_R2 = [GR_ad_RootCo]
1458      // arguments for logarithm
1459(p10) fma.s1        FR_Req = FR_Req,FR_Xp2,f0
1460      mov           GR_ExpMask = 0x1ffff
1461}
1462{ .mfi
1463(p13) ldfpd         FR_R1,FR_R0 = [GR_ad_RootCe]
1464      nop.f         0
1465      // set p9 if signgum is 32-bit int
1466      // set p8 if signgum is 64-bit int
1467      cmp.eq        p8,p9 = 8,r34
1468};;
1469.pred.rel "mutex",p9,p8
1470{ .mfi
1471(p9)  st4           [r33] = GR_SignOfGamma // as 32-bit int
1472      fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
1473(p13) sub           GR_Root = GR_Arg,GR_Root
1474}
1475{ .mfi
1476(p8)  st8           [r33] = GR_SignOfGamma // as 64-bit int
1477      fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
1478      nop.i         0
1479};;
1480{ .mfi
1481      nop.m         0
1482      fms.s1        FR_w = FR_Req,f1,f1
1483(p13) add           GR_Root = GR_Root,GR_Dx
1484}
1485{ .mfi
1486      nop.m         0
1487      nop.f         0
1488(p13) add           GR_2xDx = GR_Dx,GR_Dx
1489};;
1490{ .mfi
1491      nop.m         0
1492      fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
1493      nop.i         0
1494}
1495{ .mfi
1496      nop.m         0
1497      fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
1498(p13) cmp.leu.unc   p10,p0 = GR_Root,GR_2xDx
1499};;
1500{ .mfi
1501      nop.m         0
1502      frcpa.s1      FR_InvX,p0 = f1,FR_Req
1503      nop.i         0
1504}
1505{ .mfi
1506      nop.m         0
1507(p10) fms.s1        FR_rx = FR_NormX,f1,FR_Root
1508      nop.i         0
1509};;
1510{ .mfi
1511      getf.exp      GR_SignExp = FR_Req
1512      fma.s1        FR_x4 = FR_x2,FR_x2,f0
1513      nop.i         0
1514};;
1515{ .mfi
1516      getf.sig      GR_Sig = FR_Req
1517      fma.s1        FR_A5 = FR_A7,FR_x2,FR_A5
1518      nop.i         0
1519};;
1520{ .mfi
1521      sub           GR_PureExp = GR_SignExp,GR_ExpBias
1522      fma.s1        FR_w2 = FR_w,FR_w,f0
1523      nop.i         0
1524}
1525{ .mfi
1526      nop.m         0
1527      fma.s1        FR_Q32 = FR_P3,FR_w,FR_P2
1528      nop.i         0
1529};;
1530{ .mfi
1531      setf.sig      FR_int_Ln = GR_PureExp
1532      fma.s1        FR_A1 = FR_A3,FR_x2,FR_A1
1533      extr.u        GR_Ind4T = GR_Sig,55,8
1534}
1535{ .mfi
1536      nop.m         0
1537      fma.s1        FR_Q10 = FR_P1,FR_w,f1
1538      nop.i         0
1539};;
1540{ .mfi
1541      shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1542      fms.s1        FR_r = FR_InvX,FR_Req,f1
1543      nop.i         0
1544}
1545{ .mfi
1546      nop.m         0
1547(p10) fms.s1        FR_rx2 = FR_rx,FR_rx,f0
1548      nop.i         0
1549};;
1550{ .mfi
1551      ldfd          FR_T = [GR_ad_T]
1552(p10) fma.s1        FR_R2 = FR_R3,FR_rx,FR_R2
1553      nop.i         0
1554}
1555{ .mfi
1556      nop.m         0
1557(p10) fma.s1        FR_R0 = FR_R1,FR_rx,FR_R0
1558      nop.i         0
1559};;
1560{ .mfi
1561      getf.exp      GR_Exp = FR_w
1562      fma.s1        FR_A1 = FR_A5,FR_x4,FR_A1
1563      mov           GR_ExpMask = 0x1ffff
1564}
1565{ .mfi
1566      nop.m         0
1567      fma.s1        FR_Q32 = FR_Q32, FR_w2,FR_Q10
1568      nop.i         0
1569};;
1570{ .mfi
1571      nop.m         0
1572      fma.s1        FR_r2 = FR_r,FR_r,f0
1573      mov           GR_fff7 = 0xFFF7
1574}
1575{ .mfi
1576      nop.m         0
1577      fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1578      nop.i         0
1579};;
1580{ .mfi
1581      nop.m         0
1582      fma.s1        FR_P10 = FR_P1,FR_r,f1
1583      and           GR_Exp = GR_ExpMask,GR_Exp
1584}
1585{ .mfb
1586      nop.m         0
1587(p10) fma.s.s0      f8 = FR_R2,FR_rx2,FR_R0
1588(p10) br.ret.spnt   b0 // exit for arguments close to negative roots
1589};;
1590{ .mfi
1591      nop.m         0
1592      fcvt.xf       FR_N = FR_int_Ln
1593      nop.i         0
1594}
1595{ .mfi
1596      cmp.ge        p14,p15 = GR_Exp,GR_fff7
1597      nop.f         0
1598      nop.i         0
1599};;
1600{ .mfi
1601      nop.m         0
1602      fma.s1        FR_A0 = FR_A1,FR_x,FR_A0
1603      nop.i         0
1604}
1605{ .mfi
1606      nop.m         0
1607(p15) fma.s1        FR_Ln = FR_Q32,FR_w,f0
1608      nop.i         0
1609};;
1610{ .mfi
1611      nop.m         0
1612(p14) fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1613      cmp.eq        p6,p7 = 0,GR_Ind
1614};;
1615{ .mfi
1616      nop.m         0
1617(p14) fma.s1        FR_T = FR_N,FR_Ln2,FR_T
1618      nop.i         0
1619};;
1620{ .mfi
1621      nop.m         0
1622(p14) fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1623      nop.i         0
1624};;
1625.pred.rel "mutex",p6,p7
1626{ .mfi
1627      nop.m         0
1628(p6)  fms.s.s0      f8 = FR_A0,FR_x,FR_Ln
1629      nop.i         0
1630}
1631{ .mfb
1632      nop.m         0
1633(p7)  fms.s.s0      f8 = FR_A0,f1,FR_Ln
1634      br.ret.sptk   b0
1635};;
1636
1637// branch for calculating of ln(GAMMA(x)) for x < -2^13
1638//---------------------------------------------------------------------
1639.align 32
1640lgammaf_negstirling:
1641{ .mfi
1642      shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1643      fms.s1        FR_Xf = FR_NormX,f1,FR_N  // xf = x - [x]
1644      mov           GR_SingBound = 0x10016
1645}
1646{ .mfi
1647      add           GR_ad_Co = 0xCA0,GR_ad_Data
1648      fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1649      nop.i         0
1650};;
1651{ .mfi
1652      ldfd          FR_T = [GR_ad_T]
1653      fcvt.xf       FR_int_Ln = FR_int_Ln
1654      cmp.le        p6,p0 = GR_SingBound,GR_Exp
1655}
1656{ .mfb
1657      add           GR_ad_Ce = 0x20,GR_ad_Co
1658      fma.s1        FR_r2 = FR_r,FR_r,f0
1659(p6)  br.cond.spnt  lgammaf_singularity
1660};;
1661{ .mfi
1662      // load coefficients of polynomial approximation
1663      // of ln(sin(Pi*xf)/(Pi*xf)), |xf| <= 0.5
1664      ldfpd         FR_S16,FR_S14 = [GR_ad_Co],16
1665      fma.s1        FR_P10 = FR_P1,FR_r,f1
1666      nop.i         0
1667}
1668{ .mfi
1669      ldfpd         FR_S12,FR_S10 = [GR_ad_Ce],16
1670      fms.s1        FR_xm05 = FR_NormX,f1,FR_05
1671      nop.i         0
1672};;
1673{ .mmi
1674      ldfpd         FR_S8,FR_S6 = [GR_ad_Co],16
1675      ldfpd         FR_S4,FR_S2 = [GR_ad_Ce],16
1676      nop.i         0
1677};;
1678{ .mfi
1679      getf.sig      GR_N = FR_int_Ntrunc // signgam calculation
1680      fma.s1        FR_Xf2 = FR_Xf,FR_Xf,f0
1681      nop.i         0
1682};;
1683{ .mfi
1684      nop.m         0
1685      frcpa.s1      FR_InvXf,p0 = f1,FR_Xf
1686      nop.i         0
1687};;
1688{ .mfi
1689      getf.d        GR_Arg = FR_Xf
1690      fcmp.eq.s1    p6,p0 = FR_NormX,FR_N
1691      mov           GR_ExpBias = 0x3FF
1692};;
1693{ .mfi
1694      nop.m         0
1695      fma.s1        FR_T = FR_int_Ln,FR_Ln2,FR_T
1696      extr.u        GR_Exp = GR_Arg,52,11
1697}
1698{ .mfi
1699      nop.m         0
1700      fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1701      nop.i         0
1702};;
1703{ .mfi
1704      sub           GR_PureExp = GR_Exp,GR_ExpBias
1705      fma.s1        FR_S14 = FR_S16,FR_Xf2,FR_S14
1706      extr.u        GR_Ind4T = GR_Arg,44,8
1707}
1708{ .mfb
1709      mov           GR_SignOfGamma = 1 // set signgam to -1
1710      fma.s1        FR_S10 = FR_S12,FR_Xf2,FR_S10
1711(p6)  br.cond.spnt  lgammaf_singularity
1712};;
1713{ .mfi
1714      setf.sig      FR_int_Ln = GR_PureExp
1715      fms.s1        FR_rf = FR_InvXf,FR_Xf,f1
1716      // set p14 if GR_N is even
1717      tbit.z        p14,p0 = GR_N,0
1718}
1719{ .mfi
1720      shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1721      fma.s1        FR_Xf4 = FR_Xf2,FR_Xf2,f0
1722      nop.i         0
1723};;
1724{ .mfi
1725(p14) sub           GR_SignOfGamma = r0,GR_SignOfGamma // set signgam to -1
1726      fma.s1        FR_S6 = FR_S8,FR_Xf2,FR_S6
1727      nop.i         0
1728}
1729{ .mfi
1730      // set p9  if signgum is 32-bit int
1731      // set p10 if signgum is 64-bit int
1732      cmp.eq        p10,p9 = 8,r34
1733      fma.s1        FR_S2 = FR_S4,FR_Xf2,FR_S2
1734      nop.i         0
1735};;
1736{ .mfi
1737      ldfd          FR_Tf = [GR_ad_T]
1738      fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1739      nop.i         0
1740}
1741{ .mfi
1742      nop.m         0
1743      fma.s1        FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX
1744      nop.i         0
1745};;
1746.pred.rel "mutex",p9,p10
1747{ .mfi
1748(p9)  st4           [r33] = GR_SignOfGamma  // as 32-bit int
1749      fma.s1        FR_rf2 = FR_rf,FR_rf,f0
1750      nop.i         0
1751}
1752{ .mfi
1753(p10) st8           [r33] = GR_SignOfGamma  // as 64-bit int
1754      fma.s1        FR_S10 = FR_S14,FR_Xf4,FR_S10
1755      nop.i         0
1756};;
1757{ .mfi
1758      nop.m         0
1759      fma.s1        FR_P32f = FR_P3,FR_rf,FR_P2
1760      nop.i         0
1761}
1762{ .mfi
1763      nop.m         0
1764      fma.s1        FR_Xf8 = FR_Xf4,FR_Xf4,f0
1765      nop.i         0
1766};;
1767{ .mfi
1768      nop.m         0
1769      fma.s1        FR_P10f = FR_P1,FR_rf,f1
1770      nop.i         0
1771}
1772{ .mfi
1773      nop.m         0
1774      fma.s1        FR_S2 = FR_S6,FR_Xf4,FR_S2
1775      nop.i         0
1776};;
1777{ .mfi
1778      nop.m         0
1779      fms.s1        FR_Ln = FR_Ln,FR_xm05,FR_LnSqrt2Pi
1780      nop.i         0
1781};;
1782{ .mfi
1783      nop.m         0
1784      fcvt.xf       FR_Nf = FR_int_Ln
1785      nop.i         0
1786};;
1787{ .mfi
1788      nop.m         0
1789      fma.s1        FR_S2 = FR_S10,FR_Xf8,FR_S2
1790      nop.i         0
1791};;
1792{ .mfi
1793      nop.m         0
1794      fma.s1        FR_Tf = FR_Nf,FR_Ln2,FR_Tf
1795      nop.i         0
1796}
1797{ .mfi
1798      nop.m         0
1799      fma.s1        FR_P32f = FR_P32f,FR_rf2,FR_P10f // ??????
1800      nop.i         0
1801};;
1802{ .mfi
1803      nop.m         0
1804      fnma.s1       FR_Ln = FR_S2,FR_Xf2,FR_Ln
1805      nop.i         0
1806};;
1807{ .mfi
1808      nop.m         0
1809      fma.s1        FR_Lnf = FR_P32f,FR_rf,FR_Tf
1810      nop.i         0
1811};;
1812{ .mfb
1813      nop.m         0
1814      fms.s.s0      f8 = FR_Ln,f1,FR_Lnf
1815      br.ret.sptk   b0
1816};;
1817// branch for calculating of ln(GAMMA(x)) for -2^13 < x < -9
1818//---------------------------------------------------------------------
1819.align 32
1820lgammaf_negpoly:
1821{ .mfi
1822      getf.d        GR_Arg = FR_Xf
1823      frcpa.s1      FR_InvXf,p0 = f1,FR_Xf
1824      mov           GR_ExpBias = 0x3FF
1825}
1826{ .mfi
1827      nop.m         0
1828      fma.s1        FR_Xf2 = FR_Xf,FR_Xf,f0
1829      nop.i         0
1830};;
1831{ .mfi
1832      getf.sig      GR_N = FR_int_Ntrunc
1833      fcvt.xf       FR_N = FR_int_Ln
1834      mov           GR_SignOfGamma = 1
1835}
1836{ .mfi
1837      nop.m         0
1838      fma.s1        FR_A9 = FR_A10,FR_x,FR_A9
1839      nop.i         0
1840};;
1841{ .mfi
1842      nop.m         0
1843      fma.s1        FR_P10 = FR_P1,FR_r,f1
1844      extr.u        GR_Exp = GR_Arg,52,11
1845}
1846{ .mfi
1847      nop.m         0
1848      fma.s1        FR_x4 = FR_x2,FR_x2,f0
1849      nop.i         0
1850};;
1851{ .mfi
1852      sub           GR_PureExp = GR_Exp,GR_ExpBias
1853      fma.s1        FR_A7 = FR_A8,FR_x,FR_A7
1854      tbit.z        p14,p0 = GR_N,0
1855}
1856{ .mfi
1857      nop.m         0
1858      fma.s1        FR_A5 = FR_A6,FR_x,FR_A5
1859      nop.i         0
1860};;
1861{ .mfi
1862      setf.sig      FR_int_Ln = GR_PureExp
1863      fma.s1        FR_A3 = FR_A4,FR_x,FR_A3
1864      nop.i         0
1865}
1866{ .mfi
1867      nop.m         0
1868      fma.s1        FR_A1 = FR_A2,FR_x,FR_A1
1869(p14) sub           GR_SignOfGamma = r0,GR_SignOfGamma
1870};;
1871{ .mfi
1872      nop.m         0
1873      fms.s1        FR_rf = FR_InvXf,FR_Xf,f1
1874      nop.i         0
1875}
1876{ .mfi
1877      nop.m         0
1878      fma.s1        FR_Xf4 = FR_Xf2,FR_Xf2,f0
1879      nop.i         0
1880};;
1881{ .mfi
1882      nop.m         0
1883      fma.s1        FR_S14 = FR_S16,FR_Xf2,FR_S14
1884      nop.i         0
1885}
1886{ .mfi
1887      nop.m         0
1888      fma.s1        FR_S10 = FR_S12,FR_Xf2,FR_S10
1889      nop.i         0
1890};;
1891{ .mfi
1892      nop.m         0
1893      fma.s1        FR_T = FR_N,FR_Ln2,FR_T
1894      nop.i         0
1895}
1896{ .mfi
1897      nop.m         0
1898      fma.s1        FR_P32 = FR_P32,FR_r2,FR_P10
1899      nop.i         0
1900};;
1901{ .mfi
1902      nop.m         0
1903      fma.s1        FR_S6 = FR_S8,FR_Xf2,FR_S6
1904      extr.u        GR_Ind4T = GR_Arg,44,8
1905}
1906{ .mfi
1907      nop.m         0
1908      fma.s1        FR_S2 = FR_S4,FR_Xf2,FR_S2
1909      nop.i         0
1910};;
1911{ .mfi
1912      nop.m         0
1913      fma.s1        FR_A7 = FR_A9,FR_x2,FR_A7
1914      nop.i         0
1915}
1916{ .mfi
1917      shladd        GR_ad_T = GR_Ind4T,3,GR_ad_Data
1918      fma.s1        FR_A3 = FR_A5,FR_x2,FR_A3
1919      nop.i         0
1920};;
1921{ .mfi
1922      nop.m         0
1923      fma.s1        FR_Xf8 = FR_Xf4,FR_Xf4,f0
1924      nop.i         0
1925}
1926{ .mfi
1927      nop.m         0
1928      fma.s1        FR_rf2 = FR_rf,FR_rf,f0
1929      nop.i         0
1930};;
1931{ .mfi
1932      nop.m         0
1933      fma.s1        FR_P32f = FR_P3,FR_rf,FR_P2
1934      nop.i         0
1935}
1936{ .mfi
1937      nop.m         0
1938      fma.s1        FR_P10f = FR_P1,FR_rf,f1
1939      nop.i         0
1940};;
1941{ .mfi
1942      ldfd          FR_Tf = [GR_ad_T]
1943      fma.s1        FR_Ln = FR_P32,FR_r,FR_T
1944      nop.i         0
1945}
1946{ .mfi
1947      nop.m         0
1948      fma.s1        FR_A0 = FR_A1,FR_x,FR_A0
1949      nop.i         0
1950};;
1951{ .mfi
1952      nop.m         0
1953      fma.s1        FR_S10 = FR_S14,FR_Xf4,FR_S10
1954      nop.i         0
1955}
1956{ .mfi
1957      nop.m         0
1958      fma.s1        FR_S2 = FR_S6,FR_Xf4,FR_S2
1959      nop.i         0
1960};;
1961{ .mfi
1962      nop.m         0
1963      fcvt.xf       FR_Nf = FR_int_Ln
1964      nop.i         0
1965}
1966{ .mfi
1967      nop.m         0
1968      fma.s1        FR_A3 = FR_A7,FR_x4,FR_A3
1969      nop.i         0
1970};;
1971{ .mfi
1972      nop.m         0
1973      fcmp.eq.s1    p13,p0 = FR_NormX,FR_Ntrunc
1974      nop.i         0
1975}
1976{ .mfi
1977      nop.m         0
1978      fnma.s1       FR_x3 = FR_x2,FR_x,f0 // -x^3
1979      nop.i         0
1980};;
1981{ .mfi
1982      nop.m         0
1983      fma.s1        FR_P32f = FR_P32f,FR_rf2,FR_P10f
1984      nop.i         0
1985};;
1986{ .mfb
1987      // set p9  if signgum is 32-bit int
1988      // set p10 if signgum is 64-bit int
1989      cmp.eq        p10,p9 = 8,r34
1990      fma.s1        FR_S2 = FR_S10,FR_Xf8,FR_S2
1991(p13) br.cond.spnt  lgammaf_singularity
1992};;
1993.pred.rel "mutex",p9,p10
1994{ .mmf
1995(p9)  st4           [r33] = GR_SignOfGamma  // as 32-bit int
1996(p10) st8           [r33] = GR_SignOfGamma  // as 64-bit int
1997      fms.s1        FR_A0 = FR_A3,FR_x3,FR_A0 // -A3*x^3-A0
1998};;
1999{ .mfi
2000      nop.m         0
2001      fma.s1        FR_Tf = FR_Nf,FR_Ln2,FR_Tf
2002      nop.i         0
2003};;
2004{ .mfi
2005      nop.m         0
2006      fma.s1        FR_Ln = FR_S2,FR_Xf2,FR_Ln // S2*Xf^2+Ln
2007      nop.i         0
2008};;
2009{ .mfi
2010      nop.m         0
2011      fma.s1        FR_Lnf = FR_P32f,FR_rf,FR_Tf
2012      nop.i         0
2013};;
2014{ .mfi
2015      nop.m         0
2016      fms.s1        FR_Ln = FR_A0,f1,FR_Ln
2017      nop.i         0
2018};;
2019{ .mfb
2020      nop.m         0
2021      fms.s.s0      f8 = FR_Ln,f1,FR_Lnf
2022      br.ret.sptk   b0
2023};;
2024// branch for handling +/-0, NaT, QNaN, +/-INF and denormalised numbers
2025//---------------------------------------------------------------------
2026.align 32
2027lgammaf_spec:
2028{ .mfi
2029      getf.exp      GR_SignExp = FR_NormX
2030      fclass.m      p6,p0 = f8,0x21 // is arg +INF?
2031      mov           GR_SignOfGamma = 1 // set signgam to 1
2032};;
2033{ .mfi
2034      getf.sig      GR_Sig = FR_NormX
2035      fclass.m      p7,p0 = f8,0xB // is x deno?
2036      // set p11 if signgum is 32-bit int
2037      // set p12 if signgum is 64-bit int
2038      cmp.eq        p12,p11 = 8,r34
2039};;
2040.pred.rel "mutex",p11,p12
2041{ .mfi
2042      // store sign of gamma(x) as 32-bit int
2043(p11) st4           [r33] = GR_SignOfGamma
2044      fclass.m      p8,p0 = f8,0x1C0 // is arg NaT or NaN?
2045      dep.z         GR_Ind = GR_SignExp,3,4
2046}
2047{ .mib
2048      // store sign of gamma(x) as 64-bit int
2049(p12) st8           [r33] = GR_SignOfGamma
2050      and           GR_Exp = GR_ExpMask,GR_SignExp
2051(p6)  br.ret.spnt   b0 // exit for +INF
2052};;
2053{ .mfi
2054      sub           GR_PureExp = GR_Exp,GR_ExpBias
2055      fclass.m      p9,p0 = f8,0x22 // is arg -INF?
2056      extr.u        GR_Ind4T = GR_Sig,55,8
2057}
2058{ .mfb
2059      nop.m         0
2060(p7)  fma.s0        FR_tmp = f1,f1,f8
2061(p7)  br.cond.sptk  lgammaf_core
2062};;
2063{ .mfb
2064      nop.m         0
2065(p8)  fms.s.s0      f8 = f8,f1,f8
2066(p8)  br.ret.spnt   b0 // exit for NaT and NaN
2067};;
2068{ .mfb
2069      nop.m         0
2070(p9)  fmerge.s      f8 = f1,f8
2071(p9)  br.ret.spnt   b0 // exit -INF
2072};;
2073// branch for handling negative integers and +/-0
2074//---------------------------------------------------------------------
2075.align 32
2076lgammaf_singularity:
2077{ .mfi
2078      mov           GR_SignOfGamma = 1 // set signgam to 1
2079      fclass.m      p6,p0 = f8,0x6 // is x -0?
2080      mov           GR_TAG = 109 // negative
2081}
2082{ .mfi
2083      mov           GR_ad_SignGam = r33
2084      fma.s1        FR_X = f0,f0,f8
2085      nop.i         0
2086};;
2087{ .mfi
2088      nop.m         0
2089      frcpa.s0      f8,p0 = f1,f0
2090      // set p9  if signgum is 32-bit int
2091      // set p10 if signgum is 64-bit int
2092      cmp.eq        p10,p9 = 8,r34
2093}
2094{ .mib
2095      nop.m         0
2096(p6)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
2097      br.cond.sptk  lgammaf_libm_err
2098};;
2099// overflow (x > OVERFLOV_BOUNDARY)
2100//---------------------------------------------------------------------
2101.align 32
2102lgammaf_overflow:
2103{ .mfi
2104      nop.m         0
2105      nop.f         0
2106      mov           r8 = 0x1FFFE
2107};;
2108{ .mfi
2109      setf.exp      f9 = r8
2110      fmerge.s      FR_X = f8,f8
2111      mov           GR_TAG = 108 // overflow
2112};;
2113{ .mfi
2114      mov           GR_ad_SignGam = r33
2115      nop.f         0
2116      // set p9  if signgum is 32-bit int
2117      // set p10 if signgum is 64-bit int
2118      cmp.eq        p10,p9 = 8,r34
2119}
2120{ .mfi
2121      nop.m         0
2122      fma.s.s0      f8 = f9,f9,f0 // Set I,O and +INF result
2123      nop.i         0
2124};;
2125// gate to __libm_error_support#
2126//---------------------------------------------------------------------
2127.align 32
2128lgammaf_libm_err:
2129{ .mmi
2130      alloc        r32 = ar.pfs,1,4,4,0
2131      mov          GR_Parameter_TAG = GR_TAG
2132      nop.i        0
2133};;
2134.pred.rel "mutex",p9,p10
2135{ .mmi
2136      // store sign of gamma(x) as 32-bit int
2137(p9)  st4          [GR_ad_SignGam] = GR_SignOfGamma
2138      // store sign of gamma(x) as 64-bit int
2139(p10) st8          [GR_ad_SignGam] = GR_SignOfGamma
2140      nop.i        0
2141};;
2142GLOBAL_LIBM_END(__libm_lgammaf)
2143
2144
2145LOCAL_LIBM_ENTRY(__libm_error_region)
2146.prologue
2147{ .mfi
2148      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
2149      nop.f 0
2150.save ar.pfs,GR_SAVE_PFS
2151      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
2152}
2153{ .mfi
2154.fframe 64
2155      add sp=-64,sp                           // Create new stack
2156      nop.f 0
2157      mov GR_SAVE_GP=gp                       // Save gp
2158};;
2159{ .mmi
2160      stfs [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
2161      add GR_Parameter_X = 16,sp              // Parameter 1 address
2162.save   b0, GR_SAVE_B0
2163      mov GR_SAVE_B0=b0                       // Save b0
2164};;
2165.body
2166{ .mib
2167      stfs [GR_Parameter_X] = FR_X                  // STORE Parameter 1
2168                                                    // on stack
2169      add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
2170      nop.b 0
2171}
2172{ .mib
2173      stfs [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3
2174                                                    // on stack
2175      add   GR_Parameter_Y = -16,GR_Parameter_Y
2176      br.call.sptk b0=__libm_error_support#         // Call error handling
2177                                                    // function
2178};;
2179{ .mmi
2180      nop.m 0
2181      nop.m 0
2182      add   GR_Parameter_RESULT = 48,sp
2183};;
2184{ .mmi
2185      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
2186.restore sp
2187      add   sp = 64,sp                       // Restore stack pointer
2188      mov   b0 = GR_SAVE_B0                  // Restore return address
2189};;
2190{ .mib
2191      mov   gp = GR_SAVE_GP                  // Restore gp
2192      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
2193      br.ret.sptk     b0                     // Return
2194};;
2195
2196LOCAL_LIBM_END(__libm_error_region)
2197.type   __libm_error_support#,@function
2198.global __libm_error_support#
2199