1 use std::cmp::{max, min}; 2 3 /// 表示一个矩形区域 4 #[derive(Clone, Copy, Debug, Default)] 5 pub struct Rect { 6 /// 矩形左上角x坐标 7 x: i32, 8 /// 矩形左上角y坐标 9 y: i32, 10 /// 矩形宽度 11 w: i32, 12 /// 矩形高度 13 h: i32, 14 } 15 16 #[allow(dead_code)] 17 impl Rect { 18 /// 创建矩形 19 pub fn new(x: i32, y: i32, w: i32, h: i32) -> Rect { 20 assert!(w >= 0); 21 assert!(h >= 0); 22 23 Rect { x, y, w, h } 24 } 25 26 /// 矩形的面积 27 pub fn area(&self) -> i32 { 28 self.w * self.h 29 } 30 31 /// 矩形的左边界 32 pub fn left(&self) -> i32 { 33 self.x 34 } 35 36 /// 矩形的右边界 37 pub fn right(&self) -> i32 { 38 self.x + self.w 39 } 40 41 /// 矩形的上边界 42 pub fn top(&self) -> i32 { 43 self.y 44 } 45 46 /// 矩形的下边界 47 pub fn bottom(&self) -> i32 { 48 self.y + self.h 49 } 50 51 /// 矩形的宽度 52 pub fn width(&self) -> i32 { 53 self.w 54 } 55 56 /// 矩形的高度 57 pub fn height(&self) -> i32 { 58 self.h 59 } 60 61 /// 求两矩形的并集 62 pub fn container(&self, other: &Rect) -> Rect { 63 let left = min(self.left(), other.left()); 64 let right = max(self.right(), other.right()); 65 let top = min(self.top(), other.top()); 66 let bottom = max(self.bottom(), other.bottom()); 67 68 assert!(left <= right); 69 assert!(top <= bottom); 70 71 Rect::new(left, top, right - left, bottom - top) 72 } 73 74 /// 求两矩形的交集 75 pub fn intersection(&self, other: &Rect) -> Rect { 76 let left = max(self.left(), other.left()); 77 let right = min(self.right(), other.right()); 78 let top = max(self.top(), other.top()); 79 let bottom = min(self.bottom(), other.bottom()); 80 81 Rect::new(left, top, max(0, right - left), max(0, bottom - top)) 82 } 83 84 /// 判断点是否在矩形中 85 pub fn contains(&self, x: i32, y: i32) -> bool { 86 self.left() <= x && self.right() >= x && self.top() <= y && self.bottom() >= y 87 } 88 89 /// 判断矩形是否为空 90 pub fn is_empty(&self) -> bool { 91 self.w == 0 || self.h == 0 92 } 93 94 /// # 函数功能 95 /// 偏移矩形的位置 96 /// 可用于矩形绝对和相对位置的转换 97 /// 98 /// ## 参数 99 /// - x: 向右偏移的量 100 /// - y: 向下偏移的量 101 /// 102 /// ## 返回值 103 /// 偏移得到的矩形 104 pub fn offset(&self, x: i32, y: i32) -> Rect { 105 Rect::new(self.x + x, self.y + y, self.w, self.h) 106 } 107 } 108