1 use crate::arch::kvm::vmx::vcpu::VmxVcpu; 2 use crate::arch::MMArch; 3 use crate::libs::mutex::Mutex; 4 use crate::mm::MemoryManagementArch; 5 use crate::syscall::SystemError; 6 use crate::{arch::KVMArch, kdebug}; 7 use alloc::sync::Arc; 8 use alloc::vec::Vec; 9 10 // use super::HOST_STACK_SIZE; 11 use super::host_mem::{ 12 KvmMemoryChange, KvmMemorySlot, KvmMemorySlots, KvmUserspaceMemoryRegion, 13 KVM_ADDRESS_SPACE_NUM, KVM_MEM_LOG_DIRTY_PAGES, KVM_MEM_MAX_NR_PAGES, KVM_MEM_READONLY, 14 KVM_MEM_SLOTS_NUM, KVM_USER_MEM_SLOTS, PAGE_SHIFT, 15 }; 16 // use crate::kdebug; 17 18 #[derive(Debug, Clone)] 19 pub struct Vm { 20 pub id: usize, 21 // vcpu config 22 pub nr_vcpus: u32, /* Number of cpus to run */ 23 pub vcpu: Vec<Arc<Mutex<VmxVcpu>>>, 24 // memory config 25 pub nr_mem_slots: u32, /* Number of memory slots in each address space */ 26 pub memslots: [KvmMemorySlots; KVM_ADDRESS_SPACE_NUM], 27 // arch related config 28 pub arch: KVMArch, 29 } 30 31 impl Vm { 32 pub fn new(id: usize) -> Result<Self, SystemError> { 33 let vcpu = Vec::new(); 34 // Allocate stack for vm-exit handlers and fill it with garbage data 35 let instance = Self { 36 id, 37 nr_vcpus: 0, 38 vcpu, 39 nr_mem_slots: KVM_MEM_SLOTS_NUM, 40 memslots: [KvmMemorySlots::default(); KVM_ADDRESS_SPACE_NUM], 41 arch: Default::default(), 42 }; 43 Ok(instance) 44 } 45 46 /// Allocate some memory and give it an address in the guest physical address space. 47 pub fn set_user_memory_region( 48 &mut self, 49 mem: &KvmUserspaceMemoryRegion, 50 ) -> Result<(), SystemError> { 51 kdebug!("set_user_memory_region"); 52 let id: u16 = mem.slot as u16; // slot id 53 let as_id = mem.slot >> 16; // address space id 54 kdebug!("id={}, as_id={}", id, as_id); 55 56 // 检查slot是否合法 57 if mem.slot as usize >= self.nr_mem_slots as usize { 58 return Err(SystemError::EINVAL); 59 } 60 // 检查flags是否合法 61 self.check_memory_region_flag(mem)?; 62 // 内存大小和地址必须是页对齐的 63 if (mem.memory_size & (MMArch::PAGE_SIZE - 1) as u64) != 0 64 || (mem.guest_phys_addr & (MMArch::PAGE_SIZE - 1) as u64) != 0 65 { 66 return Err(SystemError::EINVAL); 67 } 68 // 检查地址空间是否合法 69 if as_id >= (KVM_ADDRESS_SPACE_NUM as u32) || id >= KVM_MEM_SLOTS_NUM as u16 { 70 return Err(SystemError::EINVAL); 71 } 72 // if mem.memory_size < 0 { 73 // return Err(SystemError::EINVAL); 74 // } 75 let slot = &self.memslots[as_id as usize].memslots[id as usize]; 76 let base_gfn = mem.guest_phys_addr >> PAGE_SHIFT; 77 let npages = mem.memory_size >> PAGE_SHIFT; 78 if npages > KVM_MEM_MAX_NR_PAGES as u64 { 79 return Err(SystemError::EINVAL); 80 } 81 let change: KvmMemoryChange; 82 83 let old_slot = slot; 84 let mut new_slot = KvmMemorySlot { 85 base_gfn, // 虚机内存区间起始物理页框号 86 npages, // 虚机内存区间页数,即内存区间的大小 87 // dirty_bitmap: old_slot.dirty_bitmap, 88 userspace_addr: mem.userspace_addr, // 虚机内存区间对应的主机虚拟地址 89 flags: mem.flags, // 虚机内存区间属性 90 id, // 虚机内存区间id 91 }; 92 93 // 判断新memoryslot的类型 94 if npages != 0 { 95 //映射内存有大小,不是删除内存条 96 if old_slot.npages == 0 { 97 //内存槽号没有虚拟内存条,意味内存新创建 98 change = KvmMemoryChange::Create; 99 } else { 100 //修改已存在的内存,表示修改标志或者平移映射地址 101 // 检查内存条是否可以修改 102 if mem.userspace_addr != old_slot.userspace_addr 103 || npages != old_slot.npages 104 || (new_slot.flags ^ old_slot.flags & KVM_MEM_READONLY) != 0 105 { 106 return Err(SystemError::EINVAL); 107 } 108 if new_slot.base_gfn != old_slot.base_gfn { 109 //guest地址不同,内存条平移 110 change = KvmMemoryChange::Move; 111 } else if new_slot.flags != old_slot.flags { 112 //内存条标志不同,修改标志 113 change = KvmMemoryChange::FlagsOnly; 114 } else { 115 return Ok(()); 116 } 117 } 118 } else { 119 if old_slot.npages == 0 { 120 //内存槽号没有虚拟内存条,不可以删除 121 return Err(SystemError::EINVAL); 122 } 123 //申请插入的内存为0,而内存槽上有内存,意味删除 124 change = KvmMemoryChange::Delete; 125 new_slot.base_gfn = 0; 126 new_slot.flags = 0; 127 } 128 129 if change == KvmMemoryChange::Create || change == KvmMemoryChange::Move { 130 // 检查内存区域是否重叠 131 for i in 0..KVM_MEM_SLOTS_NUM { 132 let memslot = &self.memslots[as_id as usize].memslots[i as usize]; 133 if memslot.id == id || memslot.id as u32 >= KVM_USER_MEM_SLOTS { 134 continue; 135 } 136 // 当前已有的slot与new在guest物理地址上有交集 137 if !(base_gfn + npages <= memslot.base_gfn 138 || memslot.base_gfn + memslot.npages <= base_gfn) 139 { 140 return Err(SystemError::EEXIST); 141 } 142 } 143 } 144 145 if !(new_slot.flags & KVM_MEM_LOG_DIRTY_PAGES != 0) { 146 // new_slot.dirty_bitmap = 0; 147 } 148 149 // 根据flags的值,决定是否创建内存脏页 150 // if (new_slot.flags & KVM_MEM_LOG_DIRTY_PAGES)!=0 && new_slot.dirty_bitmap == 0 { 151 // let type_size = core::mem::size_of::<u64>() as u64; 152 // let dirty_bytes = 2 * ((new_slot.npages+type_size-1) / type_size) / 8; 153 // new_slot.dirty_bitmap = Box::new(vec![0; dirty_bytes as u8]); 154 // } 155 if change == KvmMemoryChange::Create { 156 new_slot.userspace_addr = mem.userspace_addr; 157 let mut memslots = self.memslots[as_id as usize].memslots.clone(); 158 memslots[id as usize] = new_slot; 159 self.memslots[as_id as usize].memslots = memslots; 160 self.memslots[as_id as usize].used_slots += 1; 161 // KVMArch::kvm_arch_create_memslot(&mut new_slot, npages); 162 // KVMArch::kvm_arch_commit_memory_region(mem, &new_slot, old_slot, change); 163 } 164 // TODO--KvmMemoryChange::Delete & Move 165 Ok(()) 166 } 167 168 fn check_memory_region_flag(&self, mem: &KvmUserspaceMemoryRegion) -> Result<(), SystemError> { 169 let valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 170 // 除了valid_flags之外的flags被置1了,就返回错误 171 if mem.flags & !valid_flags != 0 { 172 return Err(SystemError::EINVAL); 173 } 174 Ok(()) 175 } 176 } 177