xref: /DragonOS/kernel/src/syscall/mod.rs (revision f049d1af01da7b92f312245ed411b22475b76065)
1 use core::{
2     ffi::{c_int, c_void},
3     ptr::null,
4     sync::atomic::{AtomicBool, Ordering},
5 };
6 
7 use crate::{
8     arch::{ipc::signal::SigSet, syscall::nr::*},
9     driver::base::device::device_number::DeviceNumber,
10     filesystem::vfs::syscall::{PosixStatfs, PosixStatx},
11     ipc::shm::{ShmCtlCmd, ShmFlags, ShmId, ShmKey},
12     libs::{futex::constant::FutexFlag, rand::GRandFlags},
13     mm::syscall::MremapFlags,
14     net::syscall::MsgHdr,
15     process::{
16         fork::KernelCloneArgs,
17         resource::{RLimit64, RUsage},
18         ProcessFlags, ProcessManager,
19     },
20     sched::{schedule, SchedMode},
21     syscall::user_access::check_and_clone_cstr,
22 };
23 
24 use num_traits::FromPrimitive;
25 use system_error::SystemError;
26 
27 use crate::{
28     arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch},
29     filesystem::vfs::{
30         fcntl::{AtFlags, FcntlCommand},
31         file::FileMode,
32         syscall::{ModeType, PosixKstat},
33         MAX_PATHLEN,
34     },
35     include::bindings::bindings::PAGE_4K_SIZE,
36     kinfo,
37     libs::align::page_align_up,
38     mm::{verify_area, MemoryManagementArch, VirtAddr},
39     net::syscall::SockAddr,
40     process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid},
41     time::{
42         syscall::{PosixTimeZone, PosixTimeval},
43         PosixTimeSpec,
44     },
45 };
46 
47 use self::{
48     misc::SysInfo,
49     user_access::{UserBufferReader, UserBufferWriter},
50 };
51 
52 pub mod misc;
53 pub mod user_access;
54 
55 // 与linux不一致的调用,在linux基础上累加
56 pub const SYS_PUT_STRING: usize = 100000;
57 pub const SYS_SBRK: usize = 100001;
58 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc
59 pub const SYS_CLOCK: usize = 100002;
60 pub const SYS_SCHED: usize = 100003;
61 
62 #[derive(Debug)]
63 pub struct Syscall;
64 
65 impl Syscall {
66     /// 初始化系统调用
67     #[inline(never)]
68     pub fn init() -> Result<(), SystemError> {
69         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
70         let prev = INIT_FLAG.swap(true, Ordering::SeqCst);
71         if prev {
72             panic!("Cannot initialize syscall more than once!");
73         }
74         kinfo!("Initializing syscall...");
75         let r = crate::arch::syscall::arch_syscall_init();
76         kinfo!("Syscall init successfully!");
77 
78         return r;
79     }
80     /// @brief 系统调用分发器,用于分发系统调用。
81     ///
82     /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。
83     /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。
84     #[inline(never)]
85     pub fn handle(
86         syscall_num: usize,
87         args: &[usize],
88         frame: &mut TrapFrame,
89     ) -> Result<usize, SystemError> {
90         let r = match syscall_num {
91             SYS_PUT_STRING => {
92                 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32)
93             }
94             #[cfg(target_arch = "x86_64")]
95             SYS_OPEN => {
96                 let path = args[0] as *const u8;
97                 let flags = args[1] as u32;
98                 let mode = args[2] as u32;
99 
100                 Self::open(path, flags, mode, true)
101             }
102 
103             #[cfg(target_arch = "x86_64")]
104             SYS_RENAME => {
105                 let oldname: *const u8 = args[0] as *const u8;
106                 let newname: *const u8 = args[1] as *const u8;
107                 Self::do_renameat2(
108                     AtFlags::AT_FDCWD.bits(),
109                     oldname,
110                     AtFlags::AT_FDCWD.bits(),
111                     newname,
112                     0,
113                 )
114             }
115 
116             #[cfg(target_arch = "x86_64")]
117             SYS_RENAMEAT => {
118                 let oldfd = args[0] as i32;
119                 let oldname: *const u8 = args[1] as *const u8;
120                 let newfd = args[2] as i32;
121                 let newname: *const u8 = args[3] as *const u8;
122                 Self::do_renameat2(oldfd, oldname, newfd, newname, 0)
123             }
124 
125             SYS_RENAMEAT2 => {
126                 let oldfd = args[0] as i32;
127                 let oldname: *const u8 = args[1] as *const u8;
128                 let newfd = args[2] as i32;
129                 let newname: *const u8 = args[3] as *const u8;
130                 let flags = args[4] as u32;
131                 Self::do_renameat2(oldfd, oldname, newfd, newname, flags)
132             }
133 
134             SYS_OPENAT => {
135                 let dirfd = args[0] as i32;
136                 let path = args[1] as *const u8;
137                 let flags = args[2] as u32;
138                 let mode = args[3] as u32;
139 
140                 Self::openat(dirfd, path, flags, mode, true)
141             }
142             SYS_CLOSE => {
143                 let fd = args[0];
144                 Self::close(fd)
145             }
146             SYS_READ => {
147                 let fd = args[0] as i32;
148                 let buf_vaddr = args[1];
149                 let len = args[2];
150                 let from_user = frame.is_from_user();
151                 let mut user_buffer_writer =
152                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
153 
154                 let user_buf = user_buffer_writer.buffer(0)?;
155                 Self::read(fd, user_buf)
156             }
157             SYS_WRITE => {
158                 let fd = args[0] as i32;
159                 let buf_vaddr = args[1];
160                 let len = args[2];
161                 let from_user = frame.is_from_user();
162                 let user_buffer_reader =
163                     UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?;
164 
165                 let user_buf = user_buffer_reader.read_from_user(0)?;
166                 Self::write(fd, user_buf)
167             }
168 
169             SYS_LSEEK => {
170                 let fd = args[0] as i32;
171                 let offset = args[1] as i64;
172                 let whence = args[2] as u32;
173 
174                 Self::lseek(fd, offset, whence)
175             }
176 
177             SYS_PREAD64 => {
178                 let fd = args[0] as i32;
179                 let buf_vaddr = args[1];
180                 let len = args[2];
181                 let offset = args[3];
182 
183                 let mut user_buffer_writer =
184                     UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.is_from_user())?;
185                 let buf = user_buffer_writer.buffer(0)?;
186                 Self::pread(fd, buf, len, offset)
187             }
188 
189             SYS_PWRITE64 => {
190                 let fd = args[0] as i32;
191                 let buf_vaddr = args[1];
192                 let len = args[2];
193                 let offset = args[3];
194 
195                 let user_buffer_reader =
196                     UserBufferReader::new(buf_vaddr as *const u8, len, frame.is_from_user())?;
197 
198                 let buf = user_buffer_reader.read_from_user(0)?;
199                 Self::pwrite(fd, buf, len, offset)
200             }
201 
202             SYS_IOCTL => {
203                 let fd = args[0];
204                 let cmd = args[1];
205                 let data = args[2];
206                 Self::ioctl(fd, cmd as u32, data)
207             }
208 
209             #[cfg(target_arch = "x86_64")]
210             SYS_FORK => Self::fork(frame),
211             #[cfg(target_arch = "x86_64")]
212             SYS_VFORK => Self::vfork(frame),
213 
214             SYS_BRK => {
215                 let new_brk = VirtAddr::new(args[0]);
216                 Self::brk(new_brk).map(|vaddr| vaddr.data())
217             }
218 
219             SYS_SBRK => {
220                 let increment = args[0] as isize;
221                 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data())
222             }
223 
224             SYS_REBOOT => Self::reboot(),
225 
226             SYS_CHDIR => {
227                 let r = args[0] as *const u8;
228                 Self::chdir(r)
229             }
230 
231             #[allow(unreachable_patterns)]
232             SYS_GETDENTS64 | SYS_GETDENTS => {
233                 let fd = args[0] as i32;
234 
235                 let buf_vaddr = args[1];
236                 let len = args[2];
237                 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr);
238                 // 判断缓冲区是否来自用户态,进行权限校验
239                 let res = if frame.is_from_user() && verify_area(virt_addr, len).is_err() {
240                     // 来自用户态,而buffer在内核态,这样的操作不被允许
241                     Err(SystemError::EPERM)
242                 } else if buf_vaddr == 0 {
243                     Err(SystemError::EFAULT)
244                 } else {
245                     let buf: &mut [u8] = unsafe {
246                         core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len)
247                     };
248                     Self::getdents(fd, buf)
249                 };
250 
251                 res
252             }
253 
254             SYS_EXECVE => {
255                 let path_ptr = args[0];
256                 let argv_ptr = args[1];
257                 let env_ptr = args[2];
258                 let virt_path_ptr = VirtAddr::new(path_ptr);
259                 let virt_argv_ptr = VirtAddr::new(argv_ptr);
260                 let virt_env_ptr = VirtAddr::new(env_ptr);
261                 // 权限校验
262                 if frame.is_from_user()
263                     && (verify_area(virt_path_ptr, MAX_PATHLEN).is_err()
264                         || verify_area(virt_argv_ptr, PAGE_4K_SIZE as usize).is_err())
265                     || verify_area(virt_env_ptr, PAGE_4K_SIZE as usize).is_err()
266                 {
267                     Err(SystemError::EFAULT)
268                 } else {
269                     Self::execve(
270                         path_ptr as *const u8,
271                         argv_ptr as *const *const u8,
272                         env_ptr as *const *const u8,
273                         frame,
274                     )
275                     .map(|_| 0)
276                 }
277             }
278             SYS_WAIT4 => {
279                 let pid = args[0] as i32;
280                 let wstatus = args[1] as *mut i32;
281                 let options = args[2] as c_int;
282                 let rusage = args[3] as *mut c_void;
283                 // 权限校验
284                 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小
285                 Self::wait4(pid.into(), wstatus, options, rusage)
286             }
287 
288             SYS_EXIT => {
289                 let exit_code = args[0];
290                 Self::exit(exit_code)
291             }
292             #[cfg(target_arch = "x86_64")]
293             SYS_MKDIR => {
294                 let path = args[0] as *const u8;
295                 let mode = args[1];
296 
297                 Self::mkdir(path, mode)
298             }
299 
300             SYS_NANOSLEEP => {
301                 let req = args[0] as *const PosixTimeSpec;
302                 let rem = args[1] as *mut PosixTimeSpec;
303                 let virt_req = VirtAddr::new(req as usize);
304                 let virt_rem = VirtAddr::new(rem as usize);
305                 if frame.is_from_user()
306                     && (verify_area(virt_req, core::mem::size_of::<PosixTimeSpec>()).is_err()
307                         || verify_area(virt_rem, core::mem::size_of::<PosixTimeSpec>()).is_err())
308                 {
309                     Err(SystemError::EFAULT)
310                 } else {
311                     Self::nanosleep(req, rem)
312                 }
313             }
314 
315             SYS_CLOCK => Self::clock(),
316             #[cfg(target_arch = "x86_64")]
317             SYS_PIPE => {
318                 let pipefd: *mut i32 = args[0] as *mut c_int;
319                 if pipefd.is_null() {
320                     Err(SystemError::EFAULT)
321                 } else {
322                     Self::pipe2(pipefd, FileMode::empty())
323                 }
324             }
325 
326             SYS_PIPE2 => {
327                 let pipefd: *mut i32 = args[0] as *mut c_int;
328                 let arg1 = args[1];
329                 if pipefd.is_null() {
330                     Err(SystemError::EFAULT)
331                 } else {
332                     let flags = FileMode::from_bits_truncate(arg1 as u32);
333                     Self::pipe2(pipefd, flags)
334                 }
335             }
336 
337             SYS_UNLINKAT => {
338                 let dirfd = args[0] as i32;
339                 let path = args[1] as *const u8;
340                 let flags = args[2] as u32;
341                 Self::unlinkat(dirfd, path, flags)
342             }
343 
344             #[cfg(target_arch = "x86_64")]
345             SYS_RMDIR => {
346                 let path = args[0] as *const u8;
347                 Self::rmdir(path)
348             }
349 
350             #[cfg(target_arch = "x86_64")]
351             SYS_LINK => {
352                 let old = args[0] as *const u8;
353                 let new = args[1] as *const u8;
354                 return Self::link(old, new);
355             }
356 
357             SYS_LINKAT => {
358                 let oldfd = args[0] as i32;
359                 let old = args[1] as *const u8;
360                 let newfd = args[2] as i32;
361                 let new = args[3] as *const u8;
362                 let flags = args[4] as i32;
363                 return Self::linkat(oldfd, old, newfd, new, flags);
364             }
365 
366             #[cfg(target_arch = "x86_64")]
367             SYS_UNLINK => {
368                 let path = args[0] as *const u8;
369                 Self::unlink(path)
370             }
371             SYS_KILL => {
372                 let pid = Pid::new(args[0]);
373                 let sig = args[1] as c_int;
374                 // kdebug!("KILL SYSCALL RECEIVED");
375                 Self::kill(pid, sig)
376             }
377 
378             SYS_RT_SIGACTION => {
379                 let sig = args[0] as c_int;
380                 let act = args[1];
381                 let old_act = args[2];
382                 Self::sigaction(sig, act, old_act, frame.is_from_user())
383             }
384 
385             SYS_GETPID => Self::getpid().map(|pid| pid.into()),
386 
387             SYS_SCHED => {
388                 kwarn!("syscall sched");
389                 schedule(SchedMode::SM_NONE);
390                 Ok(0)
391             }
392             SYS_DUP => {
393                 let oldfd: i32 = args[0] as c_int;
394                 Self::dup(oldfd)
395             }
396 
397             #[cfg(target_arch = "x86_64")]
398             SYS_DUP2 => {
399                 let oldfd: i32 = args[0] as c_int;
400                 let newfd: i32 = args[1] as c_int;
401                 Self::dup2(oldfd, newfd)
402             }
403 
404             SYS_SOCKET => Self::socket(args[0], args[1], args[2]),
405             SYS_SETSOCKOPT => {
406                 let optval = args[3] as *const u8;
407                 let optlen = args[4];
408                 let virt_optval = VirtAddr::new(optval as usize);
409                 // 验证optval的地址是否合法
410                 if verify_area(virt_optval, optlen).is_err() {
411                     // 地址空间超出了用户空间的范围,不合法
412                     Err(SystemError::EFAULT)
413                 } else {
414                     let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) };
415                     Self::setsockopt(args[0], args[1], args[2], data)
416                 }
417             }
418             SYS_GETSOCKOPT => {
419                 let optval = args[3] as *mut u8;
420                 let optlen = args[4] as *mut usize;
421                 let virt_optval = VirtAddr::new(optval as usize);
422                 let virt_optlen = VirtAddr::new(optlen as usize);
423                 let security_check = || {
424                     // 验证optval的地址是否合法
425                     if verify_area(virt_optval, PAGE_4K_SIZE as usize).is_err() {
426                         // 地址空间超出了用户空间的范围,不合法
427                         return Err(SystemError::EFAULT);
428                     }
429 
430                     // 验证optlen的地址是否合法
431                     if verify_area(virt_optlen, core::mem::size_of::<u32>()).is_err() {
432                         // 地址空间超出了用户空间的范围,不合法
433                         return Err(SystemError::EFAULT);
434                     }
435                     return Ok(());
436                 };
437                 let r = security_check();
438                 if let Err(e) = r {
439                     Err(e)
440                 } else {
441                     Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32)
442                 }
443             }
444 
445             SYS_CONNECT => {
446                 let addr = args[1] as *const SockAddr;
447                 let addrlen = args[2];
448                 let virt_addr = VirtAddr::new(addr as usize);
449                 // 验证addr的地址是否合法
450                 if verify_area(virt_addr, addrlen).is_err() {
451                     // 地址空间超出了用户空间的范围,不合法
452                     Err(SystemError::EFAULT)
453                 } else {
454                     Self::connect(args[0], addr, addrlen)
455                 }
456             }
457             SYS_BIND => {
458                 let addr = args[1] as *const SockAddr;
459                 let addrlen = args[2];
460                 let virt_addr = VirtAddr::new(addr as usize);
461                 // 验证addr的地址是否合法
462                 if verify_area(virt_addr, addrlen).is_err() {
463                     // 地址空间超出了用户空间的范围,不合法
464                     Err(SystemError::EFAULT)
465                 } else {
466                     Self::bind(args[0], addr, addrlen)
467                 }
468             }
469 
470             SYS_SENDTO => {
471                 let buf = args[1] as *const u8;
472                 let len = args[2];
473                 let flags = args[3] as u32;
474                 let addr = args[4] as *const SockAddr;
475                 let addrlen = args[5];
476                 let virt_buf = VirtAddr::new(buf as usize);
477                 let virt_addr = VirtAddr::new(addr as usize);
478                 // 验证buf的地址是否合法
479                 if verify_area(virt_buf, len).is_err() || verify_area(virt_addr, addrlen).is_err() {
480                     // 地址空间超出了用户空间的范围,不合法
481                     Err(SystemError::EFAULT)
482                 } else {
483                     let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) };
484                     Self::sendto(args[0], data, flags, addr, addrlen)
485                 }
486             }
487 
488             SYS_RECVFROM => {
489                 let buf = args[1] as *mut u8;
490                 let len = args[2];
491                 let flags = args[3] as u32;
492                 let addr = args[4] as *mut SockAddr;
493                 let addrlen = args[5] as *mut usize;
494                 let virt_buf = VirtAddr::new(buf as usize);
495                 let virt_addrlen = VirtAddr::new(addrlen as usize);
496                 let virt_addr = VirtAddr::new(addr as usize);
497                 let security_check = || {
498                     // 验证buf的地址是否合法
499                     if verify_area(virt_buf, len).is_err() {
500                         // 地址空间超出了用户空间的范围,不合法
501                         return Err(SystemError::EFAULT);
502                     }
503 
504                     // 验证addrlen的地址是否合法
505                     if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() {
506                         // 地址空间超出了用户空间的范围,不合法
507                         return Err(SystemError::EFAULT);
508                     }
509 
510                     if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() {
511                         // 地址空间超出了用户空间的范围,不合法
512                         return Err(SystemError::EFAULT);
513                     }
514                     return Ok(());
515                 };
516                 let r = security_check();
517                 if let Err(e) = r {
518                     Err(e)
519                 } else {
520                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) };
521                     Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32)
522                 }
523             }
524 
525             SYS_RECVMSG => {
526                 let msg = args[1] as *mut MsgHdr;
527                 let flags = args[2] as u32;
528 
529                 let mut user_buffer_writer = UserBufferWriter::new(
530                     msg,
531                     core::mem::size_of::<MsgHdr>(),
532                     frame.is_from_user(),
533                 )?;
534                 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?;
535 
536                 let msg = &mut buffer[0];
537                 Self::recvmsg(args[0], msg, flags)
538             }
539 
540             SYS_LISTEN => Self::listen(args[0], args[1]),
541             SYS_SHUTDOWN => Self::shutdown(args[0], args[1]),
542             SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32),
543             SYS_ACCEPT4 => Self::accept4(
544                 args[0],
545                 args[1] as *mut SockAddr,
546                 args[2] as *mut u32,
547                 args[3] as u32,
548             ),
549             SYS_GETSOCKNAME => {
550                 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
551             }
552             SYS_GETPEERNAME => {
553                 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
554             }
555             SYS_GETTIMEOFDAY => {
556                 let timeval = args[0] as *mut PosixTimeval;
557                 let timezone_ptr = args[1] as *mut PosixTimeZone;
558                 Self::gettimeofday(timeval, timezone_ptr)
559             }
560             SYS_MMAP => {
561                 let len = page_align_up(args[1]);
562                 let virt_addr = VirtAddr::new(args[0]);
563                 if verify_area(virt_addr, len).is_err() {
564                     Err(SystemError::EFAULT)
565                 } else {
566                     Self::mmap(
567                         VirtAddr::new(args[0]),
568                         len,
569                         args[2],
570                         args[3],
571                         args[4] as i32,
572                         args[5],
573                     )
574                 }
575             }
576             SYS_MREMAP => {
577                 let old_vaddr = VirtAddr::new(args[0]);
578                 let old_len = args[1];
579                 let new_len = args[2];
580                 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8);
581                 let new_vaddr = VirtAddr::new(args[4]);
582 
583                 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr)
584             }
585             SYS_MUNMAP => {
586                 let addr = args[0];
587                 let len = page_align_up(args[1]);
588                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
589                     // The addr argument is not a multiple of the page size
590                     Err(SystemError::EINVAL)
591                 } else {
592                     Self::munmap(VirtAddr::new(addr), len)
593                 }
594             }
595             SYS_MPROTECT => {
596                 let addr = args[0];
597                 let len = page_align_up(args[1]);
598                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
599                     // The addr argument is not a multiple of the page size
600                     Err(SystemError::EINVAL)
601                 } else {
602                     Self::mprotect(VirtAddr::new(addr), len, args[2])
603                 }
604             }
605 
606             SYS_GETCWD => {
607                 let buf = args[0] as *mut u8;
608                 let size = args[1];
609                 let security_check = || {
610                     verify_area(VirtAddr::new(buf as usize), size)?;
611                     return Ok(());
612                 };
613                 let r = security_check();
614                 if let Err(e) = r {
615                     Err(e)
616                 } else {
617                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) };
618                     Self::getcwd(buf).map(|ptr| ptr.data())
619                 }
620             }
621 
622             SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()),
623 
624             SYS_GETPPID => Self::getppid().map(|pid| pid.into()),
625             SYS_FSTAT => {
626                 let fd = args[0] as i32;
627                 let kstat: *mut PosixKstat = args[1] as *mut PosixKstat;
628                 let vaddr = VirtAddr::new(kstat as usize);
629                 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分
630                 // TODO 应该将用了c版本的verify_area都改为rust的verify_area
631                 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) {
632                     Ok(_) => Self::fstat(fd, kstat),
633                     Err(e) => Err(e),
634                 }
635             }
636 
637             SYS_FCNTL => {
638                 let fd = args[0] as i32;
639                 let cmd: Option<FcntlCommand> =
640                     <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32);
641                 let arg = args[2] as i32;
642                 let res = if let Some(cmd) = cmd {
643                     Self::fcntl(fd, cmd, arg)
644                 } else {
645                     Err(SystemError::EINVAL)
646                 };
647 
648                 // kdebug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res);
649                 res
650             }
651 
652             SYS_FTRUNCATE => {
653                 let fd = args[0] as i32;
654                 let len = args[1];
655                 let res = Self::ftruncate(fd, len);
656                 // kdebug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res);
657                 res
658             }
659 
660             #[cfg(target_arch = "x86_64")]
661             SYS_MKNOD => {
662                 let path = args[0];
663                 let flags = args[1];
664                 let dev_t = args[2];
665                 let flags: ModeType = ModeType::from_bits_truncate(flags as u32);
666                 Self::mknod(path as *const u8, flags, DeviceNumber::from(dev_t as u32))
667             }
668 
669             SYS_CLONE => {
670                 let parent_tid = VirtAddr::new(args[2]);
671                 let child_tid = VirtAddr::new(args[3]);
672 
673                 // 地址校验
674                 verify_area(parent_tid, core::mem::size_of::<i32>())?;
675                 verify_area(child_tid, core::mem::size_of::<i32>())?;
676 
677                 let mut clone_args = KernelCloneArgs::new();
678                 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64);
679                 clone_args.stack = args[1];
680                 clone_args.parent_tid = parent_tid;
681                 clone_args.child_tid = child_tid;
682                 clone_args.tls = args[4];
683                 Self::clone(frame, clone_args)
684             }
685 
686             SYS_FUTEX => {
687                 let uaddr = VirtAddr::new(args[0]);
688                 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?;
689                 let val = args[2] as u32;
690                 let utime = args[3];
691                 let uaddr2 = VirtAddr::new(args[4]);
692                 let val3 = args[5] as u32;
693 
694                 let mut timespec = None;
695                 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) {
696                     let reader = UserBufferReader::new(
697                         utime as *const PosixTimeSpec,
698                         core::mem::size_of::<PosixTimeSpec>(),
699                         true,
700                     )?;
701 
702                     timespec = Some(*reader.read_one_from_user::<PosixTimeSpec>(0)?);
703                 }
704 
705                 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3)
706             }
707 
708             SYS_SET_ROBUST_LIST => {
709                 let head = args[0];
710                 let head_uaddr = VirtAddr::new(head);
711                 let len = args[1];
712 
713                 let ret = Self::set_robust_list(head_uaddr, len);
714                 return ret;
715             }
716 
717             SYS_GET_ROBUST_LIST => {
718                 let pid = args[0];
719                 let head = args[1];
720                 let head_uaddr = VirtAddr::new(head);
721                 let len_ptr = args[2];
722                 let len_ptr_uaddr = VirtAddr::new(len_ptr);
723 
724                 let ret = Self::get_robust_list(pid, head_uaddr, len_ptr_uaddr);
725                 return ret;
726             }
727 
728             SYS_READV => Self::readv(args[0] as i32, args[1], args[2]),
729             SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]),
730 
731             SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]),
732 
733             #[cfg(target_arch = "x86_64")]
734             SYS_LSTAT => {
735                 let path = args[0] as *const u8;
736                 let kstat = args[1] as *mut PosixKstat;
737                 Self::lstat(path, kstat)
738             }
739 
740             #[cfg(target_arch = "x86_64")]
741             SYS_STAT => {
742                 let path = args[0] as *const u8;
743                 let kstat = args[1] as *mut PosixKstat;
744                 Self::stat(path, kstat)
745             }
746 
747             SYS_STATFS => {
748                 let path = args[0] as *const u8;
749                 let statfs = args[1] as *mut PosixStatfs;
750                 Self::statfs(path, statfs)
751             }
752 
753             SYS_FSTATFS => {
754                 let fd = args[0] as i32;
755                 let statfs = args[1] as *mut PosixStatfs;
756                 Self::fstatfs(fd, statfs)
757             }
758 
759             SYS_STATX => {
760                 let fd = args[0] as i32;
761                 let path = args[1] as *const u8;
762                 let flags = args[2] as u32;
763                 let mask = args[3] as u32;
764                 let kstat = args[4] as *mut PosixStatx;
765 
766                 Self::do_statx(fd, path, flags, mask, kstat)
767             }
768 
769             #[cfg(target_arch = "x86_64")]
770             SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32),
771             SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]),
772 
773             SYS_EPOLL_CTL => Self::epoll_ctl(
774                 args[0] as i32,
775                 args[1],
776                 args[2] as i32,
777                 VirtAddr::new(args[3]),
778             ),
779 
780             #[cfg(target_arch = "x86_64")]
781             SYS_EPOLL_WAIT => Self::epoll_wait(
782                 args[0] as i32,
783                 VirtAddr::new(args[1]),
784                 args[2] as i32,
785                 args[3] as i32,
786             ),
787 
788             SYS_EPOLL_PWAIT => {
789                 let epfd = args[0] as i32;
790                 let epoll_event = VirtAddr::new(args[1]);
791                 let max_events = args[2] as i32;
792                 let timespec = args[3] as i32;
793                 let sigmask_addr = args[4] as *mut SigSet;
794 
795                 if sigmask_addr.is_null() {
796                     return Self::epoll_wait(epfd, epoll_event, max_events, timespec);
797                 }
798                 let sigmask_reader =
799                     UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?;
800                 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?;
801 
802                 Self::epoll_pwait(
803                     args[0] as i32,
804                     VirtAddr::new(args[1]),
805                     args[2] as i32,
806                     args[3] as i32,
807                     &mut sigmask,
808                 )
809             }
810 
811             // 目前为了适配musl-libc,以下系统调用先这样写着
812             SYS_GETRANDOM => {
813                 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?;
814                 Self::get_random(args[0] as *mut u8, args[1], flags)
815             }
816 
817             SYS_SOCKETPAIR => {
818                 let mut user_buffer_writer = UserBufferWriter::new(
819                     args[3] as *mut c_int,
820                     core::mem::size_of::<[c_int; 2]>(),
821                     frame.is_from_user(),
822                 )?;
823                 let fds = user_buffer_writer.buffer::<i32>(0)?;
824                 Self::socketpair(args[0], args[1], args[2], fds)
825             }
826 
827             #[cfg(target_arch = "x86_64")]
828             SYS_POLL => {
829                 kwarn!("SYS_POLL has not yet been implemented");
830                 Ok(0)
831             }
832 
833             SYS_SETPGID => {
834                 kwarn!("SYS_SETPGID has not yet been implemented");
835                 Ok(0)
836             }
837 
838             SYS_RT_SIGPROCMASK => {
839                 kwarn!("SYS_RT_SIGPROCMASK has not yet been implemented");
840                 Ok(0)
841             }
842 
843             SYS_TKILL => {
844                 kwarn!("SYS_TKILL has not yet been implemented");
845                 Ok(0)
846             }
847 
848             SYS_SIGALTSTACK => {
849                 kwarn!("SYS_SIGALTSTACK has not yet been implemented");
850                 Ok(0)
851             }
852 
853             SYS_EXIT_GROUP => {
854                 kwarn!("SYS_EXIT_GROUP has not yet been implemented");
855                 Ok(0)
856             }
857 
858             SYS_MADVISE => {
859                 // 这个太吵了,总是打印,先注释掉
860                 // kwarn!("SYS_MADVISE has not yet been implemented");
861                 Ok(0)
862             }
863             SYS_GETTID => Self::gettid().map(|tid| tid.into()),
864             SYS_GETUID => Self::getuid(),
865 
866             SYS_SYSLOG => {
867                 let syslog_action_type = args[0];
868                 let buf_vaddr = args[1];
869                 let len = args[2];
870                 let from_user = frame.is_from_user();
871                 let mut user_buffer_writer =
872                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
873 
874                 let user_buf = user_buffer_writer.buffer(0)?;
875                 Self::do_syslog(syslog_action_type, user_buf, len)
876             }
877 
878             SYS_GETGID => Self::getgid(),
879             SYS_SETUID => {
880                 kwarn!("SYS_SETUID has not yet been implemented");
881                 Ok(0)
882             }
883             SYS_SETGID => {
884                 kwarn!("SYS_SETGID has not yet been implemented");
885                 Ok(0)
886             }
887             SYS_SETSID => {
888                 kwarn!("SYS_SETSID has not yet been implemented");
889                 Ok(0)
890             }
891             SYS_GETEUID => Self::geteuid(),
892             SYS_GETEGID => Self::getegid(),
893             SYS_GETRUSAGE => {
894                 let who = args[0] as c_int;
895                 let rusage = args[1] as *mut RUsage;
896                 Self::get_rusage(who, rusage)
897             }
898 
899             #[cfg(target_arch = "x86_64")]
900             SYS_READLINK => {
901                 let path = args[0] as *const u8;
902                 let buf = args[1] as *mut u8;
903                 let bufsiz = args[2];
904                 Self::readlink(path, buf, bufsiz)
905             }
906 
907             SYS_READLINKAT => {
908                 let dirfd = args[0] as i32;
909                 let path = args[1] as *const u8;
910                 let buf = args[2] as *mut u8;
911                 let bufsiz = args[3];
912                 Self::readlink_at(dirfd, path, buf, bufsiz)
913             }
914 
915             SYS_PRLIMIT64 => {
916                 let pid = args[0];
917                 let pid = Pid::new(pid);
918                 let resource = args[1];
919                 let new_limit = args[2] as *const RLimit64;
920                 let old_limit = args[3] as *mut RLimit64;
921 
922                 Self::prlimit64(pid, resource, new_limit, old_limit)
923             }
924 
925             #[cfg(target_arch = "x86_64")]
926             SYS_ACCESS => {
927                 let pathname = args[0] as *const u8;
928                 let mode = args[1] as u32;
929                 Self::access(pathname, mode)
930             }
931 
932             SYS_FACCESSAT => {
933                 let dirfd = args[0] as i32;
934                 let pathname = args[1] as *const u8;
935                 let mode = args[2] as u32;
936                 Self::faccessat2(dirfd, pathname, mode, 0)
937             }
938 
939             SYS_FACCESSAT2 => {
940                 let dirfd = args[0] as i32;
941                 let pathname = args[1] as *const u8;
942                 let mode = args[2] as u32;
943                 let flags = args[3] as u32;
944                 Self::faccessat2(dirfd, pathname, mode, flags)
945             }
946 
947             SYS_CLOCK_GETTIME => {
948                 let clockid = args[0] as i32;
949                 let timespec = args[1] as *mut PosixTimeSpec;
950                 Self::clock_gettime(clockid, timespec)
951             }
952 
953             SYS_SYSINFO => {
954                 let info = args[0] as *mut SysInfo;
955                 Self::sysinfo(info)
956             }
957 
958             SYS_UMASK => {
959                 let mask = args[0] as u32;
960                 Self::umask(mask)
961             }
962 
963             SYS_FCHOWN => {
964                 kwarn!("SYS_FCHOWN has not yet been implemented");
965                 Ok(0)
966             }
967 
968             SYS_FSYNC => {
969                 kwarn!("SYS_FSYNC has not yet been implemented");
970                 Ok(0)
971             }
972 
973             SYS_RSEQ => {
974                 kwarn!("SYS_RSEQ has not yet been implemented");
975                 Ok(0)
976             }
977 
978             #[cfg(target_arch = "x86_64")]
979             SYS_CHMOD => {
980                 let pathname = args[0] as *const u8;
981                 let mode = args[1] as u32;
982                 Self::chmod(pathname, mode)
983             }
984             SYS_FCHMOD => {
985                 let fd = args[0] as i32;
986                 let mode = args[1] as u32;
987                 Self::fchmod(fd, mode)
988             }
989             SYS_FCHMODAT => {
990                 let dirfd = args[0] as i32;
991                 let pathname = args[1] as *const u8;
992                 let mode = args[2] as u32;
993                 Self::fchmodat(dirfd, pathname, mode)
994             }
995 
996             SYS_SCHED_GETAFFINITY => {
997                 let pid = args[0] as i32;
998                 let size = args[1];
999                 let set_vaddr = args[2];
1000 
1001                 let mut user_buffer_writer =
1002                     UserBufferWriter::new(set_vaddr as *mut u8, size, frame.is_from_user())?;
1003                 let set: &mut [u8] = user_buffer_writer.buffer(0)?;
1004 
1005                 Self::getaffinity(pid, set)
1006             }
1007 
1008             #[cfg(target_arch = "x86_64")]
1009             SYS_GETRLIMIT => {
1010                 let resource = args[0];
1011                 let rlimit = args[1] as *mut RLimit64;
1012 
1013                 Self::prlimit64(
1014                     ProcessManager::current_pcb().pid(),
1015                     resource,
1016                     core::ptr::null::<RLimit64>(),
1017                     rlimit,
1018                 )
1019             }
1020 
1021             SYS_FADVISE64 => {
1022                 // todo: 这个系统调用还没有实现
1023 
1024                 Err(SystemError::ENOSYS)
1025             }
1026 
1027             SYS_MOUNT => {
1028                 let source = args[0] as *const u8;
1029                 let target = args[1] as *const u8;
1030                 let filesystemtype = args[2] as *const u8;
1031                 return Self::mount(source, target, filesystemtype, 0, null());
1032             }
1033             SYS_NEWFSTATAT => {
1034                 // todo: 这个系统调用还没有实现
1035 
1036                 Err(SystemError::ENOSYS)
1037             }
1038 
1039             // SYS_SCHED_YIELD => Self::sched_yield(),
1040             SYS_UNAME => {
1041                 let name = args[0] as *mut PosixOldUtsName;
1042                 Self::uname(name)
1043             }
1044 
1045             SYS_SHMGET => {
1046                 let key = ShmKey::new(args[0]);
1047                 let size = args[1];
1048                 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32);
1049 
1050                 Self::shmget(key, size, shmflg)
1051             }
1052             SYS_SHMAT => {
1053                 let id = ShmId::new(args[0]);
1054                 let vaddr = VirtAddr::new(args[1]);
1055                 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32);
1056 
1057                 Self::shmat(id, vaddr, shmflg)
1058             }
1059             SYS_SHMDT => {
1060                 let vaddr = VirtAddr::new(args[0]);
1061                 Self::shmdt(vaddr)
1062             }
1063             SYS_SHMCTL => {
1064                 let id = ShmId::new(args[0]);
1065                 let cmd = ShmCtlCmd::from(args[1]);
1066                 let user_buf = args[2] as *const u8;
1067                 let from_user = frame.is_from_user();
1068 
1069                 Self::shmctl(id, cmd, user_buf, from_user)
1070             }
1071 
1072             _ => panic!("Unsupported syscall ID: {}", syscall_num),
1073         };
1074 
1075         if ProcessManager::current_pcb()
1076             .flags()
1077             .contains(ProcessFlags::NEED_SCHEDULE)
1078         {
1079             schedule(SchedMode::SM_PREEMPT);
1080         }
1081 
1082         return r;
1083     }
1084 
1085     pub fn put_string(
1086         s: *const u8,
1087         front_color: u32,
1088         back_color: u32,
1089     ) -> Result<usize, SystemError> {
1090         // todo: 删除这个系统调用
1091         let s = check_and_clone_cstr(s, Some(4096))?;
1092         let fr = (front_color & 0x00ff0000) >> 16;
1093         let fg = (front_color & 0x0000ff00) >> 8;
1094         let fb = front_color & 0x000000ff;
1095         let br = (back_color & 0x00ff0000) >> 16;
1096         let bg = (back_color & 0x0000ff00) >> 8;
1097         let bb = back_color & 0x000000ff;
1098         print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m");
1099         return Ok(s.len());
1100     }
1101 
1102     pub fn reboot() -> Result<usize, SystemError> {
1103         unsafe { cpu_reset() };
1104     }
1105 }
1106