1 use core::{ 2 ffi::{c_int, c_void}, 3 ptr::null, 4 sync::atomic::{AtomicBool, Ordering}, 5 }; 6 7 use crate::{ 8 arch::{ipc::signal::SigSet, syscall::nr::*}, 9 filesystem::vfs::syscall::{PosixStatfs, PosixStatx}, 10 ipc::shm::{ShmCtlCmd, ShmFlags, ShmId, ShmKey}, 11 libs::{futex::constant::FutexFlag, rand::GRandFlags}, 12 mm::{page::PAGE_4K_SIZE, syscall::MremapFlags}, 13 net::syscall::MsgHdr, 14 process::{ 15 fork::KernelCloneArgs, 16 resource::{RLimit64, RUsage}, 17 ProcessFlags, ProcessManager, 18 }, 19 sched::{schedule, SchedMode}, 20 syscall::user_access::check_and_clone_cstr, 21 }; 22 23 use log::{info, warn}; 24 use num_traits::FromPrimitive; 25 use system_error::SystemError; 26 27 use crate::{ 28 arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch}, 29 filesystem::vfs::{ 30 fcntl::{AtFlags, FcntlCommand}, 31 file::FileMode, 32 syscall::{ModeType, PosixKstat, UtimensFlags}, 33 MAX_PATHLEN, 34 }, 35 libs::align::page_align_up, 36 mm::{verify_area, MemoryManagementArch, VirtAddr}, 37 net::syscall::SockAddr, 38 process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid}, 39 time::{ 40 syscall::{PosixTimeZone, PosixTimeval}, 41 PosixTimeSpec, 42 }, 43 }; 44 45 use self::{ 46 misc::SysInfo, 47 user_access::{UserBufferReader, UserBufferWriter}, 48 }; 49 50 pub mod misc; 51 pub mod user_access; 52 53 // 与linux不一致的调用,在linux基础上累加 54 pub const SYS_PUT_STRING: usize = 100000; 55 pub const SYS_SBRK: usize = 100001; 56 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc 57 pub const SYS_CLOCK: usize = 100002; 58 pub const SYS_SCHED: usize = 100003; 59 60 #[derive(Debug)] 61 pub struct Syscall; 62 63 impl Syscall { 64 /// 初始化系统调用 65 #[inline(never)] 66 pub fn init() -> Result<(), SystemError> { 67 static INIT_FLAG: AtomicBool = AtomicBool::new(false); 68 let prev = INIT_FLAG.swap(true, Ordering::SeqCst); 69 if prev { 70 panic!("Cannot initialize syscall more than once!"); 71 } 72 info!("Initializing syscall..."); 73 let r = crate::arch::syscall::arch_syscall_init(); 74 info!("Syscall init successfully!"); 75 76 return r; 77 } 78 /// @brief 系统调用分发器,用于分发系统调用。 79 /// 80 /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。 81 /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。 82 #[inline(never)] 83 pub fn handle( 84 syscall_num: usize, 85 args: &[usize], 86 frame: &mut TrapFrame, 87 ) -> Result<usize, SystemError> { 88 let r = match syscall_num { 89 SYS_PUT_STRING => { 90 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32) 91 } 92 #[cfg(target_arch = "x86_64")] 93 SYS_OPEN => { 94 let path = args[0] as *const u8; 95 let flags = args[1] as u32; 96 let mode = args[2] as u32; 97 98 Self::open(path, flags, mode, true) 99 } 100 101 #[cfg(target_arch = "x86_64")] 102 SYS_RENAME => { 103 let oldname: *const u8 = args[0] as *const u8; 104 let newname: *const u8 = args[1] as *const u8; 105 Self::do_renameat2( 106 AtFlags::AT_FDCWD.bits(), 107 oldname, 108 AtFlags::AT_FDCWD.bits(), 109 newname, 110 0, 111 ) 112 } 113 114 #[cfg(target_arch = "x86_64")] 115 SYS_RENAMEAT => { 116 let oldfd = args[0] as i32; 117 let oldname: *const u8 = args[1] as *const u8; 118 let newfd = args[2] as i32; 119 let newname: *const u8 = args[3] as *const u8; 120 Self::do_renameat2(oldfd, oldname, newfd, newname, 0) 121 } 122 123 SYS_RENAMEAT2 => { 124 let oldfd = args[0] as i32; 125 let oldname: *const u8 = args[1] as *const u8; 126 let newfd = args[2] as i32; 127 let newname: *const u8 = args[3] as *const u8; 128 let flags = args[4] as u32; 129 Self::do_renameat2(oldfd, oldname, newfd, newname, flags) 130 } 131 132 SYS_OPENAT => { 133 let dirfd = args[0] as i32; 134 let path = args[1] as *const u8; 135 let flags = args[2] as u32; 136 let mode = args[3] as u32; 137 138 Self::openat(dirfd, path, flags, mode, true) 139 } 140 SYS_CLOSE => { 141 let fd = args[0]; 142 Self::close(fd) 143 } 144 SYS_READ => { 145 let fd = args[0] as i32; 146 let buf_vaddr = args[1]; 147 let len = args[2]; 148 let from_user = frame.is_from_user(); 149 let mut user_buffer_writer = 150 UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?; 151 152 let user_buf = user_buffer_writer.buffer(0)?; 153 Self::read(fd, user_buf) 154 } 155 SYS_WRITE => { 156 let fd = args[0] as i32; 157 let buf_vaddr = args[1]; 158 let len = args[2]; 159 let from_user = frame.is_from_user(); 160 let user_buffer_reader = 161 UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?; 162 163 let user_buf = user_buffer_reader.read_from_user(0)?; 164 Self::write(fd, user_buf) 165 } 166 167 SYS_LSEEK => { 168 let fd = args[0] as i32; 169 let offset = args[1] as i64; 170 let whence = args[2] as u32; 171 172 Self::lseek(fd, offset, whence) 173 } 174 175 SYS_PREAD64 => { 176 let fd = args[0] as i32; 177 let buf_vaddr = args[1]; 178 let len = args[2]; 179 let offset = args[3]; 180 181 let mut user_buffer_writer = 182 UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.is_from_user())?; 183 let buf = user_buffer_writer.buffer(0)?; 184 Self::pread(fd, buf, len, offset) 185 } 186 187 SYS_PWRITE64 => { 188 let fd = args[0] as i32; 189 let buf_vaddr = args[1]; 190 let len = args[2]; 191 let offset = args[3]; 192 193 let user_buffer_reader = 194 UserBufferReader::new(buf_vaddr as *const u8, len, frame.is_from_user())?; 195 196 let buf = user_buffer_reader.read_from_user(0)?; 197 Self::pwrite(fd, buf, len, offset) 198 } 199 200 SYS_IOCTL => { 201 let fd = args[0]; 202 let cmd = args[1]; 203 let data = args[2]; 204 Self::ioctl(fd, cmd as u32, data) 205 } 206 207 #[cfg(target_arch = "x86_64")] 208 SYS_FORK => Self::fork(frame), 209 #[cfg(target_arch = "x86_64")] 210 SYS_VFORK => Self::vfork(frame), 211 212 SYS_BRK => { 213 let new_brk = VirtAddr::new(args[0]); 214 Self::brk(new_brk).map(|vaddr| vaddr.data()) 215 } 216 217 SYS_SBRK => { 218 let increment = args[0] as isize; 219 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data()) 220 } 221 222 SYS_REBOOT => Self::reboot(), 223 224 SYS_CHDIR => { 225 let r = args[0] as *const u8; 226 Self::chdir(r) 227 } 228 229 #[allow(unreachable_patterns)] 230 SYS_GETDENTS64 | SYS_GETDENTS => { 231 let fd = args[0] as i32; 232 233 let buf_vaddr = args[1]; 234 let len = args[2]; 235 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr); 236 // 判断缓冲区是否来自用户态,进行权限校验 237 let res = if frame.is_from_user() && verify_area(virt_addr, len).is_err() { 238 // 来自用户态,而buffer在内核态,这样的操作不被允许 239 Err(SystemError::EPERM) 240 } else if buf_vaddr == 0 { 241 Err(SystemError::EFAULT) 242 } else { 243 let buf: &mut [u8] = unsafe { 244 core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len) 245 }; 246 Self::getdents(fd, buf) 247 }; 248 249 res 250 } 251 252 SYS_EXECVE => { 253 let path_ptr = args[0]; 254 let argv_ptr = args[1]; 255 let env_ptr = args[2]; 256 let virt_path_ptr = VirtAddr::new(path_ptr); 257 let virt_argv_ptr = VirtAddr::new(argv_ptr); 258 let virt_env_ptr = VirtAddr::new(env_ptr); 259 // 权限校验 260 if frame.is_from_user() 261 && (verify_area(virt_path_ptr, MAX_PATHLEN).is_err() 262 || verify_area(virt_argv_ptr, PAGE_4K_SIZE).is_err()) 263 || verify_area(virt_env_ptr, PAGE_4K_SIZE).is_err() 264 { 265 Err(SystemError::EFAULT) 266 } else { 267 Self::execve( 268 path_ptr as *const u8, 269 argv_ptr as *const *const u8, 270 env_ptr as *const *const u8, 271 frame, 272 ) 273 .map(|_| 0) 274 } 275 } 276 SYS_WAIT4 => { 277 let pid = args[0] as i32; 278 let wstatus = args[1] as *mut i32; 279 let options = args[2] as c_int; 280 let rusage = args[3] as *mut c_void; 281 // 权限校验 282 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小 283 Self::wait4(pid.into(), wstatus, options, rusage) 284 } 285 286 SYS_EXIT => { 287 let exit_code = args[0]; 288 Self::exit(exit_code) 289 } 290 #[cfg(target_arch = "x86_64")] 291 SYS_MKDIR => { 292 let path = args[0] as *const u8; 293 let mode = args[1]; 294 295 Self::mkdir(path, mode) 296 } 297 298 SYS_NANOSLEEP => { 299 let req = args[0] as *const PosixTimeSpec; 300 let rem = args[1] as *mut PosixTimeSpec; 301 let virt_req = VirtAddr::new(req as usize); 302 let virt_rem = VirtAddr::new(rem as usize); 303 if frame.is_from_user() 304 && (verify_area(virt_req, core::mem::size_of::<PosixTimeSpec>()).is_err() 305 || verify_area(virt_rem, core::mem::size_of::<PosixTimeSpec>()).is_err()) 306 { 307 Err(SystemError::EFAULT) 308 } else { 309 Self::nanosleep(req, rem) 310 } 311 } 312 313 SYS_CLOCK => Self::clock(), 314 #[cfg(target_arch = "x86_64")] 315 SYS_PIPE => { 316 let pipefd: *mut i32 = args[0] as *mut c_int; 317 if pipefd.is_null() { 318 Err(SystemError::EFAULT) 319 } else { 320 Self::pipe2(pipefd, FileMode::empty()) 321 } 322 } 323 324 SYS_PIPE2 => { 325 let pipefd: *mut i32 = args[0] as *mut c_int; 326 let arg1 = args[1]; 327 if pipefd.is_null() { 328 Err(SystemError::EFAULT) 329 } else { 330 let flags = FileMode::from_bits_truncate(arg1 as u32); 331 Self::pipe2(pipefd, flags) 332 } 333 } 334 335 SYS_UNLINKAT => { 336 let dirfd = args[0] as i32; 337 let path = args[1] as *const u8; 338 let flags = args[2] as u32; 339 Self::unlinkat(dirfd, path, flags) 340 } 341 342 #[cfg(target_arch = "x86_64")] 343 SYS_RMDIR => { 344 let path = args[0] as *const u8; 345 Self::rmdir(path) 346 } 347 348 #[cfg(target_arch = "x86_64")] 349 SYS_LINK => { 350 let old = args[0] as *const u8; 351 let new = args[1] as *const u8; 352 return Self::link(old, new); 353 } 354 355 SYS_LINKAT => { 356 let oldfd = args[0] as i32; 357 let old = args[1] as *const u8; 358 let newfd = args[2] as i32; 359 let new = args[3] as *const u8; 360 let flags = args[4] as i32; 361 return Self::linkat(oldfd, old, newfd, new, flags); 362 } 363 364 #[cfg(target_arch = "x86_64")] 365 SYS_UNLINK => { 366 let path = args[0] as *const u8; 367 Self::unlink(path) 368 } 369 SYS_KILL => { 370 let pid = Pid::new(args[0]); 371 let sig = args[1] as c_int; 372 // debug!("KILL SYSCALL RECEIVED"); 373 Self::kill(pid, sig) 374 } 375 376 SYS_RT_SIGACTION => { 377 let sig = args[0] as c_int; 378 let act = args[1]; 379 let old_act = args[2]; 380 Self::sigaction(sig, act, old_act, frame.is_from_user()) 381 } 382 383 SYS_GETPID => Self::getpid().map(|pid| pid.into()), 384 385 SYS_SCHED => { 386 warn!("syscall sched"); 387 schedule(SchedMode::SM_NONE); 388 Ok(0) 389 } 390 SYS_DUP => { 391 let oldfd: i32 = args[0] as c_int; 392 Self::dup(oldfd) 393 } 394 395 #[cfg(target_arch = "x86_64")] 396 SYS_DUP2 => { 397 let oldfd: i32 = args[0] as c_int; 398 let newfd: i32 = args[1] as c_int; 399 Self::dup2(oldfd, newfd) 400 } 401 402 SYS_DUP3 => { 403 let oldfd: i32 = args[0] as c_int; 404 let newfd: i32 = args[1] as c_int; 405 let flags: u32 = args[2] as u32; 406 Self::dup3(oldfd, newfd, flags) 407 } 408 409 SYS_SOCKET => Self::socket(args[0], args[1], args[2]), 410 SYS_SETSOCKOPT => { 411 let optval = args[3] as *const u8; 412 let optlen = args[4]; 413 let virt_optval = VirtAddr::new(optval as usize); 414 // 验证optval的地址是否合法 415 if verify_area(virt_optval, optlen).is_err() { 416 // 地址空间超出了用户空间的范围,不合法 417 Err(SystemError::EFAULT) 418 } else { 419 let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) }; 420 Self::setsockopt(args[0], args[1], args[2], data) 421 } 422 } 423 SYS_GETSOCKOPT => { 424 let optval = args[3] as *mut u8; 425 let optlen = args[4] as *mut usize; 426 let virt_optval = VirtAddr::new(optval as usize); 427 let virt_optlen = VirtAddr::new(optlen as usize); 428 let security_check = || { 429 // 验证optval的地址是否合法 430 if verify_area(virt_optval, PAGE_4K_SIZE).is_err() { 431 // 地址空间超出了用户空间的范围,不合法 432 return Err(SystemError::EFAULT); 433 } 434 435 // 验证optlen的地址是否合法 436 if verify_area(virt_optlen, core::mem::size_of::<u32>()).is_err() { 437 // 地址空间超出了用户空间的范围,不合法 438 return Err(SystemError::EFAULT); 439 } 440 return Ok(()); 441 }; 442 let r = security_check(); 443 if let Err(e) = r { 444 Err(e) 445 } else { 446 Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32) 447 } 448 } 449 450 SYS_CONNECT => { 451 let addr = args[1] as *const SockAddr; 452 let addrlen = args[2]; 453 let virt_addr = VirtAddr::new(addr as usize); 454 // 验证addr的地址是否合法 455 if verify_area(virt_addr, addrlen).is_err() { 456 // 地址空间超出了用户空间的范围,不合法 457 Err(SystemError::EFAULT) 458 } else { 459 Self::connect(args[0], addr, addrlen) 460 } 461 } 462 SYS_BIND => { 463 let addr = args[1] as *const SockAddr; 464 let addrlen = args[2]; 465 let virt_addr = VirtAddr::new(addr as usize); 466 // 验证addr的地址是否合法 467 if verify_area(virt_addr, addrlen).is_err() { 468 // 地址空间超出了用户空间的范围,不合法 469 Err(SystemError::EFAULT) 470 } else { 471 Self::bind(args[0], addr, addrlen) 472 } 473 } 474 475 SYS_SENDTO => { 476 let buf = args[1] as *const u8; 477 let len = args[2]; 478 let flags = args[3] as u32; 479 let addr = args[4] as *const SockAddr; 480 let addrlen = args[5]; 481 let virt_buf = VirtAddr::new(buf as usize); 482 let virt_addr = VirtAddr::new(addr as usize); 483 // 验证buf的地址是否合法 484 if verify_area(virt_buf, len).is_err() || verify_area(virt_addr, addrlen).is_err() { 485 // 地址空间超出了用户空间的范围,不合法 486 Err(SystemError::EFAULT) 487 } else { 488 let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) }; 489 Self::sendto(args[0], data, flags, addr, addrlen) 490 } 491 } 492 493 SYS_RECVFROM => { 494 let buf = args[1] as *mut u8; 495 let len = args[2]; 496 let flags = args[3] as u32; 497 let addr = args[4] as *mut SockAddr; 498 let addrlen = args[5] as *mut usize; 499 let virt_buf = VirtAddr::new(buf as usize); 500 let virt_addrlen = VirtAddr::new(addrlen as usize); 501 let virt_addr = VirtAddr::new(addr as usize); 502 let security_check = || { 503 // 验证buf的地址是否合法 504 if verify_area(virt_buf, len).is_err() { 505 // 地址空间超出了用户空间的范围,不合法 506 return Err(SystemError::EFAULT); 507 } 508 509 // 验证addrlen的地址是否合法 510 if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() { 511 // 地址空间超出了用户空间的范围,不合法 512 return Err(SystemError::EFAULT); 513 } 514 515 if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() { 516 // 地址空间超出了用户空间的范围,不合法 517 return Err(SystemError::EFAULT); 518 } 519 return Ok(()); 520 }; 521 let r = security_check(); 522 if let Err(e) = r { 523 Err(e) 524 } else { 525 let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) }; 526 Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32) 527 } 528 } 529 530 SYS_RECVMSG => { 531 let msg = args[1] as *mut MsgHdr; 532 let flags = args[2] as u32; 533 534 let mut user_buffer_writer = UserBufferWriter::new( 535 msg, 536 core::mem::size_of::<MsgHdr>(), 537 frame.is_from_user(), 538 )?; 539 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?; 540 541 let msg = &mut buffer[0]; 542 Self::recvmsg(args[0], msg, flags) 543 } 544 545 SYS_LISTEN => Self::listen(args[0], args[1]), 546 SYS_SHUTDOWN => Self::shutdown(args[0], args[1]), 547 SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32), 548 SYS_ACCEPT4 => Self::accept4( 549 args[0], 550 args[1] as *mut SockAddr, 551 args[2] as *mut u32, 552 args[3] as u32, 553 ), 554 SYS_GETSOCKNAME => { 555 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32) 556 } 557 SYS_GETPEERNAME => { 558 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32) 559 } 560 SYS_GETTIMEOFDAY => { 561 let timeval = args[0] as *mut PosixTimeval; 562 let timezone_ptr = args[1] as *mut PosixTimeZone; 563 Self::gettimeofday(timeval, timezone_ptr) 564 } 565 SYS_MMAP => { 566 let len = page_align_up(args[1]); 567 let virt_addr = VirtAddr::new(args[0]); 568 if verify_area(virt_addr, len).is_err() { 569 Err(SystemError::EFAULT) 570 } else { 571 Self::mmap( 572 VirtAddr::new(args[0]), 573 len, 574 args[2], 575 args[3], 576 args[4] as i32, 577 args[5], 578 ) 579 } 580 } 581 SYS_MREMAP => { 582 let old_vaddr = VirtAddr::new(args[0]); 583 let old_len = args[1]; 584 let new_len = args[2]; 585 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8); 586 let new_vaddr = VirtAddr::new(args[4]); 587 588 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr) 589 } 590 SYS_MUNMAP => { 591 let addr = args[0]; 592 let len = page_align_up(args[1]); 593 if addr & (MMArch::PAGE_SIZE - 1) != 0 { 594 // The addr argument is not a multiple of the page size 595 Err(SystemError::EINVAL) 596 } else { 597 Self::munmap(VirtAddr::new(addr), len) 598 } 599 } 600 SYS_MPROTECT => { 601 let addr = args[0]; 602 let len = page_align_up(args[1]); 603 if addr & (MMArch::PAGE_SIZE - 1) != 0 { 604 // The addr argument is not a multiple of the page size 605 Err(SystemError::EINVAL) 606 } else { 607 Self::mprotect(VirtAddr::new(addr), len, args[2]) 608 } 609 } 610 611 SYS_GETCWD => { 612 let buf = args[0] as *mut u8; 613 let size = args[1]; 614 let security_check = || { 615 verify_area(VirtAddr::new(buf as usize), size)?; 616 return Ok(()); 617 }; 618 let r = security_check(); 619 if let Err(e) = r { 620 Err(e) 621 } else { 622 let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) }; 623 Self::getcwd(buf).map(|ptr| ptr.data()) 624 } 625 } 626 627 SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()), 628 629 SYS_GETPPID => Self::getppid().map(|pid| pid.into()), 630 SYS_FSTAT => { 631 let fd = args[0] as i32; 632 let kstat: *mut PosixKstat = args[1] as *mut PosixKstat; 633 let vaddr = VirtAddr::new(kstat as usize); 634 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分 635 // TODO 应该将用了c版本的verify_area都改为rust的verify_area 636 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) { 637 Ok(_) => Self::fstat(fd, kstat), 638 Err(e) => Err(e), 639 } 640 } 641 642 SYS_FCNTL => { 643 let fd = args[0] as i32; 644 let cmd: Option<FcntlCommand> = 645 <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32); 646 let arg = args[2] as i32; 647 let res = if let Some(cmd) = cmd { 648 Self::fcntl(fd, cmd, arg) 649 } else { 650 Err(SystemError::EINVAL) 651 }; 652 653 // debug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res); 654 res 655 } 656 657 SYS_FTRUNCATE => { 658 let fd = args[0] as i32; 659 let len = args[1]; 660 let res = Self::ftruncate(fd, len); 661 // debug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res); 662 res 663 } 664 665 #[cfg(target_arch = "x86_64")] 666 SYS_MKNOD => { 667 let path = args[0]; 668 let flags = args[1]; 669 let dev_t = args[2]; 670 let flags: ModeType = ModeType::from_bits_truncate(flags as u32); 671 Self::mknod( 672 path as *const u8, 673 flags, 674 crate::driver::base::device::device_number::DeviceNumber::from(dev_t as u32), 675 ) 676 } 677 678 SYS_CLONE => { 679 let parent_tid = VirtAddr::new(args[2]); 680 let child_tid = VirtAddr::new(args[3]); 681 682 // 地址校验 683 verify_area(parent_tid, core::mem::size_of::<i32>())?; 684 verify_area(child_tid, core::mem::size_of::<i32>())?; 685 686 let mut clone_args = KernelCloneArgs::new(); 687 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64); 688 clone_args.stack = args[1]; 689 clone_args.parent_tid = parent_tid; 690 clone_args.child_tid = child_tid; 691 clone_args.tls = args[4]; 692 Self::clone(frame, clone_args) 693 } 694 695 SYS_FUTEX => { 696 let uaddr = VirtAddr::new(args[0]); 697 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?; 698 let val = args[2] as u32; 699 let utime = args[3]; 700 let uaddr2 = VirtAddr::new(args[4]); 701 let val3 = args[5] as u32; 702 703 let mut timespec = None; 704 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) { 705 let reader = UserBufferReader::new( 706 utime as *const PosixTimeSpec, 707 core::mem::size_of::<PosixTimeSpec>(), 708 true, 709 )?; 710 711 timespec = Some(*reader.read_one_from_user::<PosixTimeSpec>(0)?); 712 } 713 714 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3) 715 } 716 717 SYS_SET_ROBUST_LIST => { 718 let head = args[0]; 719 let head_uaddr = VirtAddr::new(head); 720 let len = args[1]; 721 722 let ret = Self::set_robust_list(head_uaddr, len); 723 return ret; 724 } 725 726 SYS_GET_ROBUST_LIST => { 727 let pid = args[0]; 728 let head = args[1]; 729 let head_uaddr = VirtAddr::new(head); 730 let len_ptr = args[2]; 731 let len_ptr_uaddr = VirtAddr::new(len_ptr); 732 733 let ret = Self::get_robust_list(pid, head_uaddr, len_ptr_uaddr); 734 return ret; 735 } 736 737 SYS_READV => Self::readv(args[0] as i32, args[1], args[2]), 738 SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]), 739 740 SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]), 741 742 #[cfg(target_arch = "x86_64")] 743 SYS_LSTAT => { 744 let path = args[0] as *const u8; 745 let kstat = args[1] as *mut PosixKstat; 746 Self::lstat(path, kstat) 747 } 748 749 #[cfg(target_arch = "x86_64")] 750 SYS_STAT => { 751 let path = args[0] as *const u8; 752 let kstat = args[1] as *mut PosixKstat; 753 Self::stat(path, kstat) 754 } 755 756 SYS_STATFS => { 757 let path = args[0] as *const u8; 758 let statfs = args[1] as *mut PosixStatfs; 759 Self::statfs(path, statfs) 760 } 761 762 SYS_FSTATFS => { 763 let fd = args[0] as i32; 764 let statfs = args[1] as *mut PosixStatfs; 765 Self::fstatfs(fd, statfs) 766 } 767 768 SYS_STATX => { 769 let fd = args[0] as i32; 770 let path = args[1] as *const u8; 771 let flags = args[2] as u32; 772 let mask = args[3] as u32; 773 let kstat = args[4] as *mut PosixStatx; 774 775 Self::do_statx(fd, path, flags, mask, kstat) 776 } 777 778 #[cfg(target_arch = "x86_64")] 779 SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32), 780 SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]), 781 782 SYS_EPOLL_CTL => Self::epoll_ctl( 783 args[0] as i32, 784 args[1], 785 args[2] as i32, 786 VirtAddr::new(args[3]), 787 ), 788 789 #[cfg(target_arch = "x86_64")] 790 SYS_EPOLL_WAIT => Self::epoll_wait( 791 args[0] as i32, 792 VirtAddr::new(args[1]), 793 args[2] as i32, 794 args[3] as i32, 795 ), 796 797 SYS_EPOLL_PWAIT => { 798 let epfd = args[0] as i32; 799 let epoll_event = VirtAddr::new(args[1]); 800 let max_events = args[2] as i32; 801 let timespec = args[3] as i32; 802 let sigmask_addr = args[4] as *mut SigSet; 803 804 if sigmask_addr.is_null() { 805 return Self::epoll_wait(epfd, epoll_event, max_events, timespec); 806 } 807 let sigmask_reader = 808 UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?; 809 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?; 810 811 Self::epoll_pwait( 812 args[0] as i32, 813 VirtAddr::new(args[1]), 814 args[2] as i32, 815 args[3] as i32, 816 &mut sigmask, 817 ) 818 } 819 820 // 目前为了适配musl-libc,以下系统调用先这样写着 821 SYS_GETRANDOM => { 822 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?; 823 Self::get_random(args[0] as *mut u8, args[1], flags) 824 } 825 826 SYS_SOCKETPAIR => { 827 let mut user_buffer_writer = UserBufferWriter::new( 828 args[3] as *mut c_int, 829 core::mem::size_of::<[c_int; 2]>(), 830 frame.is_from_user(), 831 )?; 832 let fds = user_buffer_writer.buffer::<i32>(0)?; 833 Self::socketpair(args[0], args[1], args[2], fds) 834 } 835 836 #[cfg(target_arch = "x86_64")] 837 SYS_POLL => { 838 warn!("SYS_POLL has not yet been implemented"); 839 Ok(0) 840 } 841 842 SYS_SETPGID => { 843 warn!("SYS_SETPGID has not yet been implemented"); 844 Ok(0) 845 } 846 847 SYS_RT_SIGPROCMASK => { 848 warn!("SYS_RT_SIGPROCMASK has not yet been implemented"); 849 Ok(0) 850 } 851 852 SYS_TKILL => { 853 warn!("SYS_TKILL has not yet been implemented"); 854 Ok(0) 855 } 856 857 SYS_SIGALTSTACK => { 858 warn!("SYS_SIGALTSTACK has not yet been implemented"); 859 Ok(0) 860 } 861 862 SYS_EXIT_GROUP => { 863 warn!("SYS_EXIT_GROUP has not yet been implemented"); 864 Ok(0) 865 } 866 867 SYS_MADVISE => { 868 let addr = args[0]; 869 let len = page_align_up(args[1]); 870 if addr & (MMArch::PAGE_SIZE - 1) != 0 { 871 Err(SystemError::EINVAL) 872 } else { 873 Self::madvise(VirtAddr::new(addr), len, args[2]) 874 } 875 } 876 877 SYS_GETTID => Self::gettid().map(|tid| tid.into()), 878 SYS_GETUID => Self::getuid(), 879 880 SYS_SYSLOG => { 881 let syslog_action_type = args[0]; 882 let buf_vaddr = args[1]; 883 let len = args[2]; 884 let from_user = frame.is_from_user(); 885 let mut user_buffer_writer = 886 UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?; 887 888 let user_buf = user_buffer_writer.buffer(0)?; 889 Self::do_syslog(syslog_action_type, user_buf, len) 890 } 891 892 SYS_GETGID => Self::getgid(), 893 SYS_SETUID => { 894 warn!("SYS_SETUID has not yet been implemented"); 895 Ok(0) 896 } 897 SYS_SETGID => { 898 warn!("SYS_SETGID has not yet been implemented"); 899 Ok(0) 900 } 901 SYS_SETSID => { 902 warn!("SYS_SETSID has not yet been implemented"); 903 Ok(0) 904 } 905 SYS_GETEUID => Self::geteuid(), 906 SYS_GETEGID => Self::getegid(), 907 SYS_GETRUSAGE => { 908 let who = args[0] as c_int; 909 let rusage = args[1] as *mut RUsage; 910 Self::get_rusage(who, rusage) 911 } 912 913 #[cfg(target_arch = "x86_64")] 914 SYS_READLINK => { 915 let path = args[0] as *const u8; 916 let buf = args[1] as *mut u8; 917 let bufsiz = args[2]; 918 Self::readlink(path, buf, bufsiz) 919 } 920 921 SYS_READLINKAT => { 922 let dirfd = args[0] as i32; 923 let path = args[1] as *const u8; 924 let buf = args[2] as *mut u8; 925 let bufsiz = args[3]; 926 Self::readlink_at(dirfd, path, buf, bufsiz) 927 } 928 929 SYS_PRLIMIT64 => { 930 let pid = args[0]; 931 let pid = Pid::new(pid); 932 let resource = args[1]; 933 let new_limit = args[2] as *const RLimit64; 934 let old_limit = args[3] as *mut RLimit64; 935 936 Self::prlimit64(pid, resource, new_limit, old_limit) 937 } 938 939 #[cfg(target_arch = "x86_64")] 940 SYS_ACCESS => { 941 let pathname = args[0] as *const u8; 942 let mode = args[1] as u32; 943 Self::access(pathname, mode) 944 } 945 946 SYS_FACCESSAT => { 947 let dirfd = args[0] as i32; 948 let pathname = args[1] as *const u8; 949 let mode = args[2] as u32; 950 Self::faccessat2(dirfd, pathname, mode, 0) 951 } 952 953 SYS_FACCESSAT2 => { 954 let dirfd = args[0] as i32; 955 let pathname = args[1] as *const u8; 956 let mode = args[2] as u32; 957 let flags = args[3] as u32; 958 Self::faccessat2(dirfd, pathname, mode, flags) 959 } 960 961 SYS_CLOCK_GETTIME => { 962 let clockid = args[0] as i32; 963 let timespec = args[1] as *mut PosixTimeSpec; 964 Self::clock_gettime(clockid, timespec) 965 } 966 967 SYS_SYSINFO => { 968 let info = args[0] as *mut SysInfo; 969 Self::sysinfo(info) 970 } 971 972 SYS_UMASK => { 973 let mask = args[0] as u32; 974 Self::umask(mask) 975 } 976 977 SYS_FCHOWN => { 978 warn!("SYS_FCHOWN has not yet been implemented"); 979 Ok(0) 980 } 981 982 SYS_FSYNC => { 983 warn!("SYS_FSYNC has not yet been implemented"); 984 Ok(0) 985 } 986 987 SYS_RSEQ => { 988 warn!("SYS_RSEQ has not yet been implemented"); 989 Ok(0) 990 } 991 992 #[cfg(target_arch = "x86_64")] 993 SYS_CHMOD => { 994 let pathname = args[0] as *const u8; 995 let mode = args[1] as u32; 996 Self::chmod(pathname, mode) 997 } 998 SYS_FCHMOD => { 999 let fd = args[0] as i32; 1000 let mode = args[1] as u32; 1001 Self::fchmod(fd, mode) 1002 } 1003 SYS_FCHMODAT => { 1004 let dirfd = args[0] as i32; 1005 let pathname = args[1] as *const u8; 1006 let mode = args[2] as u32; 1007 Self::fchmodat(dirfd, pathname, mode) 1008 } 1009 1010 SYS_SCHED_YIELD => Self::do_sched_yield(), 1011 1012 SYS_SCHED_GETAFFINITY => { 1013 let pid = args[0] as i32; 1014 let size = args[1]; 1015 let set_vaddr = args[2]; 1016 1017 let mut user_buffer_writer = 1018 UserBufferWriter::new(set_vaddr as *mut u8, size, frame.is_from_user())?; 1019 let set: &mut [u8] = user_buffer_writer.buffer(0)?; 1020 1021 Self::getaffinity(pid, set) 1022 } 1023 1024 #[cfg(target_arch = "x86_64")] 1025 SYS_GETRLIMIT => { 1026 let resource = args[0]; 1027 let rlimit = args[1] as *mut RLimit64; 1028 1029 Self::prlimit64( 1030 ProcessManager::current_pcb().pid(), 1031 resource, 1032 core::ptr::null::<RLimit64>(), 1033 rlimit, 1034 ) 1035 } 1036 1037 SYS_FADVISE64 => { 1038 // todo: 这个系统调用还没有实现 1039 1040 Err(SystemError::ENOSYS) 1041 } 1042 1043 SYS_MOUNT => { 1044 let source = args[0] as *const u8; 1045 let target = args[1] as *const u8; 1046 let filesystemtype = args[2] as *const u8; 1047 return Self::mount(source, target, filesystemtype, 0, null()); 1048 } 1049 1050 SYS_UMOUNT2 => { 1051 let target = args[0] as *const u8; 1052 let flags = args[1] as i32; 1053 Self::umount2(target, flags)?; 1054 return Ok(0); 1055 } 1056 1057 SYS_NEWFSTATAT => { 1058 // todo: 这个系统调用还没有实现 1059 1060 Err(SystemError::ENOSYS) 1061 } 1062 1063 // SYS_SCHED_YIELD => Self::sched_yield(), 1064 SYS_UNAME => { 1065 let name = args[0] as *mut PosixOldUtsName; 1066 Self::uname(name) 1067 } 1068 SYS_PRCTL => { 1069 // todo: 这个系统调用还没有实现 1070 1071 Err(SystemError::EINVAL) 1072 } 1073 1074 #[cfg(target_arch = "x86_64")] 1075 SYS_ALARM => { 1076 let second = args[0] as u32; 1077 Self::alarm(second) 1078 } 1079 1080 SYS_SHMGET => { 1081 let key = ShmKey::new(args[0]); 1082 let size = args[1]; 1083 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32); 1084 1085 Self::shmget(key, size, shmflg) 1086 } 1087 SYS_SHMAT => { 1088 let id = ShmId::new(args[0]); 1089 let vaddr = VirtAddr::new(args[1]); 1090 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32); 1091 1092 Self::shmat(id, vaddr, shmflg) 1093 } 1094 SYS_SHMDT => { 1095 let vaddr = VirtAddr::new(args[0]); 1096 Self::shmdt(vaddr) 1097 } 1098 SYS_SHMCTL => { 1099 let id = ShmId::new(args[0]); 1100 let cmd = ShmCtlCmd::from(args[1]); 1101 let user_buf = args[2] as *const u8; 1102 let from_user = frame.is_from_user(); 1103 1104 Self::shmctl(id, cmd, user_buf, from_user) 1105 } 1106 SYS_UTIMENSAT => Self::sys_utimensat( 1107 args[0] as i32, 1108 args[1] as *const u8, 1109 args[2] as *const PosixTimeSpec, 1110 args[3] as u32, 1111 ), 1112 #[cfg(target_arch = "x86_64")] 1113 SYS_FUTIMESAT => { 1114 let flags = UtimensFlags::empty(); 1115 Self::sys_utimensat( 1116 args[0] as i32, 1117 args[1] as *const u8, 1118 args[2] as *const PosixTimeSpec, 1119 flags.bits(), 1120 ) 1121 } 1122 #[cfg(target_arch = "x86_64")] 1123 SYS_UTIMES => Self::sys_utimes(args[0] as *const u8, args[1] as *const PosixTimeval), 1124 _ => panic!("Unsupported syscall ID: {}", syscall_num), 1125 }; 1126 1127 if ProcessManager::current_pcb() 1128 .flags() 1129 .contains(ProcessFlags::NEED_SCHEDULE) 1130 { 1131 schedule(SchedMode::SM_PREEMPT); 1132 } 1133 1134 return r; 1135 } 1136 1137 pub fn put_string( 1138 s: *const u8, 1139 front_color: u32, 1140 back_color: u32, 1141 ) -> Result<usize, SystemError> { 1142 // todo: 删除这个系统调用 1143 let s = check_and_clone_cstr(s, Some(4096))?; 1144 let fr = (front_color & 0x00ff0000) >> 16; 1145 let fg = (front_color & 0x0000ff00) >> 8; 1146 let fb = front_color & 0x000000ff; 1147 let br = (back_color & 0x00ff0000) >> 16; 1148 let bg = (back_color & 0x0000ff00) >> 8; 1149 let bb = back_color & 0x000000ff; 1150 print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m"); 1151 return Ok(s.len()); 1152 } 1153 1154 pub fn reboot() -> Result<usize, SystemError> { 1155 unsafe { cpu_reset() }; 1156 } 1157 } 1158