xref: /DragonOS/kernel/src/syscall/mod.rs (revision 8cb2e9b344230227fe5f3ab3ebeb2522f1c5e289)
1 use core::{
2     ffi::{c_int, c_void},
3     ptr::null,
4     sync::atomic::{AtomicBool, Ordering},
5 };
6 
7 use crate::{
8     arch::{ipc::signal::SigSet, syscall::nr::*},
9     driver::base::device::device_number::DeviceNumber,
10     libs::{futex::constant::FutexFlag, rand::GRandFlags},
11     mm::syscall::MremapFlags,
12     net::syscall::MsgHdr,
13     process::{
14         fork::KernelCloneArgs,
15         resource::{RLimit64, RUsage},
16         ProcessManager,
17     },
18     syscall::user_access::check_and_clone_cstr,
19 };
20 
21 use num_traits::FromPrimitive;
22 use system_error::SystemError;
23 
24 use crate::{
25     arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch},
26     filesystem::vfs::{
27         fcntl::{AtFlags, FcntlCommand},
28         file::FileMode,
29         syscall::{ModeType, PosixKstat},
30         MAX_PATHLEN,
31     },
32     include::bindings::bindings::PAGE_4K_SIZE,
33     kinfo,
34     libs::align::page_align_up,
35     mm::{verify_area, MemoryManagementArch, VirtAddr},
36     net::syscall::SockAddr,
37     process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid},
38     time::{
39         syscall::{PosixTimeZone, PosixTimeval},
40         TimeSpec,
41     },
42 };
43 
44 use self::{
45     misc::SysInfo,
46     user_access::{UserBufferReader, UserBufferWriter},
47 };
48 
49 pub mod misc;
50 pub mod user_access;
51 
52 // 与linux不一致的调用,在linux基础上累加
53 pub const SYS_PUT_STRING: usize = 100000;
54 pub const SYS_SBRK: usize = 100001;
55 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc
56 pub const SYS_CLOCK: usize = 100002;
57 pub const SYS_SCHED: usize = 100003;
58 
59 #[derive(Debug)]
60 pub struct Syscall;
61 
62 impl Syscall {
63     /// 初始化系统调用
64     #[inline(never)]
65     pub fn init() -> Result<(), SystemError> {
66         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
67         let prev = INIT_FLAG.swap(true, Ordering::SeqCst);
68         if prev {
69             panic!("Cannot initialize syscall more than once!");
70         }
71         kinfo!("Initializing syscall...");
72         let r = crate::arch::syscall::arch_syscall_init();
73         kinfo!("Syscall init successfully!");
74 
75         return r;
76     }
77     /// @brief 系统调用分发器,用于分发系统调用。
78     ///
79     /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。
80     /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。
81     #[inline(never)]
82     pub fn handle(
83         syscall_num: usize,
84         args: &[usize],
85         frame: &mut TrapFrame,
86     ) -> Result<usize, SystemError> {
87         let r = match syscall_num {
88             SYS_PUT_STRING => {
89                 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32)
90             }
91             #[cfg(target_arch = "x86_64")]
92             SYS_OPEN => {
93                 let path = args[0] as *const u8;
94                 let flags = args[1] as u32;
95                 let mode = args[2] as u32;
96 
97                 Self::open(path, flags, mode, true)
98             }
99 
100             SYS_RENAME => {
101                 let oldname: *const u8 = args[0] as *const u8;
102                 let newname: *const u8 = args[1] as *const u8;
103                 Self::do_renameat2(
104                     AtFlags::AT_FDCWD.bits(),
105                     oldname,
106                     AtFlags::AT_FDCWD.bits(),
107                     newname,
108                     0,
109                 )
110             }
111 
112             SYS_RENAMEAT => {
113                 let oldfd = args[0] as i32;
114                 let oldname: *const u8 = args[1] as *const u8;
115                 let newfd = args[2] as i32;
116                 let newname: *const u8 = args[3] as *const u8;
117                 Self::do_renameat2(oldfd, oldname, newfd, newname, 0)
118             }
119 
120             SYS_RENAMEAT2 => {
121                 let oldfd = args[0] as i32;
122                 let oldname: *const u8 = args[1] as *const u8;
123                 let newfd = args[2] as i32;
124                 let newname: *const u8 = args[3] as *const u8;
125                 let flags = args[4] as u32;
126                 Self::do_renameat2(oldfd, oldname, newfd, newname, flags)
127             }
128 
129             SYS_OPENAT => {
130                 let dirfd = args[0] as i32;
131                 let path = args[1] as *const u8;
132                 let flags = args[2] as u32;
133                 let mode = args[3] as u32;
134 
135                 Self::openat(dirfd, path, flags, mode, true)
136             }
137             SYS_CLOSE => {
138                 let fd = args[0];
139                 Self::close(fd)
140             }
141             SYS_READ => {
142                 let fd = args[0] as i32;
143                 let buf_vaddr = args[1];
144                 let len = args[2];
145                 let from_user = frame.from_user();
146                 let mut user_buffer_writer =
147                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
148 
149                 let user_buf = user_buffer_writer.buffer(0)?;
150                 Self::read(fd, user_buf)
151             }
152             SYS_WRITE => {
153                 let fd = args[0] as i32;
154                 let buf_vaddr = args[1];
155                 let len = args[2];
156                 let from_user = frame.from_user();
157                 let user_buffer_reader =
158                     UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?;
159 
160                 let user_buf = user_buffer_reader.read_from_user(0)?;
161                 Self::write(fd, user_buf)
162             }
163 
164             SYS_LSEEK => {
165                 let fd = args[0] as i32;
166                 let offset = args[1] as i64;
167                 let whence = args[2] as u32;
168 
169                 Self::lseek(fd, offset, whence)
170             }
171 
172             SYS_PREAD64 => {
173                 let fd = args[0] as i32;
174                 let buf_vaddr = args[1];
175                 let len = args[2];
176                 let offset = args[3];
177 
178                 let mut user_buffer_writer =
179                     UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.from_user())?;
180                 let buf = user_buffer_writer.buffer(0)?;
181                 Self::pread(fd, buf, len, offset)
182             }
183 
184             SYS_PWRITE64 => {
185                 let fd = args[0] as i32;
186                 let buf_vaddr = args[1];
187                 let len = args[2];
188                 let offset = args[3];
189 
190                 let user_buffer_reader =
191                     UserBufferReader::new(buf_vaddr as *const u8, len, frame.from_user())?;
192 
193                 let buf = user_buffer_reader.read_from_user(0)?;
194                 Self::pwrite(fd, buf, len, offset)
195             }
196 
197             SYS_IOCTL => {
198                 let fd = args[0];
199                 let cmd = args[1];
200                 let data = args[2];
201                 Self::ioctl(fd, cmd as u32, data)
202             }
203 
204             #[cfg(target_arch = "x86_64")]
205             SYS_FORK => Self::fork(frame),
206             #[cfg(target_arch = "x86_64")]
207             SYS_VFORK => Self::vfork(frame),
208 
209             SYS_BRK => {
210                 let new_brk = VirtAddr::new(args[0]);
211                 Self::brk(new_brk).map(|vaddr| vaddr.data())
212             }
213 
214             SYS_SBRK => {
215                 let increment = args[0] as isize;
216                 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data())
217             }
218 
219             SYS_REBOOT => Self::reboot(),
220 
221             SYS_CHDIR => {
222                 let r = args[0] as *const u8;
223                 Self::chdir(r)
224             }
225 
226             #[allow(unreachable_patterns)]
227             SYS_GETDENTS64 | SYS_GETDENTS => {
228                 let fd = args[0] as i32;
229 
230                 let buf_vaddr = args[1];
231                 let len = args[2];
232                 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr);
233                 // 判断缓冲区是否来自用户态,进行权限校验
234                 let res = if frame.from_user() && verify_area(virt_addr, len as usize).is_err() {
235                     // 来自用户态,而buffer在内核态,这样的操作不被允许
236                     Err(SystemError::EPERM)
237                 } else if buf_vaddr == 0 {
238                     Err(SystemError::EFAULT)
239                 } else {
240                     let buf: &mut [u8] = unsafe {
241                         core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len)
242                     };
243                     Self::getdents(fd, buf)
244                 };
245 
246                 res
247             }
248 
249             SYS_EXECVE => {
250                 let path_ptr = args[0];
251                 let argv_ptr = args[1];
252                 let env_ptr = args[2];
253                 let virt_path_ptr = VirtAddr::new(path_ptr);
254                 let virt_argv_ptr = VirtAddr::new(argv_ptr);
255                 let virt_env_ptr = VirtAddr::new(env_ptr);
256                 // 权限校验
257                 if frame.from_user()
258                     && (verify_area(virt_path_ptr, MAX_PATHLEN as usize).is_err()
259                         || verify_area(virt_argv_ptr, PAGE_4K_SIZE as usize).is_err())
260                     || verify_area(virt_env_ptr, PAGE_4K_SIZE as usize).is_err()
261                 {
262                     Err(SystemError::EFAULT)
263                 } else {
264                     Self::execve(
265                         path_ptr as *const u8,
266                         argv_ptr as *const *const u8,
267                         env_ptr as *const *const u8,
268                         frame,
269                     )
270                     .map(|_| 0)
271                 }
272             }
273             SYS_WAIT4 => {
274                 let pid = args[0] as i32;
275                 let wstatus = args[1] as *mut i32;
276                 let options = args[2] as c_int;
277                 let rusage = args[3] as *mut c_void;
278                 // 权限校验
279                 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小
280                 Self::wait4(pid.into(), wstatus, options, rusage)
281             }
282 
283             SYS_EXIT => {
284                 let exit_code = args[0];
285                 Self::exit(exit_code)
286             }
287             #[cfg(target_arch = "x86_64")]
288             SYS_MKDIR => {
289                 let path = args[0] as *const u8;
290                 let mode = args[1];
291 
292                 Self::mkdir(path, mode)
293             }
294 
295             SYS_NANOSLEEP => {
296                 let req = args[0] as *const TimeSpec;
297                 let rem = args[1] as *mut TimeSpec;
298                 let virt_req = VirtAddr::new(req as usize);
299                 let virt_rem = VirtAddr::new(rem as usize);
300                 if frame.from_user()
301                     && (verify_area(virt_req, core::mem::size_of::<TimeSpec>() as usize).is_err()
302                         || verify_area(virt_rem, core::mem::size_of::<TimeSpec>() as usize)
303                             .is_err())
304                 {
305                     Err(SystemError::EFAULT)
306                 } else {
307                     Self::nanosleep(req, rem)
308                 }
309             }
310 
311             SYS_CLOCK => Self::clock(),
312             #[cfg(target_arch = "x86_64")]
313             SYS_PIPE => {
314                 let pipefd: *mut i32 = args[0] as *mut c_int;
315                 if pipefd.is_null() {
316                     Err(SystemError::EFAULT)
317                 } else {
318                     Self::pipe2(pipefd, FileMode::empty())
319                 }
320             }
321 
322             SYS_PIPE2 => {
323                 let pipefd: *mut i32 = args[0] as *mut c_int;
324                 let arg1 = args[1];
325                 if pipefd.is_null() {
326                     Err(SystemError::EFAULT)
327                 } else {
328                     let flags = FileMode::from_bits_truncate(arg1 as u32);
329                     Self::pipe2(pipefd, flags)
330                 }
331             }
332 
333             SYS_UNLINKAT => {
334                 let dirfd = args[0] as i32;
335                 let path = args[1] as *const u8;
336                 let flags = args[2] as u32;
337                 Self::unlinkat(dirfd, path, flags)
338             }
339 
340             #[cfg(target_arch = "x86_64")]
341             SYS_RMDIR => {
342                 let path = args[0] as *const u8;
343                 Self::rmdir(path)
344             }
345 
346             #[cfg(target_arch = "x86_64")]
347             SYS_UNLINK => {
348                 let path = args[0] as *const u8;
349                 Self::unlink(path)
350             }
351             SYS_KILL => {
352                 let pid = Pid::new(args[0]);
353                 let sig = args[1] as c_int;
354                 // kdebug!("KILL SYSCALL RECEIVED");
355                 Self::kill(pid, sig)
356             }
357 
358             SYS_RT_SIGACTION => {
359                 let sig = args[0] as c_int;
360                 let act = args[1];
361                 let old_act = args[2];
362                 Self::sigaction(sig, act, old_act, frame.from_user())
363             }
364 
365             SYS_GETPID => Self::getpid().map(|pid| pid.into()),
366 
367             SYS_SCHED => Self::sched(frame.from_user()),
368             SYS_DUP => {
369                 let oldfd: i32 = args[0] as c_int;
370                 Self::dup(oldfd)
371             }
372 
373             #[cfg(target_arch = "x86_64")]
374             SYS_DUP2 => {
375                 let oldfd: i32 = args[0] as c_int;
376                 let newfd: i32 = args[1] as c_int;
377                 Self::dup2(oldfd, newfd)
378             }
379 
380             SYS_SOCKET => Self::socket(args[0], args[1], args[2]),
381             SYS_SETSOCKOPT => {
382                 let optval = args[3] as *const u8;
383                 let optlen = args[4] as usize;
384                 let virt_optval = VirtAddr::new(optval as usize);
385                 // 验证optval的地址是否合法
386                 if verify_area(virt_optval, optlen as usize).is_err() {
387                     // 地址空间超出了用户空间的范围,不合法
388                     Err(SystemError::EFAULT)
389                 } else {
390                     let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) };
391                     Self::setsockopt(args[0], args[1], args[2], data)
392                 }
393             }
394             SYS_GETSOCKOPT => {
395                 let optval = args[3] as *mut u8;
396                 let optlen = args[4] as *mut usize;
397                 let virt_optval = VirtAddr::new(optval as usize);
398                 let virt_optlen = VirtAddr::new(optlen as usize);
399                 let security_check = || {
400                     // 验证optval的地址是否合法
401                     if verify_area(virt_optval, PAGE_4K_SIZE as usize).is_err() {
402                         // 地址空间超出了用户空间的范围,不合法
403                         return Err(SystemError::EFAULT);
404                     }
405 
406                     // 验证optlen的地址是否合法
407                     if verify_area(virt_optlen, core::mem::size_of::<u32>() as usize).is_err() {
408                         // 地址空间超出了用户空间的范围,不合法
409                         return Err(SystemError::EFAULT);
410                     }
411                     return Ok(());
412                 };
413                 let r = security_check();
414                 if r.is_err() {
415                     Err(r.unwrap_err())
416                 } else {
417                     Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32)
418                 }
419             }
420 
421             SYS_CONNECT => {
422                 let addr = args[1] as *const SockAddr;
423                 let addrlen = args[2] as usize;
424                 let virt_addr = VirtAddr::new(addr as usize);
425                 // 验证addr的地址是否合法
426                 if verify_area(virt_addr, addrlen as usize).is_err() {
427                     // 地址空间超出了用户空间的范围,不合法
428                     Err(SystemError::EFAULT)
429                 } else {
430                     Self::connect(args[0], addr, addrlen)
431                 }
432             }
433             SYS_BIND => {
434                 let addr = args[1] as *const SockAddr;
435                 let addrlen = args[2] as usize;
436                 let virt_addr = VirtAddr::new(addr as usize);
437                 // 验证addr的地址是否合法
438                 if verify_area(virt_addr, addrlen as usize).is_err() {
439                     // 地址空间超出了用户空间的范围,不合法
440                     Err(SystemError::EFAULT)
441                 } else {
442                     Self::bind(args[0], addr, addrlen)
443                 }
444             }
445 
446             SYS_SENDTO => {
447                 let buf = args[1] as *const u8;
448                 let len = args[2] as usize;
449                 let flags = args[3] as u32;
450                 let addr = args[4] as *const SockAddr;
451                 let addrlen = args[5] as usize;
452                 let virt_buf = VirtAddr::new(buf as usize);
453                 let virt_addr = VirtAddr::new(addr as usize);
454                 // 验证buf的地址是否合法
455                 if verify_area(virt_buf, len as usize).is_err() {
456                     // 地址空间超出了用户空间的范围,不合法
457                     Err(SystemError::EFAULT)
458                 } else if verify_area(virt_addr, addrlen as usize).is_err() {
459                     // 地址空间超出了用户空间的范围,不合法
460                     Err(SystemError::EFAULT)
461                 } else {
462                     let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) };
463                     Self::sendto(args[0], data, flags, addr, addrlen)
464                 }
465             }
466 
467             SYS_RECVFROM => {
468                 let buf = args[1] as *mut u8;
469                 let len = args[2] as usize;
470                 let flags = args[3] as u32;
471                 let addr = args[4] as *mut SockAddr;
472                 let addrlen = args[5] as *mut usize;
473                 let virt_buf = VirtAddr::new(buf as usize);
474                 let virt_addrlen = VirtAddr::new(addrlen as usize);
475                 let virt_addr = VirtAddr::new(addr as usize);
476                 let security_check = || {
477                     // 验证buf的地址是否合法
478                     if verify_area(virt_buf, len).is_err() {
479                         // 地址空间超出了用户空间的范围,不合法
480                         return Err(SystemError::EFAULT);
481                     }
482 
483                     // 验证addrlen的地址是否合法
484                     if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() {
485                         // 地址空间超出了用户空间的范围,不合法
486                         return Err(SystemError::EFAULT);
487                     }
488 
489                     if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() {
490                         // 地址空间超出了用户空间的范围,不合法
491                         return Err(SystemError::EFAULT);
492                     }
493                     return Ok(());
494                 };
495                 let r = security_check();
496                 if r.is_err() {
497                     Err(r.unwrap_err())
498                 } else {
499                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) };
500                     Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32)
501                 }
502             }
503 
504             SYS_RECVMSG => {
505                 let msg = args[1] as *mut MsgHdr;
506                 let flags = args[2] as u32;
507 
508                 let mut user_buffer_writer =
509                     UserBufferWriter::new(msg, core::mem::size_of::<MsgHdr>(), frame.from_user())?;
510                 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?;
511 
512                 let msg = &mut buffer[0];
513                 Self::recvmsg(args[0], msg, flags)
514             }
515 
516             SYS_LISTEN => Self::listen(args[0], args[1]),
517             SYS_SHUTDOWN => Self::shutdown(args[0], args[1]),
518             SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32),
519             SYS_ACCEPT4 => Self::accept4(
520                 args[0],
521                 args[1] as *mut SockAddr,
522                 args[2] as *mut u32,
523                 args[3] as u32,
524             ),
525             SYS_GETSOCKNAME => {
526                 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
527             }
528             SYS_GETPEERNAME => {
529                 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
530             }
531             SYS_GETTIMEOFDAY => {
532                 let timeval = args[0] as *mut PosixTimeval;
533                 let timezone_ptr = args[1] as *mut PosixTimeZone;
534                 Self::gettimeofday(timeval, timezone_ptr)
535             }
536             SYS_MMAP => {
537                 let len = page_align_up(args[1]);
538                 let virt_addr = VirtAddr::new(args[0]);
539                 if verify_area(virt_addr, len).is_err() {
540                     Err(SystemError::EFAULT)
541                 } else {
542                     Self::mmap(
543                         VirtAddr::new(args[0]),
544                         len,
545                         args[2],
546                         args[3],
547                         args[4] as i32,
548                         args[5],
549                     )
550                 }
551             }
552             SYS_MREMAP => {
553                 let old_vaddr = VirtAddr::new(args[0]);
554                 let old_len = args[1];
555                 let new_len = args[2];
556                 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8);
557                 let new_vaddr = VirtAddr::new(args[4]);
558 
559                 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr)
560             }
561             SYS_MUNMAP => {
562                 let addr = args[0];
563                 let len = page_align_up(args[1]);
564                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
565                     // The addr argument is not a multiple of the page size
566                     Err(SystemError::EINVAL)
567                 } else {
568                     Self::munmap(VirtAddr::new(addr), len)
569                 }
570             }
571             SYS_MPROTECT => {
572                 let addr = args[0];
573                 let len = page_align_up(args[1]);
574                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
575                     // The addr argument is not a multiple of the page size
576                     Err(SystemError::EINVAL)
577                 } else {
578                     Self::mprotect(VirtAddr::new(addr), len, args[2])
579                 }
580             }
581 
582             SYS_GETCWD => {
583                 let buf = args[0] as *mut u8;
584                 let size = args[1];
585                 let security_check = || {
586                     verify_area(VirtAddr::new(buf as usize), size)?;
587                     return Ok(());
588                 };
589                 let r = security_check();
590                 if r.is_err() {
591                     Err(r.unwrap_err())
592                 } else {
593                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) };
594                     Self::getcwd(buf).map(|ptr| ptr.data())
595                 }
596             }
597 
598             SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()),
599 
600             SYS_GETPPID => Self::getppid().map(|pid| pid.into()),
601             SYS_FSTAT => {
602                 let fd = args[0] as i32;
603                 let kstat = args[1] as *mut PosixKstat;
604                 let vaddr = VirtAddr::new(kstat as usize);
605                 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分
606                 // TODO 应该将用了c版本的verify_area都改为rust的verify_area
607                 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) {
608                     Ok(_) => Self::fstat(fd, kstat),
609                     Err(e) => Err(e),
610                 }
611             }
612 
613             SYS_FCNTL => {
614                 let fd = args[0] as i32;
615                 let cmd: Option<FcntlCommand> =
616                     <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32);
617                 let arg = args[2] as i32;
618                 let res = if let Some(cmd) = cmd {
619                     Self::fcntl(fd, cmd, arg)
620                 } else {
621                     Err(SystemError::EINVAL)
622                 };
623 
624                 // kdebug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res);
625                 res
626             }
627 
628             SYS_FTRUNCATE => {
629                 let fd = args[0] as i32;
630                 let len = args[1];
631                 let res = Self::ftruncate(fd, len);
632                 // kdebug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res);
633                 res
634             }
635 
636             #[cfg(target_arch = "x86_64")]
637             SYS_MKNOD => {
638                 let path = args[0];
639                 let flags = args[1];
640                 let dev_t = args[2];
641                 let flags: ModeType = ModeType::from_bits_truncate(flags as u32);
642                 Self::mknod(path as *const u8, flags, DeviceNumber::from(dev_t as u32))
643             }
644 
645             SYS_CLONE => {
646                 let parent_tid = VirtAddr::new(args[2]);
647                 let child_tid = VirtAddr::new(args[3]);
648 
649                 // 地址校验
650                 verify_area(parent_tid, core::mem::size_of::<i32>())?;
651                 verify_area(child_tid, core::mem::size_of::<i32>())?;
652 
653                 let mut clone_args = KernelCloneArgs::new();
654                 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64);
655                 clone_args.stack = args[1];
656                 clone_args.parent_tid = parent_tid;
657                 clone_args.child_tid = child_tid;
658                 clone_args.tls = args[4];
659                 Self::clone(frame, clone_args)
660             }
661 
662             SYS_FUTEX => {
663                 let uaddr = VirtAddr::new(args[0]);
664                 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?;
665                 let val = args[2] as u32;
666                 let utime = args[3];
667                 let uaddr2 = VirtAddr::new(args[4]);
668                 let val3 = args[5] as u32;
669 
670                 verify_area(uaddr, core::mem::size_of::<u32>())?;
671                 verify_area(uaddr2, core::mem::size_of::<u32>())?;
672 
673                 let mut timespec = None;
674                 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) {
675                     let reader = UserBufferReader::new(
676                         utime as *const TimeSpec,
677                         core::mem::size_of::<TimeSpec>(),
678                         true,
679                     )?;
680 
681                     timespec = Some(*reader.read_one_from_user::<TimeSpec>(0)?);
682                 }
683 
684                 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3)
685             }
686 
687             SYS_READV => Self::readv(args[0] as i32, args[1], args[2]),
688             SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]),
689 
690             SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]),
691 
692             #[cfg(target_arch = "x86_64")]
693             SYS_LSTAT => {
694                 let path = args[0] as *const u8;
695                 let kstat = args[1] as *mut PosixKstat;
696                 Self::lstat(path, kstat)
697             }
698 
699             #[cfg(target_arch = "x86_64")]
700             SYS_STAT => {
701                 let path = args[0] as *const u8;
702                 let kstat = args[1] as *mut PosixKstat;
703                 Self::stat(path, kstat)
704             }
705 
706             SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32),
707             SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]),
708 
709             SYS_EPOLL_CTL => Self::epoll_ctl(
710                 args[0] as i32,
711                 args[1],
712                 args[2] as i32,
713                 VirtAddr::new(args[3]),
714             ),
715 
716             SYS_EPOLL_WAIT => Self::epoll_wait(
717                 args[0] as i32,
718                 VirtAddr::new(args[1]),
719                 args[2] as i32,
720                 args[3] as i32,
721             ),
722 
723             SYS_EPOLL_PWAIT => {
724                 let epfd = args[0] as i32;
725                 let epoll_event = VirtAddr::new(args[1]);
726                 let max_events = args[2] as i32;
727                 let timespec = args[3] as i32;
728                 let sigmask_addr = args[4] as *mut SigSet;
729 
730                 if sigmask_addr.is_null() {
731                     return Self::epoll_wait(epfd, epoll_event, max_events, timespec);
732                 }
733                 let sigmask_reader =
734                     UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?;
735                 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?;
736 
737                 Self::epoll_pwait(
738                     args[0] as i32,
739                     VirtAddr::new(args[1]),
740                     args[2] as i32,
741                     args[3] as i32,
742                     &mut sigmask,
743                 )
744             }
745 
746             // 目前为了适配musl-libc,以下系统调用先这样写着
747             SYS_GETRANDOM => {
748                 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?;
749                 Self::get_random(args[0] as *mut u8, args[1], flags)
750             }
751 
752             SYS_SOCKETPAIR => {
753                 let mut user_buffer_writer = UserBufferWriter::new(
754                     args[3] as *mut c_int,
755                     core::mem::size_of::<[c_int; 2]>(),
756                     frame.from_user(),
757                 )?;
758                 let fds = user_buffer_writer.buffer::<i32>(0)?;
759                 Self::socketpair(args[0], args[1], args[2], fds)
760             }
761 
762             #[cfg(target_arch = "x86_64")]
763             SYS_POLL => {
764                 kwarn!("SYS_POLL has not yet been implemented");
765                 Ok(0)
766             }
767 
768             SYS_SETPGID => {
769                 kwarn!("SYS_SETPGID has not yet been implemented");
770                 Ok(0)
771             }
772 
773             SYS_RT_SIGPROCMASK => {
774                 kwarn!("SYS_RT_SIGPROCMASK has not yet been implemented");
775                 Ok(0)
776             }
777 
778             SYS_TKILL => {
779                 kwarn!("SYS_TKILL has not yet been implemented");
780                 Ok(0)
781             }
782 
783             SYS_SIGALTSTACK => {
784                 kwarn!("SYS_SIGALTSTACK has not yet been implemented");
785                 Ok(0)
786             }
787 
788             SYS_EXIT_GROUP => {
789                 kwarn!("SYS_EXIT_GROUP has not yet been implemented");
790                 Ok(0)
791             }
792 
793             SYS_MADVISE => {
794                 // 这个太吵了,总是打印,先注释掉
795                 // kwarn!("SYS_MADVISE has not yet been implemented");
796                 Ok(0)
797             }
798             SYS_GETTID => Self::gettid().map(|tid| tid.into()),
799             SYS_GETUID => Self::getuid(),
800 
801             SYS_SYSLOG => {
802                 let syslog_action_type = args[0];
803                 let buf_vaddr = args[1];
804                 let len = args[2];
805                 let from_user = frame.from_user();
806                 let mut user_buffer_writer =
807                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
808 
809                 let user_buf = user_buffer_writer.buffer(0)?;
810                 Self::do_syslog(syslog_action_type, user_buf, len)
811             }
812 
813             SYS_GETGID => Self::getgid(),
814             SYS_SETUID => {
815                 kwarn!("SYS_SETUID has not yet been implemented");
816                 Ok(0)
817             }
818             SYS_SETGID => {
819                 kwarn!("SYS_SETGID has not yet been implemented");
820                 Ok(0)
821             }
822             SYS_GETEUID => Self::geteuid(),
823             SYS_GETEGID => Self::getegid(),
824             SYS_GETRUSAGE => {
825                 let who = args[0] as c_int;
826                 let rusage = args[1] as *mut RUsage;
827                 Self::get_rusage(who, rusage)
828             }
829 
830             #[cfg(target_arch = "x86_64")]
831             SYS_READLINK => {
832                 let path = args[0] as *const u8;
833                 let buf = args[1] as *mut u8;
834                 let bufsiz = args[2];
835                 Self::readlink(path, buf, bufsiz)
836             }
837 
838             SYS_READLINKAT => {
839                 let dirfd = args[0] as i32;
840                 let path = args[1] as *const u8;
841                 let buf = args[2] as *mut u8;
842                 let bufsiz = args[3];
843                 Self::readlink_at(dirfd, path, buf, bufsiz)
844             }
845 
846             SYS_PRLIMIT64 => {
847                 let pid = args[0];
848                 let pid = Pid::new(pid);
849                 let resource = args[1];
850                 let new_limit = args[2] as *const RLimit64;
851                 let old_limit = args[3] as *mut RLimit64;
852 
853                 Self::prlimit64(pid, resource, new_limit, old_limit)
854             }
855 
856             #[cfg(target_arch = "x86_64")]
857             SYS_ACCESS => {
858                 let pathname = args[0] as *const u8;
859                 let mode = args[1] as u32;
860                 Self::access(pathname, mode)
861             }
862 
863             SYS_FACCESSAT => {
864                 let dirfd = args[0] as i32;
865                 let pathname = args[1] as *const u8;
866                 let mode = args[2] as u32;
867                 Self::faccessat2(dirfd, pathname, mode, 0)
868             }
869 
870             SYS_FACCESSAT2 => {
871                 let dirfd = args[0] as i32;
872                 let pathname = args[1] as *const u8;
873                 let mode = args[2] as u32;
874                 let flags = args[3] as u32;
875                 Self::faccessat2(dirfd, pathname, mode, flags)
876             }
877 
878             SYS_CLOCK_GETTIME => {
879                 let clockid = args[0] as i32;
880                 let timespec = args[1] as *mut TimeSpec;
881                 Self::clock_gettime(clockid, timespec)
882             }
883 
884             SYS_SYSINFO => {
885                 let info = args[0] as *mut SysInfo;
886                 Self::sysinfo(info)
887             }
888 
889             SYS_UMASK => {
890                 let mask = args[0] as u32;
891                 Self::umask(mask)
892             }
893 
894             SYS_FCHOWN => {
895                 kwarn!("SYS_FCHOWN has not yet been implemented");
896                 Ok(0)
897             }
898 
899             SYS_FSYNC => {
900                 kwarn!("SYS_FSYNC has not yet been implemented");
901                 Ok(0)
902             }
903 
904             #[cfg(target_arch = "x86_64")]
905             SYS_CHMOD => {
906                 let pathname = args[0] as *const u8;
907                 let mode = args[1] as u32;
908                 Self::chmod(pathname, mode)
909             }
910             SYS_FCHMOD => {
911                 let fd = args[0] as i32;
912                 let mode = args[1] as u32;
913                 Self::fchmod(fd, mode)
914             }
915             SYS_FCHMODAT => {
916                 let dirfd = args[0] as i32;
917                 let pathname = args[1] as *const u8;
918                 let mode = args[2] as u32;
919                 Self::fchmodat(dirfd, pathname, mode)
920             }
921 
922             SYS_SCHED_GETAFFINITY => {
923                 // todo: 这个系统调用还没有实现
924 
925                 Err(SystemError::ENOSYS)
926             }
927 
928             #[cfg(target_arch = "x86_64")]
929             SYS_GETRLIMIT => {
930                 let resource = args[0];
931                 let rlimit = args[1] as *mut RLimit64;
932 
933                 Self::prlimit64(
934                     ProcessManager::current_pcb().pid(),
935                     resource,
936                     core::ptr::null::<RLimit64>(),
937                     rlimit,
938                 )
939             }
940 
941             SYS_FADVISE64 => {
942                 // todo: 这个系统调用还没有实现
943 
944                 Err(SystemError::ENOSYS)
945             }
946 
947             SYS_MOUNT => {
948                 let source = args[0] as *const u8;
949                 let target = args[1] as *const u8;
950                 let filesystemtype = args[2] as *const u8;
951                 return Self::mount(source, target, filesystemtype, 0, null());
952             }
953             SYS_NEWFSTATAT => {
954                 // todo: 这个系统调用还没有实现
955 
956                 Err(SystemError::ENOSYS)
957             }
958 
959             SYS_SCHED_YIELD => Self::sched_yield(),
960             SYS_UNAME => {
961                 let name = args[0] as *mut PosixOldUtsName;
962                 Self::uname(name)
963             }
964 
965             _ => panic!("Unsupported syscall ID: {}", syscall_num),
966         };
967 
968         return r;
969     }
970 
971     pub fn put_string(
972         s: *const u8,
973         front_color: u32,
974         back_color: u32,
975     ) -> Result<usize, SystemError> {
976         // todo: 删除这个系统调用
977         let s = check_and_clone_cstr(s, Some(4096))?;
978         let fr = (front_color & 0x00ff0000) >> 16;
979         let fg = (front_color & 0x0000ff00) >> 8;
980         let fb = front_color & 0x000000ff;
981         let br = (back_color & 0x00ff0000) >> 16;
982         let bg = (back_color & 0x0000ff00) >> 8;
983         let bb = back_color & 0x000000ff;
984         print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m");
985         return Ok(s.len());
986     }
987 
988     pub fn reboot() -> Result<usize, SystemError> {
989         unsafe { cpu_reset() };
990     }
991 }
992