xref: /DragonOS/kernel/src/syscall/mod.rs (revision 8c6f21840f820a161d4386000aea1d79e3bc8d13)
1 use core::{
2     ffi::{c_int, c_void},
3     sync::atomic::{AtomicBool, Ordering},
4 };
5 
6 use crate::{
7     arch::{ipc::signal::SigSet, syscall::nr::*},
8     driver::base::device::device_number::DeviceNumber,
9     libs::{futex::constant::FutexFlag, rand::GRandFlags},
10     mm::syscall::MremapFlags,
11     net::syscall::MsgHdr,
12     process::{
13         fork::KernelCloneArgs,
14         resource::{RLimit64, RUsage},
15         ProcessManager,
16     },
17     syscall::user_access::check_and_clone_cstr,
18 };
19 
20 use num_traits::FromPrimitive;
21 use system_error::SystemError;
22 
23 use crate::{
24     arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch},
25     filesystem::vfs::{
26         fcntl::{AtFlags, FcntlCommand},
27         file::FileMode,
28         syscall::{ModeType, PosixKstat},
29         MAX_PATHLEN,
30     },
31     include::bindings::bindings::PAGE_4K_SIZE,
32     kinfo,
33     libs::align::page_align_up,
34     mm::{verify_area, MemoryManagementArch, VirtAddr},
35     net::syscall::SockAddr,
36     process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid},
37     time::{
38         syscall::{PosixTimeZone, PosixTimeval},
39         TimeSpec,
40     },
41 };
42 
43 use self::{
44     misc::SysInfo,
45     user_access::{UserBufferReader, UserBufferWriter},
46 };
47 
48 pub mod misc;
49 pub mod user_access;
50 
51 // 与linux不一致的调用,在linux基础上累加
52 pub const SYS_PUT_STRING: usize = 100000;
53 pub const SYS_SBRK: usize = 100001;
54 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc
55 pub const SYS_CLOCK: usize = 100002;
56 pub const SYS_SCHED: usize = 100003;
57 
58 #[derive(Debug)]
59 pub struct Syscall;
60 
61 impl Syscall {
62     /// 初始化系统调用
63     #[inline(never)]
64     pub fn init() -> Result<(), SystemError> {
65         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
66         let prev = INIT_FLAG.swap(true, Ordering::SeqCst);
67         if prev {
68             panic!("Cannot initialize syscall more than once!");
69         }
70         kinfo!("Initializing syscall...");
71         let r = crate::arch::syscall::arch_syscall_init();
72         kinfo!("Syscall init successfully!");
73 
74         return r;
75     }
76     /// @brief 系统调用分发器,用于分发系统调用。
77     ///
78     /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。
79     /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。
80     #[inline(never)]
81     pub fn handle(
82         syscall_num: usize,
83         args: &[usize],
84         frame: &mut TrapFrame,
85     ) -> Result<usize, SystemError> {
86         let r = match syscall_num {
87             SYS_PUT_STRING => {
88                 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32)
89             }
90             #[cfg(target_arch = "x86_64")]
91             SYS_OPEN => {
92                 let path = args[0] as *const u8;
93                 let flags = args[1] as u32;
94                 let mode = args[2] as u32;
95 
96                 Self::open(path, flags, mode, true)
97             }
98 
99             SYS_RENAME => {
100                 let oldname: *const u8 = args[0] as *const u8;
101                 let newname: *const u8 = args[1] as *const u8;
102                 Self::do_renameat2(
103                     AtFlags::AT_FDCWD.bits(),
104                     oldname,
105                     AtFlags::AT_FDCWD.bits(),
106                     newname,
107                     0,
108                 )
109             }
110 
111             SYS_RENAMEAT => {
112                 let oldfd = args[0] as i32;
113                 let oldname: *const u8 = args[1] as *const u8;
114                 let newfd = args[2] as i32;
115                 let newname: *const u8 = args[3] as *const u8;
116                 Self::do_renameat2(oldfd, oldname, newfd, newname, 0)
117             }
118 
119             SYS_RENAMEAT2 => {
120                 let oldfd = args[0] as i32;
121                 let oldname: *const u8 = args[1] as *const u8;
122                 let newfd = args[2] as i32;
123                 let newname: *const u8 = args[3] as *const u8;
124                 let flags = args[4] as u32;
125                 Self::do_renameat2(oldfd, oldname, newfd, newname, flags)
126             }
127 
128             SYS_OPENAT => {
129                 let dirfd = args[0] as i32;
130                 let path = args[1] as *const u8;
131                 let flags = args[2] as u32;
132                 let mode = args[3] as u32;
133 
134                 Self::openat(dirfd, path, flags, mode, true)
135             }
136             SYS_CLOSE => {
137                 let fd = args[0];
138                 Self::close(fd)
139             }
140             SYS_READ => {
141                 let fd = args[0] as i32;
142                 let buf_vaddr = args[1];
143                 let len = args[2];
144                 let from_user = frame.from_user();
145                 let mut user_buffer_writer =
146                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
147 
148                 let user_buf = user_buffer_writer.buffer(0)?;
149                 Self::read(fd, user_buf)
150             }
151             SYS_WRITE => {
152                 let fd = args[0] as i32;
153                 let buf_vaddr = args[1];
154                 let len = args[2];
155                 let from_user = frame.from_user();
156                 let user_buffer_reader =
157                     UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?;
158 
159                 let user_buf = user_buffer_reader.read_from_user(0)?;
160                 Self::write(fd, user_buf)
161             }
162 
163             SYS_LSEEK => {
164                 let fd = args[0] as i32;
165                 let offset = args[1] as i64;
166                 let whence = args[2] as u32;
167 
168                 Self::lseek(fd, offset, whence)
169             }
170 
171             SYS_PREAD64 => {
172                 let fd = args[0] as i32;
173                 let buf_vaddr = args[1];
174                 let len = args[2];
175                 let offset = args[3];
176 
177                 let mut user_buffer_writer =
178                     UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.from_user())?;
179                 let buf = user_buffer_writer.buffer(0)?;
180                 Self::pread(fd, buf, len, offset)
181             }
182 
183             SYS_PWRITE64 => {
184                 let fd = args[0] as i32;
185                 let buf_vaddr = args[1];
186                 let len = args[2];
187                 let offset = args[3];
188 
189                 let user_buffer_reader =
190                     UserBufferReader::new(buf_vaddr as *const u8, len, frame.from_user())?;
191 
192                 let buf = user_buffer_reader.read_from_user(0)?;
193                 Self::pwrite(fd, buf, len, offset)
194             }
195 
196             SYS_IOCTL => {
197                 let fd = args[0];
198                 let cmd = args[1];
199                 let data = args[2];
200                 Self::ioctl(fd, cmd as u32, data)
201             }
202 
203             #[cfg(target_arch = "x86_64")]
204             SYS_FORK => Self::fork(frame),
205             #[cfg(target_arch = "x86_64")]
206             SYS_VFORK => Self::vfork(frame),
207 
208             SYS_BRK => {
209                 let new_brk = VirtAddr::new(args[0]);
210                 Self::brk(new_brk).map(|vaddr| vaddr.data())
211             }
212 
213             SYS_SBRK => {
214                 let increment = args[0] as isize;
215                 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data())
216             }
217 
218             SYS_REBOOT => Self::reboot(),
219 
220             SYS_CHDIR => {
221                 let r = args[0] as *const u8;
222                 Self::chdir(r)
223             }
224 
225             #[allow(unreachable_patterns)]
226             SYS_GETDENTS64 | SYS_GETDENTS => {
227                 let fd = args[0] as i32;
228 
229                 let buf_vaddr = args[1];
230                 let len = args[2];
231                 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr);
232                 // 判断缓冲区是否来自用户态,进行权限校验
233                 let res = if frame.from_user() && verify_area(virt_addr, len as usize).is_err() {
234                     // 来自用户态,而buffer在内核态,这样的操作不被允许
235                     Err(SystemError::EPERM)
236                 } else if buf_vaddr == 0 {
237                     Err(SystemError::EFAULT)
238                 } else {
239                     let buf: &mut [u8] = unsafe {
240                         core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len)
241                     };
242                     Self::getdents(fd, buf)
243                 };
244 
245                 res
246             }
247 
248             SYS_EXECVE => {
249                 let path_ptr = args[0];
250                 let argv_ptr = args[1];
251                 let env_ptr = args[2];
252                 let virt_path_ptr = VirtAddr::new(path_ptr);
253                 let virt_argv_ptr = VirtAddr::new(argv_ptr);
254                 let virt_env_ptr = VirtAddr::new(env_ptr);
255                 // 权限校验
256                 if frame.from_user()
257                     && (verify_area(virt_path_ptr, MAX_PATHLEN as usize).is_err()
258                         || verify_area(virt_argv_ptr, PAGE_4K_SIZE as usize).is_err())
259                     || verify_area(virt_env_ptr, PAGE_4K_SIZE as usize).is_err()
260                 {
261                     Err(SystemError::EFAULT)
262                 } else {
263                     Self::execve(
264                         path_ptr as *const u8,
265                         argv_ptr as *const *const u8,
266                         env_ptr as *const *const u8,
267                         frame,
268                     )
269                     .map(|_| 0)
270                 }
271             }
272             SYS_WAIT4 => {
273                 let pid = args[0] as i32;
274                 let wstatus = args[1] as *mut i32;
275                 let options = args[2] as c_int;
276                 let rusage = args[3] as *mut c_void;
277                 // 权限校验
278                 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小
279                 Self::wait4(pid.into(), wstatus, options, rusage)
280             }
281 
282             SYS_EXIT => {
283                 let exit_code = args[0];
284                 Self::exit(exit_code)
285             }
286             #[cfg(target_arch = "x86_64")]
287             SYS_MKDIR => {
288                 let path = args[0] as *const u8;
289                 let mode = args[1];
290 
291                 Self::mkdir(path, mode)
292             }
293 
294             SYS_NANOSLEEP => {
295                 let req = args[0] as *const TimeSpec;
296                 let rem = args[1] as *mut TimeSpec;
297                 let virt_req = VirtAddr::new(req as usize);
298                 let virt_rem = VirtAddr::new(rem as usize);
299                 if frame.from_user()
300                     && (verify_area(virt_req, core::mem::size_of::<TimeSpec>() as usize).is_err()
301                         || verify_area(virt_rem, core::mem::size_of::<TimeSpec>() as usize)
302                             .is_err())
303                 {
304                     Err(SystemError::EFAULT)
305                 } else {
306                     Self::nanosleep(req, rem)
307                 }
308             }
309 
310             SYS_CLOCK => Self::clock(),
311             #[cfg(target_arch = "x86_64")]
312             SYS_PIPE => {
313                 let pipefd: *mut i32 = args[0] as *mut c_int;
314                 if pipefd.is_null() {
315                     Err(SystemError::EFAULT)
316                 } else {
317                     Self::pipe2(pipefd, FileMode::empty())
318                 }
319             }
320 
321             SYS_PIPE2 => {
322                 let pipefd: *mut i32 = args[0] as *mut c_int;
323                 let arg1 = args[1];
324                 if pipefd.is_null() {
325                     Err(SystemError::EFAULT)
326                 } else {
327                     let flags = FileMode::from_bits_truncate(arg1 as u32);
328                     Self::pipe2(pipefd, flags)
329                 }
330             }
331 
332             SYS_UNLINKAT => {
333                 let dirfd = args[0] as i32;
334                 let path = args[1] as *const u8;
335                 let flags = args[2] as u32;
336                 Self::unlinkat(dirfd, path, flags)
337             }
338 
339             #[cfg(target_arch = "x86_64")]
340             SYS_RMDIR => {
341                 let path = args[0] as *const u8;
342                 Self::rmdir(path)
343             }
344 
345             #[cfg(target_arch = "x86_64")]
346             SYS_UNLINK => {
347                 let path = args[0] as *const u8;
348                 Self::unlink(path)
349             }
350             SYS_KILL => {
351                 let pid = Pid::new(args[0]);
352                 let sig = args[1] as c_int;
353                 // kdebug!("KILL SYSCALL RECEIVED");
354                 Self::kill(pid, sig)
355             }
356 
357             SYS_RT_SIGACTION => {
358                 let sig = args[0] as c_int;
359                 let act = args[1];
360                 let old_act = args[2];
361                 Self::sigaction(sig, act, old_act, frame.from_user())
362             }
363 
364             SYS_GETPID => Self::getpid().map(|pid| pid.into()),
365 
366             SYS_SCHED => Self::sched(frame.from_user()),
367             SYS_DUP => {
368                 let oldfd: i32 = args[0] as c_int;
369                 Self::dup(oldfd)
370             }
371 
372             #[cfg(target_arch = "x86_64")]
373             SYS_DUP2 => {
374                 let oldfd: i32 = args[0] as c_int;
375                 let newfd: i32 = args[1] as c_int;
376                 Self::dup2(oldfd, newfd)
377             }
378 
379             SYS_SOCKET => Self::socket(args[0], args[1], args[2]),
380             SYS_SETSOCKOPT => {
381                 let optval = args[3] as *const u8;
382                 let optlen = args[4] as usize;
383                 let virt_optval = VirtAddr::new(optval as usize);
384                 // 验证optval的地址是否合法
385                 if verify_area(virt_optval, optlen as usize).is_err() {
386                     // 地址空间超出了用户空间的范围,不合法
387                     Err(SystemError::EFAULT)
388                 } else {
389                     let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) };
390                     Self::setsockopt(args[0], args[1], args[2], data)
391                 }
392             }
393             SYS_GETSOCKOPT => {
394                 let optval = args[3] as *mut u8;
395                 let optlen = args[4] as *mut usize;
396                 let virt_optval = VirtAddr::new(optval as usize);
397                 let virt_optlen = VirtAddr::new(optlen as usize);
398                 let security_check = || {
399                     // 验证optval的地址是否合法
400                     if verify_area(virt_optval, PAGE_4K_SIZE as usize).is_err() {
401                         // 地址空间超出了用户空间的范围,不合法
402                         return Err(SystemError::EFAULT);
403                     }
404 
405                     // 验证optlen的地址是否合法
406                     if verify_area(virt_optlen, core::mem::size_of::<u32>() as usize).is_err() {
407                         // 地址空间超出了用户空间的范围,不合法
408                         return Err(SystemError::EFAULT);
409                     }
410                     return Ok(());
411                 };
412                 let r = security_check();
413                 if r.is_err() {
414                     Err(r.unwrap_err())
415                 } else {
416                     Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32)
417                 }
418             }
419 
420             SYS_CONNECT => {
421                 let addr = args[1] as *const SockAddr;
422                 let addrlen = args[2] as usize;
423                 let virt_addr = VirtAddr::new(addr as usize);
424                 // 验证addr的地址是否合法
425                 if verify_area(virt_addr, addrlen as usize).is_err() {
426                     // 地址空间超出了用户空间的范围,不合法
427                     Err(SystemError::EFAULT)
428                 } else {
429                     Self::connect(args[0], addr, addrlen)
430                 }
431             }
432             SYS_BIND => {
433                 let addr = args[1] as *const SockAddr;
434                 let addrlen = args[2] as usize;
435                 let virt_addr = VirtAddr::new(addr as usize);
436                 // 验证addr的地址是否合法
437                 if verify_area(virt_addr, addrlen as usize).is_err() {
438                     // 地址空间超出了用户空间的范围,不合法
439                     Err(SystemError::EFAULT)
440                 } else {
441                     Self::bind(args[0], addr, addrlen)
442                 }
443             }
444 
445             SYS_SENDTO => {
446                 let buf = args[1] as *const u8;
447                 let len = args[2] as usize;
448                 let flags = args[3] as u32;
449                 let addr = args[4] as *const SockAddr;
450                 let addrlen = args[5] as usize;
451                 let virt_buf = VirtAddr::new(buf as usize);
452                 let virt_addr = VirtAddr::new(addr as usize);
453                 // 验证buf的地址是否合法
454                 if verify_area(virt_buf, len as usize).is_err() {
455                     // 地址空间超出了用户空间的范围,不合法
456                     Err(SystemError::EFAULT)
457                 } else if verify_area(virt_addr, addrlen as usize).is_err() {
458                     // 地址空间超出了用户空间的范围,不合法
459                     Err(SystemError::EFAULT)
460                 } else {
461                     let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) };
462                     Self::sendto(args[0], data, flags, addr, addrlen)
463                 }
464             }
465 
466             SYS_RECVFROM => {
467                 let buf = args[1] as *mut u8;
468                 let len = args[2] as usize;
469                 let flags = args[3] as u32;
470                 let addr = args[4] as *mut SockAddr;
471                 let addrlen = args[5] as *mut usize;
472                 let virt_buf = VirtAddr::new(buf as usize);
473                 let virt_addrlen = VirtAddr::new(addrlen as usize);
474                 let virt_addr = VirtAddr::new(addr as usize);
475                 let security_check = || {
476                     // 验证buf的地址是否合法
477                     if verify_area(virt_buf, len).is_err() {
478                         // 地址空间超出了用户空间的范围,不合法
479                         return Err(SystemError::EFAULT);
480                     }
481 
482                     // 验证addrlen的地址是否合法
483                     if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() {
484                         // 地址空间超出了用户空间的范围,不合法
485                         return Err(SystemError::EFAULT);
486                     }
487 
488                     if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() {
489                         // 地址空间超出了用户空间的范围,不合法
490                         return Err(SystemError::EFAULT);
491                     }
492                     return Ok(());
493                 };
494                 let r = security_check();
495                 if r.is_err() {
496                     Err(r.unwrap_err())
497                 } else {
498                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) };
499                     Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32)
500                 }
501             }
502 
503             SYS_RECVMSG => {
504                 let msg = args[1] as *mut MsgHdr;
505                 let flags = args[2] as u32;
506 
507                 let mut user_buffer_writer =
508                     UserBufferWriter::new(msg, core::mem::size_of::<MsgHdr>(), frame.from_user())?;
509                 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?;
510 
511                 let msg = &mut buffer[0];
512                 Self::recvmsg(args[0], msg, flags)
513             }
514 
515             SYS_LISTEN => Self::listen(args[0], args[1]),
516             SYS_SHUTDOWN => Self::shutdown(args[0], args[1]),
517             SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32),
518             SYS_ACCEPT4 => Self::accept4(
519                 args[0],
520                 args[1] as *mut SockAddr,
521                 args[2] as *mut u32,
522                 args[3] as u32,
523             ),
524             SYS_GETSOCKNAME => {
525                 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
526             }
527             SYS_GETPEERNAME => {
528                 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
529             }
530             SYS_GETTIMEOFDAY => {
531                 let timeval = args[0] as *mut PosixTimeval;
532                 let timezone_ptr = args[1] as *mut PosixTimeZone;
533                 Self::gettimeofday(timeval, timezone_ptr)
534             }
535             SYS_MMAP => {
536                 let len = page_align_up(args[1]);
537                 let virt_addr = VirtAddr::new(args[0]);
538                 if verify_area(virt_addr, len).is_err() {
539                     Err(SystemError::EFAULT)
540                 } else {
541                     Self::mmap(
542                         VirtAddr::new(args[0]),
543                         len,
544                         args[2],
545                         args[3],
546                         args[4] as i32,
547                         args[5],
548                     )
549                 }
550             }
551             SYS_MREMAP => {
552                 let old_vaddr = VirtAddr::new(args[0]);
553                 let old_len = args[1];
554                 let new_len = args[2];
555                 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8);
556                 let new_vaddr = VirtAddr::new(args[4]);
557 
558                 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr)
559             }
560             SYS_MUNMAP => {
561                 let addr = args[0];
562                 let len = page_align_up(args[1]);
563                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
564                     // The addr argument is not a multiple of the page size
565                     Err(SystemError::EINVAL)
566                 } else {
567                     Self::munmap(VirtAddr::new(addr), len)
568                 }
569             }
570             SYS_MPROTECT => {
571                 let addr = args[0];
572                 let len = page_align_up(args[1]);
573                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
574                     // The addr argument is not a multiple of the page size
575                     Err(SystemError::EINVAL)
576                 } else {
577                     Self::mprotect(VirtAddr::new(addr), len, args[2])
578                 }
579             }
580 
581             SYS_GETCWD => {
582                 let buf = args[0] as *mut u8;
583                 let size = args[1];
584                 let security_check = || {
585                     verify_area(VirtAddr::new(buf as usize), size)?;
586                     return Ok(());
587                 };
588                 let r = security_check();
589                 if r.is_err() {
590                     Err(r.unwrap_err())
591                 } else {
592                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) };
593                     Self::getcwd(buf).map(|ptr| ptr.data())
594                 }
595             }
596 
597             SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()),
598 
599             SYS_GETPPID => Self::getppid().map(|pid| pid.into()),
600             SYS_FSTAT => {
601                 let fd = args[0] as i32;
602                 let kstat = args[1] as *mut PosixKstat;
603                 let vaddr = VirtAddr::new(kstat as usize);
604                 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分
605                 // TODO 应该将用了c版本的verify_area都改为rust的verify_area
606                 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) {
607                     Ok(_) => Self::fstat(fd, kstat),
608                     Err(e) => Err(e),
609                 }
610             }
611 
612             SYS_FCNTL => {
613                 let fd = args[0] as i32;
614                 let cmd: Option<FcntlCommand> =
615                     <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32);
616                 let arg = args[2] as i32;
617                 let res = if let Some(cmd) = cmd {
618                     Self::fcntl(fd, cmd, arg)
619                 } else {
620                     Err(SystemError::EINVAL)
621                 };
622 
623                 // kdebug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res);
624                 res
625             }
626 
627             SYS_FTRUNCATE => {
628                 let fd = args[0] as i32;
629                 let len = args[1];
630                 let res = Self::ftruncate(fd, len);
631                 // kdebug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res);
632                 res
633             }
634 
635             #[cfg(target_arch = "x86_64")]
636             SYS_MKNOD => {
637                 let path = args[0];
638                 let flags = args[1];
639                 let dev_t = args[2];
640                 let flags: ModeType = ModeType::from_bits_truncate(flags as u32);
641                 Self::mknod(path as *const u8, flags, DeviceNumber::from(dev_t as u32))
642             }
643 
644             SYS_CLONE => {
645                 let parent_tid = VirtAddr::new(args[2]);
646                 let child_tid = VirtAddr::new(args[3]);
647 
648                 // 地址校验
649                 verify_area(parent_tid, core::mem::size_of::<i32>())?;
650                 verify_area(child_tid, core::mem::size_of::<i32>())?;
651 
652                 let mut clone_args = KernelCloneArgs::new();
653                 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64);
654                 clone_args.stack = args[1];
655                 clone_args.parent_tid = parent_tid;
656                 clone_args.child_tid = child_tid;
657                 clone_args.tls = args[4];
658                 Self::clone(frame, clone_args)
659             }
660 
661             SYS_FUTEX => {
662                 let uaddr = VirtAddr::new(args[0]);
663                 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?;
664                 let val = args[2] as u32;
665                 let utime = args[3];
666                 let uaddr2 = VirtAddr::new(args[4]);
667                 let val3 = args[5] as u32;
668 
669                 verify_area(uaddr, core::mem::size_of::<u32>())?;
670                 verify_area(uaddr2, core::mem::size_of::<u32>())?;
671 
672                 let mut timespec = None;
673                 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) {
674                     let reader = UserBufferReader::new(
675                         utime as *const TimeSpec,
676                         core::mem::size_of::<TimeSpec>(),
677                         true,
678                     )?;
679 
680                     timespec = Some(*reader.read_one_from_user::<TimeSpec>(0)?);
681                 }
682 
683                 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3)
684             }
685 
686             SYS_READV => Self::readv(args[0] as i32, args[1], args[2]),
687             SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]),
688 
689             SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]),
690 
691             #[cfg(target_arch = "x86_64")]
692             SYS_LSTAT => {
693                 let path = args[0] as *const u8;
694                 let kstat = args[1] as *mut PosixKstat;
695                 Self::lstat(path, kstat)
696             }
697 
698             #[cfg(target_arch = "x86_64")]
699             SYS_STAT => {
700                 let path = args[0] as *const u8;
701                 let kstat = args[1] as *mut PosixKstat;
702                 Self::stat(path, kstat)
703             }
704 
705             SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32),
706             SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]),
707 
708             SYS_EPOLL_CTL => Self::epoll_ctl(
709                 args[0] as i32,
710                 args[1],
711                 args[2] as i32,
712                 VirtAddr::new(args[3]),
713             ),
714 
715             SYS_EPOLL_WAIT => Self::epoll_wait(
716                 args[0] as i32,
717                 VirtAddr::new(args[1]),
718                 args[2] as i32,
719                 args[3] as i32,
720             ),
721 
722             SYS_EPOLL_PWAIT => {
723                 let epfd = args[0] as i32;
724                 let epoll_event = VirtAddr::new(args[1]);
725                 let max_events = args[2] as i32;
726                 let timespec = args[3] as i32;
727                 let sigmask_addr = args[4] as *mut SigSet;
728 
729                 if sigmask_addr.is_null() {
730                     return Self::epoll_wait(epfd, epoll_event, max_events, timespec);
731                 }
732                 let sigmask_reader =
733                     UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?;
734                 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?;
735 
736                 Self::epoll_pwait(
737                     args[0] as i32,
738                     VirtAddr::new(args[1]),
739                     args[2] as i32,
740                     args[3] as i32,
741                     &mut sigmask,
742                 )
743             }
744 
745             // 目前为了适配musl-libc,以下系统调用先这样写着
746             SYS_GETRANDOM => {
747                 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?;
748                 Self::get_random(args[0] as *mut u8, args[1], flags)
749             }
750 
751             SYS_SOCKETPAIR => {
752                 let mut user_buffer_writer = UserBufferWriter::new(
753                     args[3] as *mut c_int,
754                     core::mem::size_of::<[c_int; 2]>(),
755                     frame.from_user(),
756                 )?;
757                 let fds = user_buffer_writer.buffer::<i32>(0)?;
758                 Self::socketpair(args[0], args[1], args[2], fds)
759             }
760 
761             #[cfg(target_arch = "x86_64")]
762             SYS_POLL => {
763                 kwarn!("SYS_POLL has not yet been implemented");
764                 Ok(0)
765             }
766 
767             SYS_SETPGID => {
768                 kwarn!("SYS_SETPGID has not yet been implemented");
769                 Ok(0)
770             }
771 
772             SYS_RT_SIGPROCMASK => {
773                 kwarn!("SYS_RT_SIGPROCMASK has not yet been implemented");
774                 Ok(0)
775             }
776 
777             SYS_TKILL => {
778                 kwarn!("SYS_TKILL has not yet been implemented");
779                 Ok(0)
780             }
781 
782             SYS_SIGALTSTACK => {
783                 kwarn!("SYS_SIGALTSTACK has not yet been implemented");
784                 Ok(0)
785             }
786 
787             SYS_EXIT_GROUP => {
788                 kwarn!("SYS_EXIT_GROUP has not yet been implemented");
789                 Ok(0)
790             }
791 
792             SYS_MADVISE => {
793                 // 这个太吵了,总是打印,先注释掉
794                 // kwarn!("SYS_MADVISE has not yet been implemented");
795                 Ok(0)
796             }
797             SYS_GETTID => Self::gettid().map(|tid| tid.into()),
798             SYS_GETUID => Self::getuid(),
799 
800             SYS_SYSLOG => {
801                 let syslog_action_type = args[0];
802                 let buf_vaddr = args[1];
803                 let len = args[2];
804                 let from_user = frame.from_user();
805                 let mut user_buffer_writer =
806                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
807 
808                 let user_buf = user_buffer_writer.buffer(0)?;
809                 Self::do_syslog(syslog_action_type, user_buf, len)
810             }
811 
812             SYS_GETGID => Self::getgid(),
813             SYS_SETUID => {
814                 kwarn!("SYS_SETUID has not yet been implemented");
815                 Ok(0)
816             }
817             SYS_SETGID => {
818                 kwarn!("SYS_SETGID has not yet been implemented");
819                 Ok(0)
820             }
821             SYS_GETEUID => Self::geteuid(),
822             SYS_GETEGID => Self::getegid(),
823             SYS_GETRUSAGE => {
824                 let who = args[0] as c_int;
825                 let rusage = args[1] as *mut RUsage;
826                 Self::get_rusage(who, rusage)
827             }
828 
829             #[cfg(target_arch = "x86_64")]
830             SYS_READLINK => {
831                 let path = args[0] as *const u8;
832                 let buf = args[1] as *mut u8;
833                 let bufsiz = args[2];
834                 Self::readlink(path, buf, bufsiz)
835             }
836 
837             SYS_READLINKAT => {
838                 let dirfd = args[0] as i32;
839                 let path = args[1] as *const u8;
840                 let buf = args[2] as *mut u8;
841                 let bufsiz = args[3];
842                 Self::readlink_at(dirfd, path, buf, bufsiz)
843             }
844 
845             SYS_PRLIMIT64 => {
846                 let pid = args[0];
847                 let pid = Pid::new(pid);
848                 let resource = args[1];
849                 let new_limit = args[2] as *const RLimit64;
850                 let old_limit = args[3] as *mut RLimit64;
851 
852                 Self::prlimit64(pid, resource, new_limit, old_limit)
853             }
854 
855             #[cfg(target_arch = "x86_64")]
856             SYS_ACCESS => {
857                 let pathname = args[0] as *const u8;
858                 let mode = args[1] as u32;
859                 Self::access(pathname, mode)
860             }
861 
862             SYS_FACCESSAT => {
863                 let dirfd = args[0] as i32;
864                 let pathname = args[1] as *const u8;
865                 let mode = args[2] as u32;
866                 Self::faccessat2(dirfd, pathname, mode, 0)
867             }
868 
869             SYS_FACCESSAT2 => {
870                 let dirfd = args[0] as i32;
871                 let pathname = args[1] as *const u8;
872                 let mode = args[2] as u32;
873                 let flags = args[3] as u32;
874                 Self::faccessat2(dirfd, pathname, mode, flags)
875             }
876 
877             SYS_CLOCK_GETTIME => {
878                 let clockid = args[0] as i32;
879                 let timespec = args[1] as *mut TimeSpec;
880                 Self::clock_gettime(clockid, timespec)
881             }
882 
883             SYS_SYSINFO => {
884                 let info = args[0] as *mut SysInfo;
885                 Self::sysinfo(info)
886             }
887 
888             SYS_UMASK => {
889                 let mask = args[0] as u32;
890                 Self::umask(mask)
891             }
892 
893             SYS_FCHOWN => {
894                 kwarn!("SYS_FCHOWN has not yet been implemented");
895                 Ok(0)
896             }
897 
898             SYS_FSYNC => {
899                 kwarn!("SYS_FSYNC has not yet been implemented");
900                 Ok(0)
901             }
902 
903             #[cfg(target_arch = "x86_64")]
904             SYS_CHMOD => {
905                 let pathname = args[0] as *const u8;
906                 let mode = args[1] as u32;
907                 Self::chmod(pathname, mode)
908             }
909             SYS_FCHMOD => {
910                 let fd = args[0] as i32;
911                 let mode = args[1] as u32;
912                 Self::fchmod(fd, mode)
913             }
914             SYS_FCHMODAT => {
915                 let dirfd = args[0] as i32;
916                 let pathname = args[1] as *const u8;
917                 let mode = args[2] as u32;
918                 Self::fchmodat(dirfd, pathname, mode)
919             }
920 
921             SYS_SCHED_GETAFFINITY => {
922                 // todo: 这个系统调用还没有实现
923 
924                 Err(SystemError::ENOSYS)
925             }
926 
927             #[cfg(target_arch = "x86_64")]
928             SYS_GETRLIMIT => {
929                 let resource = args[0];
930                 let rlimit = args[1] as *mut RLimit64;
931 
932                 Self::prlimit64(
933                     ProcessManager::current_pcb().pid(),
934                     resource,
935                     core::ptr::null::<RLimit64>(),
936                     rlimit,
937                 )
938             }
939 
940             SYS_FADVISE64 => {
941                 // todo: 这个系统调用还没有实现
942 
943                 Err(SystemError::ENOSYS)
944             }
945             SYS_NEWFSTATAT => {
946                 // todo: 这个系统调用还没有实现
947 
948                 Err(SystemError::ENOSYS)
949             }
950 
951             SYS_SCHED_YIELD => Self::sched_yield(),
952             SYS_UNAME => {
953                 let name = args[0] as *mut PosixOldUtsName;
954                 Self::uname(name)
955             }
956             _ => panic!("Unsupported syscall ID: {}", syscall_num),
957         };
958 
959         return r;
960     }
961 
962     pub fn put_string(
963         s: *const u8,
964         front_color: u32,
965         back_color: u32,
966     ) -> Result<usize, SystemError> {
967         // todo: 删除这个系统调用
968         let s = check_and_clone_cstr(s, Some(4096))?;
969         let fr = (front_color & 0x00ff0000) >> 16;
970         let fg = (front_color & 0x0000ff00) >> 8;
971         let fb = front_color & 0x000000ff;
972         let br = (back_color & 0x00ff0000) >> 16;
973         let bg = (back_color & 0x0000ff00) >> 8;
974         let bb = back_color & 0x000000ff;
975         print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m");
976         return Ok(s.len());
977     }
978 
979     pub fn reboot() -> Result<usize, SystemError> {
980         unsafe { cpu_reset() };
981     }
982 }
983