xref: /DragonOS/kernel/src/syscall/mod.rs (revision 7c28051e8c601312d3d0fd7bcb71bc71450d10c0)
1 use core::{
2     ffi::{c_int, c_void},
3     sync::atomic::{AtomicBool, Ordering},
4 };
5 
6 use crate::{
7     arch::{ipc::signal::SigSet, syscall::nr::*},
8     filesystem::vfs::syscall::{PosixStatfs, PosixStatx},
9     ipc::shm::{ShmCtlCmd, ShmFlags, ShmId, ShmKey},
10     libs::{futex::constant::FutexFlag, rand::GRandFlags},
11     mm::{page::PAGE_4K_SIZE, syscall::MremapFlags},
12     net::syscall::MsgHdr,
13     process::{
14         fork::KernelCloneArgs,
15         resource::{RLimit64, RUsage},
16         ProcessFlags, ProcessManager,
17     },
18     sched::{schedule, SchedMode},
19     syscall::user_access::check_and_clone_cstr,
20 };
21 
22 use log::{info, warn};
23 use num_traits::FromPrimitive;
24 use system_error::SystemError;
25 
26 use crate::{
27     arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch},
28     filesystem::vfs::{
29         fcntl::{AtFlags, FcntlCommand},
30         file::FileMode,
31         syscall::{ModeType, PosixKstat, UtimensFlags},
32         MAX_PATHLEN,
33     },
34     libs::align::page_align_up,
35     mm::{verify_area, MemoryManagementArch, VirtAddr},
36     net::syscall::SockAddr,
37     process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid},
38     time::{
39         syscall::{PosixTimeZone, PosixTimeval},
40         PosixTimeSpec,
41     },
42 };
43 
44 use self::{
45     misc::SysInfo,
46     user_access::{UserBufferReader, UserBufferWriter},
47 };
48 
49 pub mod misc;
50 pub mod user_access;
51 
52 // 与linux不一致的调用,在linux基础上累加
53 pub const SYS_PUT_STRING: usize = 100000;
54 pub const SYS_SBRK: usize = 100001;
55 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc
56 pub const SYS_CLOCK: usize = 100002;
57 pub const SYS_SCHED: usize = 100003;
58 
59 #[derive(Debug)]
60 pub struct Syscall;
61 
62 impl Syscall {
63     /// 初始化系统调用
64     #[inline(never)]
65     pub fn init() -> Result<(), SystemError> {
66         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
67         let prev = INIT_FLAG.swap(true, Ordering::SeqCst);
68         if prev {
69             panic!("Cannot initialize syscall more than once!");
70         }
71         info!("Initializing syscall...");
72         let r = crate::arch::syscall::arch_syscall_init();
73         info!("Syscall init successfully!");
74 
75         return r;
76     }
77     /// @brief 系统调用分发器,用于分发系统调用。
78     ///
79     /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。
80     /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。
81     #[inline(never)]
82     pub fn handle(
83         syscall_num: usize,
84         args: &[usize],
85         frame: &mut TrapFrame,
86     ) -> Result<usize, SystemError> {
87         let r = match syscall_num {
88             SYS_PUT_STRING => {
89                 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32)
90             }
91             #[cfg(target_arch = "x86_64")]
92             SYS_OPEN => {
93                 let path = args[0] as *const u8;
94                 let flags = args[1] as u32;
95                 let mode = args[2] as u32;
96 
97                 Self::open(path, flags, mode, true)
98             }
99 
100             #[cfg(target_arch = "x86_64")]
101             SYS_RENAME => {
102                 let oldname: *const u8 = args[0] as *const u8;
103                 let newname: *const u8 = args[1] as *const u8;
104                 Self::do_renameat2(
105                     AtFlags::AT_FDCWD.bits(),
106                     oldname,
107                     AtFlags::AT_FDCWD.bits(),
108                     newname,
109                     0,
110                 )
111             }
112 
113             #[cfg(target_arch = "x86_64")]
114             SYS_RENAMEAT => {
115                 let oldfd = args[0] as i32;
116                 let oldname: *const u8 = args[1] as *const u8;
117                 let newfd = args[2] as i32;
118                 let newname: *const u8 = args[3] as *const u8;
119                 Self::do_renameat2(oldfd, oldname, newfd, newname, 0)
120             }
121 
122             SYS_RENAMEAT2 => {
123                 let oldfd = args[0] as i32;
124                 let oldname: *const u8 = args[1] as *const u8;
125                 let newfd = args[2] as i32;
126                 let newname: *const u8 = args[3] as *const u8;
127                 let flags = args[4] as u32;
128                 Self::do_renameat2(oldfd, oldname, newfd, newname, flags)
129             }
130 
131             SYS_OPENAT => {
132                 let dirfd = args[0] as i32;
133                 let path = args[1] as *const u8;
134                 let flags = args[2] as u32;
135                 let mode = args[3] as u32;
136 
137                 Self::openat(dirfd, path, flags, mode, true)
138             }
139             SYS_CLOSE => {
140                 let fd = args[0];
141                 Self::close(fd)
142             }
143             SYS_READ => {
144                 let fd = args[0] as i32;
145                 let buf_vaddr = args[1];
146                 let len = args[2];
147                 let from_user = frame.is_from_user();
148                 let mut user_buffer_writer =
149                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
150 
151                 let user_buf = user_buffer_writer.buffer(0)?;
152                 Self::read(fd, user_buf)
153             }
154             SYS_WRITE => {
155                 let fd = args[0] as i32;
156                 let buf_vaddr = args[1];
157                 let len = args[2];
158                 let from_user = frame.is_from_user();
159                 let user_buffer_reader =
160                     UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?;
161 
162                 let user_buf = user_buffer_reader.read_from_user(0)?;
163                 Self::write(fd, user_buf)
164             }
165 
166             SYS_LSEEK => {
167                 let fd = args[0] as i32;
168                 let offset = args[1] as i64;
169                 let whence = args[2] as u32;
170 
171                 Self::lseek(fd, offset, whence)
172             }
173 
174             SYS_PREAD64 => {
175                 let fd = args[0] as i32;
176                 let buf_vaddr = args[1];
177                 let len = args[2];
178                 let offset = args[3];
179 
180                 let mut user_buffer_writer =
181                     UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.is_from_user())?;
182                 let buf = user_buffer_writer.buffer(0)?;
183                 Self::pread(fd, buf, len, offset)
184             }
185 
186             SYS_PWRITE64 => {
187                 let fd = args[0] as i32;
188                 let buf_vaddr = args[1];
189                 let len = args[2];
190                 let offset = args[3];
191 
192                 let user_buffer_reader =
193                     UserBufferReader::new(buf_vaddr as *const u8, len, frame.is_from_user())?;
194 
195                 let buf = user_buffer_reader.read_from_user(0)?;
196                 Self::pwrite(fd, buf, len, offset)
197             }
198 
199             SYS_IOCTL => {
200                 let fd = args[0];
201                 let cmd = args[1];
202                 let data = args[2];
203                 Self::ioctl(fd, cmd as u32, data)
204             }
205 
206             #[cfg(target_arch = "x86_64")]
207             SYS_FORK => Self::fork(frame),
208             #[cfg(target_arch = "x86_64")]
209             SYS_VFORK => Self::vfork(frame),
210 
211             SYS_BRK => {
212                 let new_brk = VirtAddr::new(args[0]);
213                 Self::brk(new_brk).map(|vaddr| vaddr.data())
214             }
215 
216             SYS_SBRK => {
217                 let increment = args[0] as isize;
218                 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data())
219             }
220 
221             SYS_REBOOT => Self::reboot(),
222 
223             SYS_CHDIR => {
224                 let r = args[0] as *const u8;
225                 Self::chdir(r)
226             }
227 
228             #[allow(unreachable_patterns)]
229             SYS_GETDENTS64 | SYS_GETDENTS => {
230                 let fd = args[0] as i32;
231 
232                 let buf_vaddr = args[1];
233                 let len = args[2];
234                 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr);
235                 // 判断缓冲区是否来自用户态,进行权限校验
236                 let res = if frame.is_from_user() && verify_area(virt_addr, len).is_err() {
237                     // 来自用户态,而buffer在内核态,这样的操作不被允许
238                     Err(SystemError::EPERM)
239                 } else if buf_vaddr == 0 {
240                     Err(SystemError::EFAULT)
241                 } else {
242                     let buf: &mut [u8] = unsafe {
243                         core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len)
244                     };
245                     Self::getdents(fd, buf)
246                 };
247 
248                 res
249             }
250 
251             SYS_EXECVE => {
252                 let path_ptr = args[0];
253                 let argv_ptr = args[1];
254                 let env_ptr = args[2];
255                 let virt_path_ptr = VirtAddr::new(path_ptr);
256                 let virt_argv_ptr = VirtAddr::new(argv_ptr);
257                 let virt_env_ptr = VirtAddr::new(env_ptr);
258                 // 权限校验
259                 if frame.is_from_user()
260                     && (verify_area(virt_path_ptr, MAX_PATHLEN).is_err()
261                         || verify_area(virt_argv_ptr, PAGE_4K_SIZE).is_err())
262                     || verify_area(virt_env_ptr, PAGE_4K_SIZE).is_err()
263                 {
264                     Err(SystemError::EFAULT)
265                 } else {
266                     Self::execve(
267                         path_ptr as *const u8,
268                         argv_ptr as *const *const u8,
269                         env_ptr as *const *const u8,
270                         frame,
271                     )
272                     .map(|_| 0)
273                 }
274             }
275             SYS_WAIT4 => {
276                 let pid = args[0] as i32;
277                 let wstatus = args[1] as *mut i32;
278                 let options = args[2] as c_int;
279                 let rusage = args[3] as *mut c_void;
280                 // 权限校验
281                 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小
282                 Self::wait4(pid.into(), wstatus, options, rusage)
283             }
284 
285             SYS_EXIT => {
286                 let exit_code = args[0];
287                 Self::exit(exit_code)
288             }
289             #[cfg(target_arch = "x86_64")]
290             SYS_MKDIR => {
291                 let path = args[0] as *const u8;
292                 let mode = args[1];
293 
294                 Self::mkdir(path, mode)
295             }
296 
297             SYS_MKDIRAT => {
298                 let dirfd = args[0] as i32;
299                 let path = args[1] as *const u8;
300                 let mode = args[2];
301                 Self::mkdir_at(dirfd, path, mode)
302             }
303 
304             SYS_NANOSLEEP => {
305                 let req = args[0] as *const PosixTimeSpec;
306                 let rem = args[1] as *mut PosixTimeSpec;
307                 let virt_req = VirtAddr::new(req as usize);
308                 let virt_rem = VirtAddr::new(rem as usize);
309                 if frame.is_from_user()
310                     && (verify_area(virt_req, core::mem::size_of::<PosixTimeSpec>()).is_err()
311                         || verify_area(virt_rem, core::mem::size_of::<PosixTimeSpec>()).is_err())
312                 {
313                     Err(SystemError::EFAULT)
314                 } else {
315                     Self::nanosleep(req, rem)
316                 }
317             }
318 
319             SYS_CLOCK => Self::clock(),
320             #[cfg(target_arch = "x86_64")]
321             SYS_PIPE => {
322                 let pipefd: *mut i32 = args[0] as *mut c_int;
323                 if pipefd.is_null() {
324                     Err(SystemError::EFAULT)
325                 } else {
326                     Self::pipe2(pipefd, FileMode::empty())
327                 }
328             }
329 
330             SYS_PIPE2 => {
331                 let pipefd: *mut i32 = args[0] as *mut c_int;
332                 let arg1 = args[1];
333                 if pipefd.is_null() {
334                     Err(SystemError::EFAULT)
335                 } else {
336                     let flags = FileMode::from_bits_truncate(arg1 as u32);
337                     Self::pipe2(pipefd, flags)
338                 }
339             }
340 
341             SYS_UNLINKAT => {
342                 let dirfd = args[0] as i32;
343                 let path = args[1] as *const u8;
344                 let flags = args[2] as u32;
345                 Self::unlinkat(dirfd, path, flags)
346             }
347 
348             #[cfg(target_arch = "x86_64")]
349             SYS_SYMLINK => {
350                 let oldname = args[0] as *const u8;
351                 let newname = args[1] as *const u8;
352                 Self::symlink(oldname, newname)
353             }
354 
355             SYS_SYMLINKAT => {
356                 let oldname = args[0] as *const u8;
357                 let newdfd = args[1] as i32;
358                 let newname = args[2] as *const u8;
359                 Self::symlinkat(oldname, newdfd, newname)
360             }
361 
362             #[cfg(target_arch = "x86_64")]
363             SYS_RMDIR => {
364                 let path = args[0] as *const u8;
365                 Self::rmdir(path)
366             }
367 
368             #[cfg(target_arch = "x86_64")]
369             SYS_LINK => {
370                 let old = args[0] as *const u8;
371                 let new = args[1] as *const u8;
372                 return Self::link(old, new);
373             }
374 
375             SYS_LINKAT => {
376                 let oldfd = args[0] as i32;
377                 let old = args[1] as *const u8;
378                 let newfd = args[2] as i32;
379                 let new = args[3] as *const u8;
380                 let flags = args[4] as i32;
381                 return Self::linkat(oldfd, old, newfd, new, flags);
382             }
383 
384             #[cfg(target_arch = "x86_64")]
385             SYS_UNLINK => {
386                 let path = args[0] as *const u8;
387                 Self::unlink(path)
388             }
389             SYS_KILL => {
390                 let pid = Pid::new(args[0]);
391                 let sig = args[1] as c_int;
392                 // debug!("KILL SYSCALL RECEIVED");
393                 Self::kill(pid, sig)
394             }
395 
396             SYS_RT_SIGACTION => {
397                 let sig = args[0] as c_int;
398                 let act = args[1];
399                 let old_act = args[2];
400                 Self::sigaction(sig, act, old_act, frame.is_from_user())
401             }
402 
403             SYS_GETPID => Self::getpid().map(|pid| pid.into()),
404 
405             SYS_SCHED => {
406                 warn!("syscall sched");
407                 schedule(SchedMode::SM_NONE);
408                 Ok(0)
409             }
410             SYS_DUP => {
411                 let oldfd: i32 = args[0] as c_int;
412                 Self::dup(oldfd)
413             }
414 
415             #[cfg(target_arch = "x86_64")]
416             SYS_DUP2 => {
417                 let oldfd: i32 = args[0] as c_int;
418                 let newfd: i32 = args[1] as c_int;
419                 Self::dup2(oldfd, newfd)
420             }
421 
422             SYS_DUP3 => {
423                 let oldfd: i32 = args[0] as c_int;
424                 let newfd: i32 = args[1] as c_int;
425                 let flags: u32 = args[2] as u32;
426                 Self::dup3(oldfd, newfd, flags)
427             }
428 
429             SYS_SOCKET => Self::socket(args[0], args[1], args[2]),
430             SYS_SETSOCKOPT => {
431                 let optval = args[3] as *const u8;
432                 let optlen = args[4];
433                 let virt_optval = VirtAddr::new(optval as usize);
434                 // 验证optval的地址是否合法
435                 if verify_area(virt_optval, optlen).is_err() {
436                     // 地址空间超出了用户空间的范围,不合法
437                     Err(SystemError::EFAULT)
438                 } else {
439                     let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) };
440                     Self::setsockopt(args[0], args[1], args[2], data)
441                 }
442             }
443             SYS_GETSOCKOPT => {
444                 let optval = args[3] as *mut u8;
445                 let optlen = args[4] as *mut usize;
446                 let virt_optval = VirtAddr::new(optval as usize);
447                 let virt_optlen = VirtAddr::new(optlen as usize);
448                 let security_check = || {
449                     // 验证optval的地址是否合法
450                     if verify_area(virt_optval, PAGE_4K_SIZE).is_err() {
451                         // 地址空间超出了用户空间的范围,不合法
452                         return Err(SystemError::EFAULT);
453                     }
454 
455                     // 验证optlen的地址是否合法
456                     if verify_area(virt_optlen, core::mem::size_of::<u32>()).is_err() {
457                         // 地址空间超出了用户空间的范围,不合法
458                         return Err(SystemError::EFAULT);
459                     }
460                     return Ok(());
461                 };
462                 let r = security_check();
463                 if let Err(e) = r {
464                     Err(e)
465                 } else {
466                     Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32)
467                 }
468             }
469 
470             SYS_CONNECT => {
471                 let addr = args[1] as *const SockAddr;
472                 let addrlen = args[2];
473                 let virt_addr = VirtAddr::new(addr as usize);
474                 // 验证addr的地址是否合法
475                 if verify_area(virt_addr, addrlen).is_err() {
476                     // 地址空间超出了用户空间的范围,不合法
477                     Err(SystemError::EFAULT)
478                 } else {
479                     Self::connect(args[0], addr, addrlen)
480                 }
481             }
482             SYS_BIND => {
483                 let addr = args[1] as *const SockAddr;
484                 let addrlen = args[2];
485                 let virt_addr = VirtAddr::new(addr as usize);
486                 // 验证addr的地址是否合法
487                 if verify_area(virt_addr, addrlen).is_err() {
488                     // 地址空间超出了用户空间的范围,不合法
489                     Err(SystemError::EFAULT)
490                 } else {
491                     Self::bind(args[0], addr, addrlen)
492                 }
493             }
494 
495             SYS_SENDTO => {
496                 let buf = args[1] as *const u8;
497                 let len = args[2];
498                 let flags = args[3] as u32;
499                 let addr = args[4] as *const SockAddr;
500                 let addrlen = args[5];
501                 let virt_buf = VirtAddr::new(buf as usize);
502                 let virt_addr = VirtAddr::new(addr as usize);
503                 // 验证buf的地址是否合法
504                 if verify_area(virt_buf, len).is_err() || verify_area(virt_addr, addrlen).is_err() {
505                     // 地址空间超出了用户空间的范围,不合法
506                     Err(SystemError::EFAULT)
507                 } else {
508                     let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) };
509                     Self::sendto(args[0], data, flags, addr, addrlen)
510                 }
511             }
512 
513             SYS_RECVFROM => {
514                 let buf = args[1] as *mut u8;
515                 let len = args[2];
516                 let flags = args[3] as u32;
517                 let addr = args[4] as *mut SockAddr;
518                 let addrlen = args[5] as *mut usize;
519                 let virt_buf = VirtAddr::new(buf as usize);
520                 let virt_addrlen = VirtAddr::new(addrlen as usize);
521                 let virt_addr = VirtAddr::new(addr as usize);
522                 let security_check = || {
523                     // 验证buf的地址是否合法
524                     if verify_area(virt_buf, len).is_err() {
525                         // 地址空间超出了用户空间的范围,不合法
526                         return Err(SystemError::EFAULT);
527                     }
528 
529                     // 验证addrlen的地址是否合法
530                     if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() {
531                         // 地址空间超出了用户空间的范围,不合法
532                         return Err(SystemError::EFAULT);
533                     }
534 
535                     if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() {
536                         // 地址空间超出了用户空间的范围,不合法
537                         return Err(SystemError::EFAULT);
538                     }
539                     return Ok(());
540                 };
541                 let r = security_check();
542                 if let Err(e) = r {
543                     Err(e)
544                 } else {
545                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) };
546                     Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32)
547                 }
548             }
549 
550             SYS_RECVMSG => {
551                 let msg = args[1] as *mut MsgHdr;
552                 let flags = args[2] as u32;
553 
554                 let mut user_buffer_writer = UserBufferWriter::new(
555                     msg,
556                     core::mem::size_of::<MsgHdr>(),
557                     frame.is_from_user(),
558                 )?;
559                 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?;
560 
561                 let msg = &mut buffer[0];
562                 Self::recvmsg(args[0], msg, flags)
563             }
564 
565             SYS_LISTEN => Self::listen(args[0], args[1]),
566             SYS_SHUTDOWN => Self::shutdown(args[0], args[1]),
567             SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32),
568             SYS_ACCEPT4 => Self::accept4(
569                 args[0],
570                 args[1] as *mut SockAddr,
571                 args[2] as *mut u32,
572                 args[3] as u32,
573             ),
574             SYS_GETSOCKNAME => {
575                 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
576             }
577             SYS_GETPEERNAME => {
578                 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
579             }
580             SYS_GETTIMEOFDAY => {
581                 let timeval = args[0] as *mut PosixTimeval;
582                 let timezone_ptr = args[1] as *mut PosixTimeZone;
583                 Self::gettimeofday(timeval, timezone_ptr)
584             }
585             SYS_MMAP => {
586                 let len = page_align_up(args[1]);
587                 let virt_addr = VirtAddr::new(args[0]);
588                 if verify_area(virt_addr, len).is_err() {
589                     Err(SystemError::EFAULT)
590                 } else {
591                     Self::mmap(
592                         VirtAddr::new(args[0]),
593                         len,
594                         args[2],
595                         args[3],
596                         args[4] as i32,
597                         args[5],
598                     )
599                 }
600             }
601             SYS_MREMAP => {
602                 let old_vaddr = VirtAddr::new(args[0]);
603                 let old_len = args[1];
604                 let new_len = args[2];
605                 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8);
606                 let new_vaddr = VirtAddr::new(args[4]);
607 
608                 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr)
609             }
610             SYS_MUNMAP => {
611                 let addr = args[0];
612                 let len = page_align_up(args[1]);
613                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
614                     // The addr argument is not a multiple of the page size
615                     Err(SystemError::EINVAL)
616                 } else {
617                     Self::munmap(VirtAddr::new(addr), len)
618                 }
619             }
620             SYS_MPROTECT => {
621                 let addr = args[0];
622                 let len = page_align_up(args[1]);
623                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
624                     // The addr argument is not a multiple of the page size
625                     Err(SystemError::EINVAL)
626                 } else {
627                     Self::mprotect(VirtAddr::new(addr), len, args[2])
628                 }
629             }
630 
631             SYS_GETCWD => {
632                 let buf = args[0] as *mut u8;
633                 let size = args[1];
634                 let security_check = || {
635                     verify_area(VirtAddr::new(buf as usize), size)?;
636                     return Ok(());
637                 };
638                 let r = security_check();
639                 if let Err(e) = r {
640                     Err(e)
641                 } else {
642                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) };
643                     Self::getcwd(buf).map(|ptr| ptr.data())
644                 }
645             }
646 
647             SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()),
648 
649             SYS_GETPPID => Self::getppid().map(|pid| pid.into()),
650             SYS_FSTAT => {
651                 let fd = args[0] as i32;
652                 let kstat: *mut PosixKstat = args[1] as *mut PosixKstat;
653                 let vaddr = VirtAddr::new(kstat as usize);
654                 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分
655                 // TODO 应该将用了c版本的verify_area都改为rust的verify_area
656                 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) {
657                     Ok(_) => Self::fstat(fd, kstat),
658                     Err(e) => Err(e),
659                 }
660             }
661 
662             SYS_FCNTL => {
663                 let fd = args[0] as i32;
664                 let cmd: Option<FcntlCommand> =
665                     <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32);
666                 let arg = args[2] as i32;
667                 let res = if let Some(cmd) = cmd {
668                     Self::fcntl(fd, cmd, arg)
669                 } else {
670                     Err(SystemError::EINVAL)
671                 };
672 
673                 // debug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res);
674                 res
675             }
676 
677             SYS_FTRUNCATE => {
678                 let fd = args[0] as i32;
679                 let len = args[1];
680                 let res = Self::ftruncate(fd, len);
681                 // debug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res);
682                 res
683             }
684 
685             #[cfg(target_arch = "x86_64")]
686             SYS_MKNOD => {
687                 let path = args[0];
688                 let flags = args[1];
689                 let dev_t = args[2];
690                 let flags: ModeType = ModeType::from_bits_truncate(flags as u32);
691                 Self::mknod(
692                     path as *const u8,
693                     flags,
694                     crate::driver::base::device::device_number::DeviceNumber::from(dev_t as u32),
695                 )
696             }
697 
698             SYS_CLONE => {
699                 let parent_tid = VirtAddr::new(args[2]);
700                 let child_tid = VirtAddr::new(args[3]);
701 
702                 // 地址校验
703                 verify_area(parent_tid, core::mem::size_of::<i32>())?;
704                 verify_area(child_tid, core::mem::size_of::<i32>())?;
705 
706                 let mut clone_args = KernelCloneArgs::new();
707                 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64);
708                 clone_args.stack = args[1];
709                 clone_args.parent_tid = parent_tid;
710                 clone_args.child_tid = child_tid;
711                 clone_args.tls = args[4];
712                 Self::clone(frame, clone_args)
713             }
714 
715             SYS_FUTEX => {
716                 let uaddr = VirtAddr::new(args[0]);
717                 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?;
718                 let val = args[2] as u32;
719                 let utime = args[3];
720                 let uaddr2 = VirtAddr::new(args[4]);
721                 let val3 = args[5] as u32;
722 
723                 let mut timespec = None;
724                 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) {
725                     let reader = UserBufferReader::new(
726                         utime as *const PosixTimeSpec,
727                         core::mem::size_of::<PosixTimeSpec>(),
728                         true,
729                     )?;
730 
731                     timespec = Some(*reader.read_one_from_user::<PosixTimeSpec>(0)?);
732                 }
733 
734                 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3)
735             }
736 
737             SYS_SET_ROBUST_LIST => {
738                 let head = args[0];
739                 let head_uaddr = VirtAddr::new(head);
740                 let len = args[1];
741 
742                 let ret = Self::set_robust_list(head_uaddr, len);
743                 return ret;
744             }
745 
746             SYS_GET_ROBUST_LIST => {
747                 let pid = args[0];
748                 let head = args[1];
749                 let head_uaddr = VirtAddr::new(head);
750                 let len_ptr = args[2];
751                 let len_ptr_uaddr = VirtAddr::new(len_ptr);
752 
753                 let ret = Self::get_robust_list(pid, head_uaddr, len_ptr_uaddr);
754                 return ret;
755             }
756 
757             SYS_READV => Self::readv(args[0] as i32, args[1], args[2]),
758             SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]),
759 
760             SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]),
761 
762             #[cfg(target_arch = "x86_64")]
763             SYS_LSTAT => {
764                 let path = args[0] as *const u8;
765                 let kstat = args[1] as *mut PosixKstat;
766                 Self::lstat(path, kstat)
767             }
768 
769             #[cfg(target_arch = "x86_64")]
770             SYS_STAT => {
771                 let path = args[0] as *const u8;
772                 let kstat = args[1] as *mut PosixKstat;
773                 Self::stat(path, kstat)
774             }
775 
776             SYS_STATFS => {
777                 let path = args[0] as *const u8;
778                 let statfs = args[1] as *mut PosixStatfs;
779                 Self::statfs(path, statfs)
780             }
781 
782             SYS_FSTATFS => {
783                 let fd = args[0] as i32;
784                 let statfs = args[1] as *mut PosixStatfs;
785                 Self::fstatfs(fd, statfs)
786             }
787 
788             SYS_STATX => {
789                 let fd = args[0] as i32;
790                 let path = args[1] as *const u8;
791                 let flags = args[2] as u32;
792                 let mask = args[3] as u32;
793                 let kstat = args[4] as *mut PosixStatx;
794 
795                 Self::do_statx(fd, path, flags, mask, kstat)
796             }
797 
798             #[cfg(target_arch = "x86_64")]
799             SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32),
800             SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]),
801 
802             SYS_EPOLL_CTL => Self::epoll_ctl(
803                 args[0] as i32,
804                 args[1],
805                 args[2] as i32,
806                 VirtAddr::new(args[3]),
807             ),
808 
809             #[cfg(target_arch = "x86_64")]
810             SYS_EPOLL_WAIT => Self::epoll_wait(
811                 args[0] as i32,
812                 VirtAddr::new(args[1]),
813                 args[2] as i32,
814                 args[3] as i32,
815             ),
816 
817             SYS_EPOLL_PWAIT => {
818                 let epfd = args[0] as i32;
819                 let epoll_event = VirtAddr::new(args[1]);
820                 let max_events = args[2] as i32;
821                 let timespec = args[3] as i32;
822                 let sigmask_addr = args[4] as *mut SigSet;
823 
824                 if sigmask_addr.is_null() {
825                     return Self::epoll_wait(epfd, epoll_event, max_events, timespec);
826                 }
827                 let sigmask_reader =
828                     UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?;
829                 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?;
830 
831                 Self::epoll_pwait(
832                     args[0] as i32,
833                     VirtAddr::new(args[1]),
834                     args[2] as i32,
835                     args[3] as i32,
836                     &mut sigmask,
837                 )
838             }
839 
840             // 目前为了适配musl-libc,以下系统调用先这样写着
841             SYS_GETRANDOM => {
842                 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?;
843                 Self::get_random(args[0] as *mut u8, args[1], flags)
844             }
845 
846             SYS_SOCKETPAIR => {
847                 let mut user_buffer_writer = UserBufferWriter::new(
848                     args[3] as *mut c_int,
849                     core::mem::size_of::<[c_int; 2]>(),
850                     frame.is_from_user(),
851                 )?;
852                 let fds = user_buffer_writer.buffer::<i32>(0)?;
853                 Self::socketpair(args[0], args[1], args[2], fds)
854             }
855 
856             #[cfg(target_arch = "x86_64")]
857             SYS_POLL => {
858                 warn!("SYS_POLL has not yet been implemented");
859                 Ok(0)
860             }
861 
862             SYS_SETPGID => {
863                 warn!("SYS_SETPGID has not yet been implemented");
864                 Ok(0)
865             }
866 
867             SYS_RT_SIGPROCMASK => {
868                 warn!("SYS_RT_SIGPROCMASK has not yet been implemented");
869                 Ok(0)
870             }
871 
872             SYS_TKILL => {
873                 warn!("SYS_TKILL has not yet been implemented");
874                 Ok(0)
875             }
876 
877             SYS_SIGALTSTACK => {
878                 warn!("SYS_SIGALTSTACK has not yet been implemented");
879                 Ok(0)
880             }
881 
882             SYS_EXIT_GROUP => {
883                 warn!("SYS_EXIT_GROUP has not yet been implemented");
884                 Ok(0)
885             }
886 
887             SYS_MADVISE => {
888                 let addr = args[0];
889                 let len = page_align_up(args[1]);
890                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
891                     Err(SystemError::EINVAL)
892                 } else {
893                     Self::madvise(VirtAddr::new(addr), len, args[2])
894                 }
895             }
896 
897             SYS_GETTID => Self::gettid().map(|tid| tid.into()),
898 
899             SYS_SYSLOG => {
900                 let syslog_action_type = args[0];
901                 let buf_vaddr = args[1];
902                 let len = args[2];
903                 let from_user = frame.is_from_user();
904                 let mut user_buffer_writer =
905                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
906 
907                 let user_buf = user_buffer_writer.buffer(0)?;
908                 Self::do_syslog(syslog_action_type, user_buf, len)
909             }
910 
911             SYS_GETUID => Self::getuid(),
912             SYS_GETGID => Self::getgid(),
913             SYS_SETUID => Self::setuid(args[0]),
914             SYS_SETGID => Self::setgid(args[0]),
915 
916             SYS_GETEUID => Self::geteuid(),
917             SYS_GETEGID => Self::getegid(),
918             SYS_SETRESUID => Self::seteuid(args[1]),
919             SYS_SETRESGID => Self::setegid(args[1]),
920 
921             SYS_SETFSUID => Self::setfsuid(args[0]),
922             SYS_SETFSGID => Self::setfsgid(args[0]),
923 
924             SYS_SETSID => {
925                 warn!("SYS_SETSID has not yet been implemented");
926                 Ok(0)
927             }
928 
929             SYS_GETRUSAGE => {
930                 let who = args[0] as c_int;
931                 let rusage = args[1] as *mut RUsage;
932                 Self::get_rusage(who, rusage)
933             }
934             #[cfg(target_arch = "x86_64")]
935             SYS_READLINK => {
936                 let path = args[0] as *const u8;
937                 let buf = args[1] as *mut u8;
938                 let bufsiz = args[2];
939                 Self::readlink(path, buf, bufsiz)
940             }
941 
942             SYS_READLINKAT => {
943                 let dirfd = args[0] as i32;
944                 let path = args[1] as *const u8;
945                 let buf = args[2] as *mut u8;
946                 let bufsiz = args[3];
947                 Self::readlink_at(dirfd, path, buf, bufsiz)
948             }
949 
950             SYS_PRLIMIT64 => {
951                 let pid = args[0];
952                 let pid = Pid::new(pid);
953                 let resource = args[1];
954                 let new_limit = args[2] as *const RLimit64;
955                 let old_limit = args[3] as *mut RLimit64;
956 
957                 Self::prlimit64(pid, resource, new_limit, old_limit)
958             }
959 
960             #[cfg(target_arch = "x86_64")]
961             SYS_ACCESS => {
962                 let pathname = args[0] as *const u8;
963                 let mode = args[1] as u32;
964                 Self::access(pathname, mode)
965             }
966 
967             SYS_FACCESSAT => {
968                 let dirfd = args[0] as i32;
969                 let pathname = args[1] as *const u8;
970                 let mode = args[2] as u32;
971                 Self::faccessat2(dirfd, pathname, mode, 0)
972             }
973 
974             SYS_FACCESSAT2 => {
975                 let dirfd = args[0] as i32;
976                 let pathname = args[1] as *const u8;
977                 let mode = args[2] as u32;
978                 let flags = args[3] as u32;
979                 Self::faccessat2(dirfd, pathname, mode, flags)
980             }
981 
982             SYS_CLOCK_GETTIME => {
983                 let clockid = args[0] as i32;
984                 let timespec = args[1] as *mut PosixTimeSpec;
985                 Self::clock_gettime(clockid, timespec)
986             }
987 
988             SYS_SYSINFO => {
989                 let info = args[0] as *mut SysInfo;
990                 Self::sysinfo(info)
991             }
992 
993             SYS_UMASK => {
994                 let mask = args[0] as u32;
995                 Self::umask(mask)
996             }
997 
998             SYS_FCHOWN => {
999                 let dirfd = args[0] as i32;
1000                 let uid = args[1];
1001                 let gid = args[2];
1002                 Self::fchown(dirfd, uid, gid)
1003             }
1004             #[cfg(target_arch = "x86_64")]
1005             SYS_CHOWN => {
1006                 let pathname = args[0] as *const u8;
1007                 let uid = args[1];
1008                 let gid = args[2];
1009                 Self::chown(pathname, uid, gid)
1010             }
1011             #[cfg(target_arch = "x86_64")]
1012             SYS_LCHOWN => {
1013                 let pathname = args[0] as *const u8;
1014                 let uid = args[1];
1015                 let gid = args[2];
1016                 Self::lchown(pathname, uid, gid)
1017             }
1018             SYS_FCHOWNAT => {
1019                 let dirfd = args[0] as i32;
1020                 let pathname = args[1] as *const u8;
1021                 let uid = args[2];
1022                 let gid = args[3];
1023                 let flag = args[4] as i32;
1024                 Self::fchownat(dirfd, pathname, uid, gid, flag)
1025             }
1026 
1027             SYS_FSYNC => {
1028                 warn!("SYS_FSYNC has not yet been implemented");
1029                 Ok(0)
1030             }
1031 
1032             SYS_RSEQ => {
1033                 warn!("SYS_RSEQ has not yet been implemented");
1034                 Ok(0)
1035             }
1036 
1037             #[cfg(target_arch = "x86_64")]
1038             SYS_CHMOD => {
1039                 let pathname = args[0] as *const u8;
1040                 let mode = args[1] as u32;
1041                 Self::chmod(pathname, mode)
1042             }
1043             SYS_FCHMOD => {
1044                 let fd = args[0] as i32;
1045                 let mode = args[1] as u32;
1046                 Self::fchmod(fd, mode)
1047             }
1048             SYS_FCHMODAT => {
1049                 let dirfd = args[0] as i32;
1050                 let pathname = args[1] as *const u8;
1051                 let mode = args[2] as u32;
1052                 Self::fchmodat(dirfd, pathname, mode)
1053             }
1054 
1055             SYS_SCHED_YIELD => Self::do_sched_yield(),
1056 
1057             SYS_SCHED_GETAFFINITY => {
1058                 let pid = args[0] as i32;
1059                 let size = args[1];
1060                 let set_vaddr = args[2];
1061 
1062                 let mut user_buffer_writer =
1063                     UserBufferWriter::new(set_vaddr as *mut u8, size, frame.is_from_user())?;
1064                 let set: &mut [u8] = user_buffer_writer.buffer(0)?;
1065 
1066                 Self::getaffinity(pid, set)
1067             }
1068 
1069             #[cfg(target_arch = "x86_64")]
1070             SYS_GETRLIMIT => {
1071                 let resource = args[0];
1072                 let rlimit = args[1] as *mut RLimit64;
1073 
1074                 Self::prlimit64(
1075                     ProcessManager::current_pcb().pid(),
1076                     resource,
1077                     core::ptr::null::<RLimit64>(),
1078                     rlimit,
1079                 )
1080             }
1081 
1082             SYS_FADVISE64 => {
1083                 // todo: 这个系统调用还没有实现
1084 
1085                 Err(SystemError::ENOSYS)
1086             }
1087 
1088             SYS_MOUNT => {
1089                 let source = args[0] as *const u8;
1090                 let target = args[1] as *const u8;
1091                 let filesystemtype = args[2] as *const u8;
1092                 let mountflags = args[3];
1093                 let data = args[4] as *const u8; // 额外的mount参数,实现自己的mountdata来获取
1094                 return Self::mount(source, target, filesystemtype, mountflags, data);
1095             }
1096 
1097             SYS_UMOUNT2 => {
1098                 let target = args[0] as *const u8;
1099                 let flags = args[1] as i32;
1100                 Self::umount2(target, flags)?;
1101                 return Ok(0);
1102             }
1103 
1104             SYS_NEWFSTATAT => {
1105                 // todo: 这个系统调用还没有实现
1106 
1107                 Err(SystemError::ENOSYS)
1108             }
1109 
1110             // SYS_SCHED_YIELD => Self::sched_yield(),
1111             SYS_UNAME => {
1112                 let name = args[0] as *mut PosixOldUtsName;
1113                 Self::uname(name)
1114             }
1115             SYS_PRCTL => {
1116                 // todo: 这个系统调用还没有实现
1117 
1118                 Err(SystemError::EINVAL)
1119             }
1120 
1121             #[cfg(target_arch = "x86_64")]
1122             SYS_ALARM => {
1123                 let second = args[0] as u32;
1124                 Self::alarm(second)
1125             }
1126 
1127             SYS_SHMGET => {
1128                 let key = ShmKey::new(args[0]);
1129                 let size = args[1];
1130                 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32);
1131 
1132                 Self::shmget(key, size, shmflg)
1133             }
1134             SYS_SHMAT => {
1135                 let id = ShmId::new(args[0]);
1136                 let vaddr = VirtAddr::new(args[1]);
1137                 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32);
1138 
1139                 Self::shmat(id, vaddr, shmflg)
1140             }
1141             SYS_SHMDT => {
1142                 let vaddr = VirtAddr::new(args[0]);
1143                 Self::shmdt(vaddr)
1144             }
1145             SYS_SHMCTL => {
1146                 let id = ShmId::new(args[0]);
1147                 let cmd = ShmCtlCmd::from(args[1]);
1148                 let user_buf = args[2] as *const u8;
1149                 let from_user = frame.is_from_user();
1150 
1151                 Self::shmctl(id, cmd, user_buf, from_user)
1152             }
1153             SYS_MSYNC => {
1154                 let start = page_align_up(args[0]);
1155                 let len = page_align_up(args[1]);
1156                 let flags = args[2];
1157                 Self::msync(VirtAddr::new(start), len, flags)
1158             }
1159             SYS_UTIMENSAT => Self::sys_utimensat(
1160                 args[0] as i32,
1161                 args[1] as *const u8,
1162                 args[2] as *const PosixTimeSpec,
1163                 args[3] as u32,
1164             ),
1165             #[cfg(target_arch = "x86_64")]
1166             SYS_FUTIMESAT => {
1167                 let flags = UtimensFlags::empty();
1168                 Self::sys_utimensat(
1169                     args[0] as i32,
1170                     args[1] as *const u8,
1171                     args[2] as *const PosixTimeSpec,
1172                     flags.bits(),
1173                 )
1174             }
1175             #[cfg(target_arch = "x86_64")]
1176             SYS_UTIMES => Self::sys_utimes(args[0] as *const u8, args[1] as *const PosixTimeval),
1177             #[cfg(target_arch = "x86_64")]
1178             SYS_EVENTFD => {
1179                 let initval = args[0] as u32;
1180                 Self::sys_eventfd(initval, 0)
1181             }
1182             SYS_EVENTFD2 => {
1183                 let initval = args[0] as u32;
1184                 let flags = args[1] as u32;
1185                 Self::sys_eventfd(initval, flags)
1186             }
1187             SYS_UNSHARE => Self::sys_unshare(args[0] as u64),
1188             SYS_BPF => {
1189                 let cmd = args[0] as u32;
1190                 let attr = args[1] as *mut u8;
1191                 let size = args[2] as u32;
1192                 Self::sys_bpf(cmd, attr, size)
1193             }
1194             SYS_PERF_EVENT_OPEN => {
1195                 let attr = args[0] as *const u8;
1196                 let pid = args[1] as i32;
1197                 let cpu = args[2] as i32;
1198                 let group_fd = args[3] as i32;
1199                 let flags = args[4] as u32;
1200                 Self::sys_perf_event_open(attr, pid, cpu, group_fd, flags)
1201             }
1202             _ => panic!("Unsupported syscall ID: {}", syscall_num),
1203         };
1204 
1205         if ProcessManager::current_pcb()
1206             .flags()
1207             .contains(ProcessFlags::NEED_SCHEDULE)
1208         {
1209             schedule(SchedMode::SM_PREEMPT);
1210         }
1211 
1212         return r;
1213     }
1214 
1215     pub fn put_string(
1216         s: *const u8,
1217         front_color: u32,
1218         back_color: u32,
1219     ) -> Result<usize, SystemError> {
1220         // todo: 删除这个系统调用
1221         let s = check_and_clone_cstr(s, Some(4096))?
1222             .into_string()
1223             .map_err(|_| SystemError::EINVAL)?;
1224         let fr = (front_color & 0x00ff0000) >> 16;
1225         let fg = (front_color & 0x0000ff00) >> 8;
1226         let fb = front_color & 0x000000ff;
1227         let br = (back_color & 0x00ff0000) >> 16;
1228         let bg = (back_color & 0x0000ff00) >> 8;
1229         let bb = back_color & 0x000000ff;
1230         print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m");
1231         return Ok(s.len());
1232     }
1233 
1234     pub fn reboot() -> Result<usize, SystemError> {
1235         unsafe { cpu_reset() };
1236     }
1237 }
1238