xref: /DragonOS/kernel/src/syscall/mod.rs (revision 4695947e1b601c83641676485571d42c692a2bbd)
1 use core::{
2     ffi::{c_int, c_void},
3     ptr::null,
4     sync::atomic::{AtomicBool, Ordering},
5 };
6 
7 use crate::{
8     arch::{ipc::signal::SigSet, syscall::nr::*},
9     filesystem::vfs::syscall::PosixStatx,
10     libs::{futex::constant::FutexFlag, rand::GRandFlags},
11     mm::syscall::MremapFlags,
12     net::syscall::MsgHdr,
13     process::{
14         fork::KernelCloneArgs,
15         resource::{RLimit64, RUsage},
16         ProcessManager,
17     },
18     syscall::user_access::check_and_clone_cstr,
19 };
20 
21 use num_traits::FromPrimitive;
22 use system_error::SystemError;
23 
24 use crate::{
25     arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch},
26     filesystem::vfs::{
27         fcntl::{AtFlags, FcntlCommand},
28         file::FileMode,
29         syscall::{ModeType, PosixKstat},
30         MAX_PATHLEN,
31     },
32     include::bindings::bindings::PAGE_4K_SIZE,
33     kinfo,
34     libs::align::page_align_up,
35     mm::{verify_area, MemoryManagementArch, VirtAddr},
36     net::syscall::SockAddr,
37     process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid},
38     time::{
39         syscall::{PosixTimeZone, PosixTimeval},
40         TimeSpec,
41     },
42 };
43 
44 use self::{
45     misc::SysInfo,
46     user_access::{UserBufferReader, UserBufferWriter},
47 };
48 
49 pub mod misc;
50 pub mod user_access;
51 
52 // 与linux不一致的调用,在linux基础上累加
53 pub const SYS_PUT_STRING: usize = 100000;
54 pub const SYS_SBRK: usize = 100001;
55 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc
56 pub const SYS_CLOCK: usize = 100002;
57 pub const SYS_SCHED: usize = 100003;
58 
59 #[derive(Debug)]
60 pub struct Syscall;
61 
62 impl Syscall {
63     /// 初始化系统调用
64     #[inline(never)]
65     pub fn init() -> Result<(), SystemError> {
66         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
67         let prev = INIT_FLAG.swap(true, Ordering::SeqCst);
68         if prev {
69             panic!("Cannot initialize syscall more than once!");
70         }
71         kinfo!("Initializing syscall...");
72         let r = crate::arch::syscall::arch_syscall_init();
73         kinfo!("Syscall init successfully!");
74 
75         return r;
76     }
77     /// @brief 系统调用分发器,用于分发系统调用。
78     ///
79     /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。
80     /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。
81     #[inline(never)]
82     pub fn handle(
83         syscall_num: usize,
84         args: &[usize],
85         frame: &mut TrapFrame,
86     ) -> Result<usize, SystemError> {
87         let r = match syscall_num {
88             SYS_PUT_STRING => {
89                 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32)
90             }
91             #[cfg(target_arch = "x86_64")]
92             SYS_OPEN => {
93                 let path = args[0] as *const u8;
94                 let flags = args[1] as u32;
95                 let mode = args[2] as u32;
96 
97                 Self::open(path, flags, mode, true)
98             }
99 
100             #[cfg(target_arch = "x86_64")]
101             SYS_RENAME => {
102                 let oldname: *const u8 = args[0] as *const u8;
103                 let newname: *const u8 = args[1] as *const u8;
104                 Self::do_renameat2(
105                     AtFlags::AT_FDCWD.bits(),
106                     oldname,
107                     AtFlags::AT_FDCWD.bits(),
108                     newname,
109                     0,
110                 )
111             }
112 
113             #[cfg(target_arch = "x86_64")]
114             SYS_RENAMEAT => {
115                 let oldfd = args[0] as i32;
116                 let oldname: *const u8 = args[1] as *const u8;
117                 let newfd = args[2] as i32;
118                 let newname: *const u8 = args[3] as *const u8;
119                 Self::do_renameat2(oldfd, oldname, newfd, newname, 0)
120             }
121 
122             SYS_RENAMEAT2 => {
123                 let oldfd = args[0] as i32;
124                 let oldname: *const u8 = args[1] as *const u8;
125                 let newfd = args[2] as i32;
126                 let newname: *const u8 = args[3] as *const u8;
127                 let flags = args[4] as u32;
128                 Self::do_renameat2(oldfd, oldname, newfd, newname, flags)
129             }
130 
131             SYS_OPENAT => {
132                 let dirfd = args[0] as i32;
133                 let path = args[1] as *const u8;
134                 let flags = args[2] as u32;
135                 let mode = args[3] as u32;
136 
137                 Self::openat(dirfd, path, flags, mode, true)
138             }
139             SYS_CLOSE => {
140                 let fd = args[0];
141                 Self::close(fd)
142             }
143             SYS_READ => {
144                 let fd = args[0] as i32;
145                 let buf_vaddr = args[1];
146                 let len = args[2];
147                 let from_user = frame.from_user();
148                 let mut user_buffer_writer =
149                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
150 
151                 let user_buf = user_buffer_writer.buffer(0)?;
152                 Self::read(fd, user_buf)
153             }
154             SYS_WRITE => {
155                 let fd = args[0] as i32;
156                 let buf_vaddr = args[1];
157                 let len = args[2];
158                 let from_user = frame.from_user();
159                 let user_buffer_reader =
160                     UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?;
161 
162                 let user_buf = user_buffer_reader.read_from_user(0)?;
163                 Self::write(fd, user_buf)
164             }
165 
166             SYS_LSEEK => {
167                 let fd = args[0] as i32;
168                 let offset = args[1] as i64;
169                 let whence = args[2] as u32;
170 
171                 Self::lseek(fd, offset, whence)
172             }
173 
174             SYS_PREAD64 => {
175                 let fd = args[0] as i32;
176                 let buf_vaddr = args[1];
177                 let len = args[2];
178                 let offset = args[3];
179 
180                 let mut user_buffer_writer =
181                     UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.from_user())?;
182                 let buf = user_buffer_writer.buffer(0)?;
183                 Self::pread(fd, buf, len, offset)
184             }
185 
186             SYS_PWRITE64 => {
187                 let fd = args[0] as i32;
188                 let buf_vaddr = args[1];
189                 let len = args[2];
190                 let offset = args[3];
191 
192                 let user_buffer_reader =
193                     UserBufferReader::new(buf_vaddr as *const u8, len, frame.from_user())?;
194 
195                 let buf = user_buffer_reader.read_from_user(0)?;
196                 Self::pwrite(fd, buf, len, offset)
197             }
198 
199             SYS_IOCTL => {
200                 let fd = args[0];
201                 let cmd = args[1];
202                 let data = args[2];
203                 Self::ioctl(fd, cmd as u32, data)
204             }
205 
206             #[cfg(target_arch = "x86_64")]
207             SYS_FORK => Self::fork(frame),
208             #[cfg(target_arch = "x86_64")]
209             SYS_VFORK => Self::vfork(frame),
210 
211             SYS_BRK => {
212                 let new_brk = VirtAddr::new(args[0]);
213                 Self::brk(new_brk).map(|vaddr| vaddr.data())
214             }
215 
216             SYS_SBRK => {
217                 let increment = args[0] as isize;
218                 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data())
219             }
220 
221             SYS_REBOOT => Self::reboot(),
222 
223             SYS_CHDIR => {
224                 let r = args[0] as *const u8;
225                 Self::chdir(r)
226             }
227 
228             #[allow(unreachable_patterns)]
229             SYS_GETDENTS64 | SYS_GETDENTS => {
230                 let fd = args[0] as i32;
231 
232                 let buf_vaddr = args[1];
233                 let len = args[2];
234                 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr);
235                 // 判断缓冲区是否来自用户态,进行权限校验
236                 let res = if frame.from_user() && verify_area(virt_addr, len as usize).is_err() {
237                     // 来自用户态,而buffer在内核态,这样的操作不被允许
238                     Err(SystemError::EPERM)
239                 } else if buf_vaddr == 0 {
240                     Err(SystemError::EFAULT)
241                 } else {
242                     let buf: &mut [u8] = unsafe {
243                         core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len)
244                     };
245                     Self::getdents(fd, buf)
246                 };
247 
248                 res
249             }
250 
251             SYS_EXECVE => {
252                 let path_ptr = args[0];
253                 let argv_ptr = args[1];
254                 let env_ptr = args[2];
255                 let virt_path_ptr = VirtAddr::new(path_ptr);
256                 let virt_argv_ptr = VirtAddr::new(argv_ptr);
257                 let virt_env_ptr = VirtAddr::new(env_ptr);
258                 // 权限校验
259                 if frame.from_user()
260                     && (verify_area(virt_path_ptr, MAX_PATHLEN as usize).is_err()
261                         || verify_area(virt_argv_ptr, PAGE_4K_SIZE as usize).is_err())
262                     || verify_area(virt_env_ptr, PAGE_4K_SIZE as usize).is_err()
263                 {
264                     Err(SystemError::EFAULT)
265                 } else {
266                     Self::execve(
267                         path_ptr as *const u8,
268                         argv_ptr as *const *const u8,
269                         env_ptr as *const *const u8,
270                         frame,
271                     )
272                     .map(|_| 0)
273                 }
274             }
275             SYS_WAIT4 => {
276                 let pid = args[0] as i32;
277                 let wstatus = args[1] as *mut i32;
278                 let options = args[2] as c_int;
279                 let rusage = args[3] as *mut c_void;
280                 // 权限校验
281                 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小
282                 Self::wait4(pid.into(), wstatus, options, rusage)
283             }
284 
285             SYS_EXIT => {
286                 let exit_code = args[0];
287                 Self::exit(exit_code)
288             }
289             #[cfg(target_arch = "x86_64")]
290             SYS_MKDIR => {
291                 let path = args[0] as *const u8;
292                 let mode = args[1];
293 
294                 Self::mkdir(path, mode)
295             }
296 
297             SYS_NANOSLEEP => {
298                 let req = args[0] as *const TimeSpec;
299                 let rem = args[1] as *mut TimeSpec;
300                 let virt_req = VirtAddr::new(req as usize);
301                 let virt_rem = VirtAddr::new(rem as usize);
302                 if frame.from_user()
303                     && (verify_area(virt_req, core::mem::size_of::<TimeSpec>() as usize).is_err()
304                         || verify_area(virt_rem, core::mem::size_of::<TimeSpec>() as usize)
305                             .is_err())
306                 {
307                     Err(SystemError::EFAULT)
308                 } else {
309                     Self::nanosleep(req, rem)
310                 }
311             }
312 
313             SYS_CLOCK => Self::clock(),
314             #[cfg(target_arch = "x86_64")]
315             SYS_PIPE => {
316                 let pipefd: *mut i32 = args[0] as *mut c_int;
317                 if pipefd.is_null() {
318                     Err(SystemError::EFAULT)
319                 } else {
320                     Self::pipe2(pipefd, FileMode::empty())
321                 }
322             }
323 
324             SYS_PIPE2 => {
325                 let pipefd: *mut i32 = args[0] as *mut c_int;
326                 let arg1 = args[1];
327                 if pipefd.is_null() {
328                     Err(SystemError::EFAULT)
329                 } else {
330                     let flags = FileMode::from_bits_truncate(arg1 as u32);
331                     Self::pipe2(pipefd, flags)
332                 }
333             }
334 
335             SYS_UNLINKAT => {
336                 let dirfd = args[0] as i32;
337                 let path = args[1] as *const u8;
338                 let flags = args[2] as u32;
339                 Self::unlinkat(dirfd, path, flags)
340             }
341 
342             #[cfg(target_arch = "x86_64")]
343             SYS_RMDIR => {
344                 let path = args[0] as *const u8;
345                 Self::rmdir(path)
346             }
347 
348             SYS_LINK => {
349                 let old = args[0] as *const u8;
350                 let new = args[1] as *const u8;
351                 return Self::link(old, new);
352             }
353 
354             SYS_LINKAT => {
355                 let oldfd = args[0] as i32;
356                 let old = args[1] as *const u8;
357                 let newfd = args[2] as i32;
358                 let new = args[3] as *const u8;
359                 let flags = args[4] as i32;
360                 return Self::linkat(oldfd, old, newfd, new, flags);
361             }
362 
363             #[cfg(target_arch = "x86_64")]
364             SYS_UNLINK => {
365                 let path = args[0] as *const u8;
366                 Self::unlink(path)
367             }
368             SYS_KILL => {
369                 let pid = Pid::new(args[0]);
370                 let sig = args[1] as c_int;
371                 // kdebug!("KILL SYSCALL RECEIVED");
372                 Self::kill(pid, sig)
373             }
374 
375             SYS_RT_SIGACTION => {
376                 let sig = args[0] as c_int;
377                 let act = args[1];
378                 let old_act = args[2];
379                 Self::sigaction(sig, act, old_act, frame.from_user())
380             }
381 
382             SYS_GETPID => Self::getpid().map(|pid| pid.into()),
383 
384             SYS_SCHED => Self::sched(frame.from_user()),
385             SYS_DUP => {
386                 let oldfd: i32 = args[0] as c_int;
387                 Self::dup(oldfd)
388             }
389 
390             #[cfg(target_arch = "x86_64")]
391             SYS_DUP2 => {
392                 let oldfd: i32 = args[0] as c_int;
393                 let newfd: i32 = args[1] as c_int;
394                 Self::dup2(oldfd, newfd)
395             }
396 
397             SYS_SOCKET => Self::socket(args[0], args[1], args[2]),
398             SYS_SETSOCKOPT => {
399                 let optval = args[3] as *const u8;
400                 let optlen = args[4] as usize;
401                 let virt_optval = VirtAddr::new(optval as usize);
402                 // 验证optval的地址是否合法
403                 if verify_area(virt_optval, optlen as usize).is_err() {
404                     // 地址空间超出了用户空间的范围,不合法
405                     Err(SystemError::EFAULT)
406                 } else {
407                     let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) };
408                     Self::setsockopt(args[0], args[1], args[2], data)
409                 }
410             }
411             SYS_GETSOCKOPT => {
412                 let optval = args[3] as *mut u8;
413                 let optlen = args[4] as *mut usize;
414                 let virt_optval = VirtAddr::new(optval as usize);
415                 let virt_optlen = VirtAddr::new(optlen as usize);
416                 let security_check = || {
417                     // 验证optval的地址是否合法
418                     if verify_area(virt_optval, PAGE_4K_SIZE as usize).is_err() {
419                         // 地址空间超出了用户空间的范围,不合法
420                         return Err(SystemError::EFAULT);
421                     }
422 
423                     // 验证optlen的地址是否合法
424                     if verify_area(virt_optlen, core::mem::size_of::<u32>() as usize).is_err() {
425                         // 地址空间超出了用户空间的范围,不合法
426                         return Err(SystemError::EFAULT);
427                     }
428                     return Ok(());
429                 };
430                 let r = security_check();
431                 if r.is_err() {
432                     Err(r.unwrap_err())
433                 } else {
434                     Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32)
435                 }
436             }
437 
438             SYS_CONNECT => {
439                 let addr = args[1] as *const SockAddr;
440                 let addrlen = args[2] as usize;
441                 let virt_addr = VirtAddr::new(addr as usize);
442                 // 验证addr的地址是否合法
443                 if verify_area(virt_addr, addrlen as usize).is_err() {
444                     // 地址空间超出了用户空间的范围,不合法
445                     Err(SystemError::EFAULT)
446                 } else {
447                     Self::connect(args[0], addr, addrlen)
448                 }
449             }
450             SYS_BIND => {
451                 let addr = args[1] as *const SockAddr;
452                 let addrlen = args[2] as usize;
453                 let virt_addr = VirtAddr::new(addr as usize);
454                 // 验证addr的地址是否合法
455                 if verify_area(virt_addr, addrlen as usize).is_err() {
456                     // 地址空间超出了用户空间的范围,不合法
457                     Err(SystemError::EFAULT)
458                 } else {
459                     Self::bind(args[0], addr, addrlen)
460                 }
461             }
462 
463             SYS_SENDTO => {
464                 let buf = args[1] as *const u8;
465                 let len = args[2] as usize;
466                 let flags = args[3] as u32;
467                 let addr = args[4] as *const SockAddr;
468                 let addrlen = args[5] as usize;
469                 let virt_buf = VirtAddr::new(buf as usize);
470                 let virt_addr = VirtAddr::new(addr as usize);
471                 // 验证buf的地址是否合法
472                 if verify_area(virt_buf, len as usize).is_err() {
473                     // 地址空间超出了用户空间的范围,不合法
474                     Err(SystemError::EFAULT)
475                 } else if verify_area(virt_addr, addrlen as usize).is_err() {
476                     // 地址空间超出了用户空间的范围,不合法
477                     Err(SystemError::EFAULT)
478                 } else {
479                     let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) };
480                     Self::sendto(args[0], data, flags, addr, addrlen)
481                 }
482             }
483 
484             SYS_RECVFROM => {
485                 let buf = args[1] as *mut u8;
486                 let len = args[2] as usize;
487                 let flags = args[3] as u32;
488                 let addr = args[4] as *mut SockAddr;
489                 let addrlen = args[5] as *mut usize;
490                 let virt_buf = VirtAddr::new(buf as usize);
491                 let virt_addrlen = VirtAddr::new(addrlen as usize);
492                 let virt_addr = VirtAddr::new(addr as usize);
493                 let security_check = || {
494                     // 验证buf的地址是否合法
495                     if verify_area(virt_buf, len).is_err() {
496                         // 地址空间超出了用户空间的范围,不合法
497                         return Err(SystemError::EFAULT);
498                     }
499 
500                     // 验证addrlen的地址是否合法
501                     if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() {
502                         // 地址空间超出了用户空间的范围,不合法
503                         return Err(SystemError::EFAULT);
504                     }
505 
506                     if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() {
507                         // 地址空间超出了用户空间的范围,不合法
508                         return Err(SystemError::EFAULT);
509                     }
510                     return Ok(());
511                 };
512                 let r = security_check();
513                 if r.is_err() {
514                     Err(r.unwrap_err())
515                 } else {
516                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) };
517                     Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32)
518                 }
519             }
520 
521             SYS_RECVMSG => {
522                 let msg = args[1] as *mut MsgHdr;
523                 let flags = args[2] as u32;
524 
525                 let mut user_buffer_writer =
526                     UserBufferWriter::new(msg, core::mem::size_of::<MsgHdr>(), frame.from_user())?;
527                 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?;
528 
529                 let msg = &mut buffer[0];
530                 Self::recvmsg(args[0], msg, flags)
531             }
532 
533             SYS_LISTEN => Self::listen(args[0], args[1]),
534             SYS_SHUTDOWN => Self::shutdown(args[0], args[1]),
535             SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32),
536             SYS_ACCEPT4 => Self::accept4(
537                 args[0],
538                 args[1] as *mut SockAddr,
539                 args[2] as *mut u32,
540                 args[3] as u32,
541             ),
542             SYS_GETSOCKNAME => {
543                 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
544             }
545             SYS_GETPEERNAME => {
546                 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32)
547             }
548             SYS_GETTIMEOFDAY => {
549                 let timeval = args[0] as *mut PosixTimeval;
550                 let timezone_ptr = args[1] as *mut PosixTimeZone;
551                 Self::gettimeofday(timeval, timezone_ptr)
552             }
553             SYS_MMAP => {
554                 let len = page_align_up(args[1]);
555                 let virt_addr = VirtAddr::new(args[0]);
556                 if verify_area(virt_addr, len).is_err() {
557                     Err(SystemError::EFAULT)
558                 } else {
559                     Self::mmap(
560                         VirtAddr::new(args[0]),
561                         len,
562                         args[2],
563                         args[3],
564                         args[4] as i32,
565                         args[5],
566                     )
567                 }
568             }
569             SYS_MREMAP => {
570                 let old_vaddr = VirtAddr::new(args[0]);
571                 let old_len = args[1];
572                 let new_len = args[2];
573                 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8);
574                 let new_vaddr = VirtAddr::new(args[4]);
575 
576                 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr)
577             }
578             SYS_MUNMAP => {
579                 let addr = args[0];
580                 let len = page_align_up(args[1]);
581                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
582                     // The addr argument is not a multiple of the page size
583                     Err(SystemError::EINVAL)
584                 } else {
585                     Self::munmap(VirtAddr::new(addr), len)
586                 }
587             }
588             SYS_MPROTECT => {
589                 let addr = args[0];
590                 let len = page_align_up(args[1]);
591                 if addr & (MMArch::PAGE_SIZE - 1) != 0 {
592                     // The addr argument is not a multiple of the page size
593                     Err(SystemError::EINVAL)
594                 } else {
595                     Self::mprotect(VirtAddr::new(addr), len, args[2])
596                 }
597             }
598 
599             SYS_GETCWD => {
600                 let buf = args[0] as *mut u8;
601                 let size = args[1];
602                 let security_check = || {
603                     verify_area(VirtAddr::new(buf as usize), size)?;
604                     return Ok(());
605                 };
606                 let r = security_check();
607                 if r.is_err() {
608                     Err(r.unwrap_err())
609                 } else {
610                     let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) };
611                     Self::getcwd(buf).map(|ptr| ptr.data())
612                 }
613             }
614 
615             SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()),
616 
617             SYS_GETPPID => Self::getppid().map(|pid| pid.into()),
618             SYS_FSTAT => {
619                 let fd = args[0] as i32;
620                 let kstat = args[1] as *mut PosixKstat;
621                 let vaddr = VirtAddr::new(kstat as usize);
622                 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分
623                 // TODO 应该将用了c版本的verify_area都改为rust的verify_area
624                 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) {
625                     Ok(_) => Self::fstat(fd, kstat),
626                     Err(e) => Err(e),
627                 }
628             }
629 
630             SYS_FCNTL => {
631                 let fd = args[0] as i32;
632                 let cmd: Option<FcntlCommand> =
633                     <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32);
634                 let arg = args[2] as i32;
635                 let res = if let Some(cmd) = cmd {
636                     Self::fcntl(fd, cmd, arg)
637                 } else {
638                     Err(SystemError::EINVAL)
639                 };
640 
641                 // kdebug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res);
642                 res
643             }
644 
645             SYS_FTRUNCATE => {
646                 let fd = args[0] as i32;
647                 let len = args[1];
648                 let res = Self::ftruncate(fd, len);
649                 // kdebug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res);
650                 res
651             }
652 
653             #[cfg(target_arch = "x86_64")]
654             SYS_MKNOD => {
655                 use crate::driver::base::device::device_number::DeviceNumber;
656 
657                 let path = args[0];
658                 let flags = args[1];
659                 let dev_t = args[2];
660                 let flags: ModeType = ModeType::from_bits_truncate(flags as u32);
661                 Self::mknod(path as *const u8, flags, DeviceNumber::from(dev_t as u32))
662             }
663 
664             SYS_CLONE => {
665                 let parent_tid = VirtAddr::new(args[2]);
666                 let child_tid = VirtAddr::new(args[3]);
667 
668                 // 地址校验
669                 verify_area(parent_tid, core::mem::size_of::<i32>())?;
670                 verify_area(child_tid, core::mem::size_of::<i32>())?;
671 
672                 let mut clone_args = KernelCloneArgs::new();
673                 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64);
674                 clone_args.stack = args[1];
675                 clone_args.parent_tid = parent_tid;
676                 clone_args.child_tid = child_tid;
677                 clone_args.tls = args[4];
678                 Self::clone(frame, clone_args)
679             }
680 
681             SYS_FUTEX => {
682                 let uaddr = VirtAddr::new(args[0]);
683                 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?;
684                 let val = args[2] as u32;
685                 let utime = args[3];
686                 let uaddr2 = VirtAddr::new(args[4]);
687                 let val3 = args[5] as u32;
688 
689                 verify_area(uaddr, core::mem::size_of::<u32>())?;
690                 verify_area(uaddr2, core::mem::size_of::<u32>())?;
691 
692                 let mut timespec = None;
693                 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) {
694                     let reader = UserBufferReader::new(
695                         utime as *const TimeSpec,
696                         core::mem::size_of::<TimeSpec>(),
697                         true,
698                     )?;
699 
700                     timespec = Some(*reader.read_one_from_user::<TimeSpec>(0)?);
701                 }
702 
703                 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3)
704             }
705 
706             SYS_READV => Self::readv(args[0] as i32, args[1], args[2]),
707             SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]),
708 
709             SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]),
710 
711             #[cfg(target_arch = "x86_64")]
712             SYS_LSTAT => {
713                 let path = args[0] as *const u8;
714                 let kstat = args[1] as *mut PosixKstat;
715                 Self::lstat(path, kstat)
716             }
717 
718             #[cfg(target_arch = "x86_64")]
719             SYS_STAT => {
720                 let path = args[0] as *const u8;
721                 let kstat = args[1] as *mut PosixKstat;
722                 Self::stat(path, kstat)
723             }
724 
725             SYS_STATX => {
726                 let fd = args[0] as i32;
727                 let path = args[1] as *const u8;
728                 let flags = args[2] as u32;
729                 let mask = args[3] as u32;
730                 let kstat = args[4] as *mut PosixStatx;
731 
732                 Self::do_statx(fd, path, flags, mask, kstat)
733             }
734 
735             #[cfg(target_arch = "x86_64")]
736             SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32),
737             SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]),
738 
739             SYS_EPOLL_CTL => Self::epoll_ctl(
740                 args[0] as i32,
741                 args[1],
742                 args[2] as i32,
743                 VirtAddr::new(args[3]),
744             ),
745 
746             #[cfg(target_arch = "x86_64")]
747             SYS_EPOLL_WAIT => Self::epoll_wait(
748                 args[0] as i32,
749                 VirtAddr::new(args[1]),
750                 args[2] as i32,
751                 args[3] as i32,
752             ),
753 
754             SYS_EPOLL_PWAIT => {
755                 let epfd = args[0] as i32;
756                 let epoll_event = VirtAddr::new(args[1]);
757                 let max_events = args[2] as i32;
758                 let timespec = args[3] as i32;
759                 let sigmask_addr = args[4] as *mut SigSet;
760 
761                 if sigmask_addr.is_null() {
762                     return Self::epoll_wait(epfd, epoll_event, max_events, timespec);
763                 }
764                 let sigmask_reader =
765                     UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?;
766                 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?;
767 
768                 Self::epoll_pwait(
769                     args[0] as i32,
770                     VirtAddr::new(args[1]),
771                     args[2] as i32,
772                     args[3] as i32,
773                     &mut sigmask,
774                 )
775             }
776 
777             // 目前为了适配musl-libc,以下系统调用先这样写着
778             SYS_GETRANDOM => {
779                 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?;
780                 Self::get_random(args[0] as *mut u8, args[1], flags)
781             }
782 
783             SYS_SOCKETPAIR => {
784                 let mut user_buffer_writer = UserBufferWriter::new(
785                     args[3] as *mut c_int,
786                     core::mem::size_of::<[c_int; 2]>(),
787                     frame.from_user(),
788                 )?;
789                 let fds = user_buffer_writer.buffer::<i32>(0)?;
790                 Self::socketpair(args[0], args[1], args[2], fds)
791             }
792 
793             #[cfg(target_arch = "x86_64")]
794             SYS_POLL => {
795                 kwarn!("SYS_POLL has not yet been implemented");
796                 Ok(0)
797             }
798 
799             SYS_SETPGID => {
800                 kwarn!("SYS_SETPGID has not yet been implemented");
801                 Ok(0)
802             }
803 
804             SYS_RT_SIGPROCMASK => {
805                 kwarn!("SYS_RT_SIGPROCMASK has not yet been implemented");
806                 Ok(0)
807             }
808 
809             SYS_TKILL => {
810                 kwarn!("SYS_TKILL has not yet been implemented");
811                 Ok(0)
812             }
813 
814             SYS_SIGALTSTACK => {
815                 kwarn!("SYS_SIGALTSTACK has not yet been implemented");
816                 Ok(0)
817             }
818 
819             SYS_EXIT_GROUP => {
820                 kwarn!("SYS_EXIT_GROUP has not yet been implemented");
821                 Ok(0)
822             }
823 
824             SYS_MADVISE => {
825                 // 这个太吵了,总是打印,先注释掉
826                 // kwarn!("SYS_MADVISE has not yet been implemented");
827                 Ok(0)
828             }
829             SYS_GETTID => Self::gettid().map(|tid| tid.into()),
830             SYS_GETUID => Self::getuid(),
831 
832             SYS_SYSLOG => {
833                 let syslog_action_type = args[0];
834                 let buf_vaddr = args[1];
835                 let len = args[2];
836                 let from_user = frame.from_user();
837                 let mut user_buffer_writer =
838                     UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?;
839 
840                 let user_buf = user_buffer_writer.buffer(0)?;
841                 Self::do_syslog(syslog_action_type, user_buf, len)
842             }
843 
844             SYS_GETGID => Self::getgid(),
845             SYS_SETUID => {
846                 kwarn!("SYS_SETUID has not yet been implemented");
847                 Ok(0)
848             }
849             SYS_SETGID => {
850                 kwarn!("SYS_SETGID has not yet been implemented");
851                 Ok(0)
852             }
853             SYS_GETEUID => Self::geteuid(),
854             SYS_GETEGID => Self::getegid(),
855             SYS_GETRUSAGE => {
856                 let who = args[0] as c_int;
857                 let rusage = args[1] as *mut RUsage;
858                 Self::get_rusage(who, rusage)
859             }
860 
861             #[cfg(target_arch = "x86_64")]
862             SYS_READLINK => {
863                 let path = args[0] as *const u8;
864                 let buf = args[1] as *mut u8;
865                 let bufsiz = args[2];
866                 Self::readlink(path, buf, bufsiz)
867             }
868 
869             SYS_READLINKAT => {
870                 let dirfd = args[0] as i32;
871                 let path = args[1] as *const u8;
872                 let buf = args[2] as *mut u8;
873                 let bufsiz = args[3];
874                 Self::readlink_at(dirfd, path, buf, bufsiz)
875             }
876 
877             SYS_PRLIMIT64 => {
878                 let pid = args[0];
879                 let pid = Pid::new(pid);
880                 let resource = args[1];
881                 let new_limit = args[2] as *const RLimit64;
882                 let old_limit = args[3] as *mut RLimit64;
883 
884                 Self::prlimit64(pid, resource, new_limit, old_limit)
885             }
886 
887             #[cfg(target_arch = "x86_64")]
888             SYS_ACCESS => {
889                 let pathname = args[0] as *const u8;
890                 let mode = args[1] as u32;
891                 Self::access(pathname, mode)
892             }
893 
894             SYS_FACCESSAT => {
895                 let dirfd = args[0] as i32;
896                 let pathname = args[1] as *const u8;
897                 let mode = args[2] as u32;
898                 Self::faccessat2(dirfd, pathname, mode, 0)
899             }
900 
901             SYS_FACCESSAT2 => {
902                 let dirfd = args[0] as i32;
903                 let pathname = args[1] as *const u8;
904                 let mode = args[2] as u32;
905                 let flags = args[3] as u32;
906                 Self::faccessat2(dirfd, pathname, mode, flags)
907             }
908 
909             SYS_CLOCK_GETTIME => {
910                 let clockid = args[0] as i32;
911                 let timespec = args[1] as *mut TimeSpec;
912                 Self::clock_gettime(clockid, timespec)
913             }
914 
915             SYS_SYSINFO => {
916                 let info = args[0] as *mut SysInfo;
917                 Self::sysinfo(info)
918             }
919 
920             SYS_UMASK => {
921                 let mask = args[0] as u32;
922                 Self::umask(mask)
923             }
924 
925             SYS_FCHOWN => {
926                 kwarn!("SYS_FCHOWN has not yet been implemented");
927                 Ok(0)
928             }
929 
930             SYS_FSYNC => {
931                 kwarn!("SYS_FSYNC has not yet been implemented");
932                 Ok(0)
933             }
934 
935             #[cfg(target_arch = "x86_64")]
936             SYS_CHMOD => {
937                 let pathname = args[0] as *const u8;
938                 let mode = args[1] as u32;
939                 Self::chmod(pathname, mode)
940             }
941             SYS_FCHMOD => {
942                 let fd = args[0] as i32;
943                 let mode = args[1] as u32;
944                 Self::fchmod(fd, mode)
945             }
946             SYS_FCHMODAT => {
947                 let dirfd = args[0] as i32;
948                 let pathname = args[1] as *const u8;
949                 let mode = args[2] as u32;
950                 Self::fchmodat(dirfd, pathname, mode)
951             }
952 
953             SYS_SCHED_GETAFFINITY => {
954                 // todo: 这个系统调用还没有实现
955 
956                 Err(SystemError::ENOSYS)
957             }
958 
959             #[cfg(target_arch = "x86_64")]
960             SYS_GETRLIMIT => {
961                 let resource = args[0];
962                 let rlimit = args[1] as *mut RLimit64;
963 
964                 Self::prlimit64(
965                     ProcessManager::current_pcb().pid(),
966                     resource,
967                     core::ptr::null::<RLimit64>(),
968                     rlimit,
969                 )
970             }
971 
972             SYS_FADVISE64 => {
973                 // todo: 这个系统调用还没有实现
974 
975                 Err(SystemError::ENOSYS)
976             }
977 
978             SYS_MOUNT => {
979                 let source = args[0] as *const u8;
980                 let target = args[1] as *const u8;
981                 let filesystemtype = args[2] as *const u8;
982                 return Self::mount(source, target, filesystemtype, 0, null());
983             }
984             SYS_NEWFSTATAT => {
985                 // todo: 这个系统调用还没有实现
986 
987                 Err(SystemError::ENOSYS)
988             }
989 
990             SYS_SCHED_YIELD => Self::sched_yield(),
991             SYS_UNAME => {
992                 let name = args[0] as *mut PosixOldUtsName;
993                 Self::uname(name)
994             }
995 
996             _ => panic!("Unsupported syscall ID: {}", syscall_num),
997         };
998 
999         return r;
1000     }
1001 
1002     pub fn put_string(
1003         s: *const u8,
1004         front_color: u32,
1005         back_color: u32,
1006     ) -> Result<usize, SystemError> {
1007         // todo: 删除这个系统调用
1008         let s = check_and_clone_cstr(s, Some(4096))?;
1009         let fr = (front_color & 0x00ff0000) >> 16;
1010         let fg = (front_color & 0x0000ff00) >> 8;
1011         let fb = front_color & 0x000000ff;
1012         let br = (back_color & 0x00ff0000) >> 16;
1013         let bg = (back_color & 0x0000ff00) >> 8;
1014         let bb = back_color & 0x000000ff;
1015         print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m");
1016         return Ok(s.len());
1017     }
1018 
1019     pub fn reboot() -> Result<usize, SystemError> {
1020         unsafe { cpu_reset() };
1021     }
1022 }
1023