1 use core::{ 2 ffi::{c_int, c_void}, 3 hint::spin_loop, 4 sync::atomic::{AtomicBool, Ordering}, 5 }; 6 7 use crate::{ 8 arch::{ipc::signal::SigSet, syscall::nr::*}, 9 filesystem::vfs::syscall::{PosixStatfs, PosixStatx}, 10 ipc::shm::{ShmCtlCmd, ShmFlags, ShmId, ShmKey}, 11 libs::{futex::constant::FutexFlag, rand::GRandFlags}, 12 mm::{page::PAGE_4K_SIZE, syscall::MremapFlags}, 13 net::syscall::MsgHdr, 14 process, 15 process::{ 16 fork::KernelCloneArgs, 17 resource::{RLimit64, RUsage}, 18 ProcessFlags, ProcessManager, 19 }, 20 sched::{schedule, SchedMode}, 21 syscall::user_access::check_and_clone_cstr, 22 }; 23 24 use log::{info, warn}; 25 use num_traits::FromPrimitive; 26 use system_error::SystemError; 27 28 use crate::{ 29 arch::{cpu::cpu_reset, interrupt::TrapFrame, MMArch}, 30 filesystem::vfs::{ 31 fcntl::{AtFlags, FcntlCommand}, 32 file::FileMode, 33 syscall::{ModeType, PosixKstat, UtimensFlags}, 34 MAX_PATHLEN, 35 }, 36 libs::align::page_align_up, 37 mm::{verify_area, MemoryManagementArch, VirtAddr}, 38 net::syscall::SockAddr, 39 process::{fork::CloneFlags, syscall::PosixOldUtsName, Pid}, 40 time::{ 41 syscall::{PosixTimeZone, PosixTimeval}, 42 PosixTimeSpec, 43 }, 44 }; 45 46 use self::{ 47 misc::SysInfo, 48 user_access::{UserBufferReader, UserBufferWriter}, 49 }; 50 51 pub mod misc; 52 pub mod user_access; 53 54 // 与linux不一致的调用,在linux基础上累加 55 pub const SYS_PUT_STRING: usize = 100000; 56 pub const SYS_SBRK: usize = 100001; 57 /// todo: 该系统调用与Linux不一致,将来需要删除该系统调用!!! 删的时候记得改C版本的libc 58 pub const SYS_CLOCK: usize = 100002; 59 pub const SYS_SCHED: usize = 100003; 60 61 #[derive(Debug)] 62 pub struct Syscall; 63 64 impl Syscall { 65 /// 初始化系统调用 66 #[inline(never)] 67 pub fn init() -> Result<(), SystemError> { 68 static INIT_FLAG: AtomicBool = AtomicBool::new(false); 69 let prev = INIT_FLAG.swap(true, Ordering::SeqCst); 70 if prev { 71 panic!("Cannot initialize syscall more than once!"); 72 } 73 info!("Initializing syscall..."); 74 let r = crate::arch::syscall::arch_syscall_init(); 75 info!("Syscall init successfully!"); 76 77 return r; 78 } 79 /// 系统调用分发器,用于分发系统调用。 80 /// 81 /// 与[handle]不同,这个函数会捕获系统调用处理函数的panic,返回错误码。 82 pub fn catch_handle( 83 syscall_num: usize, 84 args: &[usize], 85 frame: &mut TrapFrame, 86 ) -> Result<usize, SystemError> { 87 let res = unwinding::panic::catch_unwind(|| Self::handle(syscall_num, args, frame)); 88 res.unwrap_or_else(|_| loop { 89 spin_loop(); 90 }) 91 } 92 /// @brief 系统调用分发器,用于分发系统调用。 93 /// 94 /// 这个函数内,需要根据系统调用号,调用对应的系统调用处理函数。 95 /// 并且,对于用户态传入的指针参数,需要在本函数内进行越界检查,防止访问到内核空间。 96 #[inline(never)] 97 pub fn handle( 98 syscall_num: usize, 99 args: &[usize], 100 frame: &mut TrapFrame, 101 ) -> Result<usize, SystemError> { 102 let r = match syscall_num { 103 SYS_PUT_STRING => { 104 Self::put_string(args[0] as *const u8, args[1] as u32, args[2] as u32) 105 } 106 #[cfg(target_arch = "x86_64")] 107 SYS_OPEN => { 108 let path = args[0] as *const u8; 109 let flags = args[1] as u32; 110 let mode = args[2] as u32; 111 112 Self::open(path, flags, mode, true) 113 } 114 115 #[cfg(target_arch = "x86_64")] 116 SYS_RENAME => { 117 let oldname: *const u8 = args[0] as *const u8; 118 let newname: *const u8 = args[1] as *const u8; 119 Self::do_renameat2( 120 AtFlags::AT_FDCWD.bits(), 121 oldname, 122 AtFlags::AT_FDCWD.bits(), 123 newname, 124 0, 125 ) 126 } 127 128 #[cfg(target_arch = "x86_64")] 129 SYS_RENAMEAT => { 130 let oldfd = args[0] as i32; 131 let oldname: *const u8 = args[1] as *const u8; 132 let newfd = args[2] as i32; 133 let newname: *const u8 = args[3] as *const u8; 134 Self::do_renameat2(oldfd, oldname, newfd, newname, 0) 135 } 136 137 SYS_RENAMEAT2 => { 138 let oldfd = args[0] as i32; 139 let oldname: *const u8 = args[1] as *const u8; 140 let newfd = args[2] as i32; 141 let newname: *const u8 = args[3] as *const u8; 142 let flags = args[4] as u32; 143 Self::do_renameat2(oldfd, oldname, newfd, newname, flags) 144 } 145 146 SYS_OPENAT => { 147 let dirfd = args[0] as i32; 148 let path = args[1] as *const u8; 149 let flags = args[2] as u32; 150 let mode = args[3] as u32; 151 152 Self::openat(dirfd, path, flags, mode, true) 153 } 154 SYS_CLOSE => { 155 let fd = args[0]; 156 Self::close(fd) 157 } 158 SYS_READ => { 159 let fd = args[0] as i32; 160 let buf_vaddr = args[1]; 161 let len = args[2]; 162 let from_user = frame.is_from_user(); 163 let mut user_buffer_writer = 164 UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?; 165 166 let user_buf = user_buffer_writer.buffer(0)?; 167 Self::read(fd, user_buf) 168 } 169 SYS_WRITE => { 170 let fd = args[0] as i32; 171 let buf_vaddr = args[1]; 172 let len = args[2]; 173 let from_user = frame.is_from_user(); 174 let user_buffer_reader = 175 UserBufferReader::new(buf_vaddr as *const u8, len, from_user)?; 176 177 let user_buf = user_buffer_reader.read_from_user(0)?; 178 Self::write(fd, user_buf) 179 } 180 181 SYS_LSEEK => { 182 let fd = args[0] as i32; 183 let offset = args[1] as i64; 184 let whence = args[2] as u32; 185 186 Self::lseek(fd, offset, whence) 187 } 188 189 SYS_PREAD64 => { 190 let fd = args[0] as i32; 191 let buf_vaddr = args[1]; 192 let len = args[2]; 193 let offset = args[3]; 194 195 let mut user_buffer_writer = 196 UserBufferWriter::new(buf_vaddr as *mut u8, len, frame.is_from_user())?; 197 let buf = user_buffer_writer.buffer(0)?; 198 Self::pread(fd, buf, len, offset) 199 } 200 201 SYS_PWRITE64 => { 202 let fd = args[0] as i32; 203 let buf_vaddr = args[1]; 204 let len = args[2]; 205 let offset = args[3]; 206 207 let user_buffer_reader = 208 UserBufferReader::new(buf_vaddr as *const u8, len, frame.is_from_user())?; 209 210 let buf = user_buffer_reader.read_from_user(0)?; 211 Self::pwrite(fd, buf, len, offset) 212 } 213 214 SYS_IOCTL => { 215 let fd = args[0]; 216 let cmd = args[1]; 217 let data = args[2]; 218 Self::ioctl(fd, cmd as u32, data) 219 } 220 221 #[cfg(target_arch = "x86_64")] 222 SYS_FORK => Self::fork(frame), 223 #[cfg(target_arch = "x86_64")] 224 SYS_VFORK => Self::vfork(frame), 225 226 SYS_BRK => { 227 let new_brk = VirtAddr::new(args[0]); 228 Self::brk(new_brk).map(|vaddr| vaddr.data()) 229 } 230 231 SYS_SBRK => { 232 let increment = args[0] as isize; 233 Self::sbrk(increment).map(|vaddr: VirtAddr| vaddr.data()) 234 } 235 236 SYS_REBOOT => Self::reboot(), 237 238 SYS_CHDIR => { 239 let r = args[0] as *const u8; 240 Self::chdir(r) 241 } 242 243 #[allow(unreachable_patterns)] 244 SYS_GETDENTS64 | SYS_GETDENTS => { 245 let fd = args[0] as i32; 246 247 let buf_vaddr = args[1]; 248 let len = args[2]; 249 let virt_addr: VirtAddr = VirtAddr::new(buf_vaddr); 250 // 判断缓冲区是否来自用户态,进行权限校验 251 let res = if frame.is_from_user() && verify_area(virt_addr, len).is_err() { 252 // 来自用户态,而buffer在内核态,这样的操作不被允许 253 Err(SystemError::EPERM) 254 } else if buf_vaddr == 0 { 255 Err(SystemError::EFAULT) 256 } else { 257 let buf: &mut [u8] = unsafe { 258 core::slice::from_raw_parts_mut::<'static, u8>(buf_vaddr as *mut u8, len) 259 }; 260 Self::getdents(fd, buf) 261 }; 262 263 res 264 } 265 266 SYS_EXECVE => { 267 let path_ptr = args[0]; 268 let argv_ptr = args[1]; 269 let env_ptr = args[2]; 270 let virt_path_ptr = VirtAddr::new(path_ptr); 271 let virt_argv_ptr = VirtAddr::new(argv_ptr); 272 let virt_env_ptr = VirtAddr::new(env_ptr); 273 // 权限校验 274 if frame.is_from_user() 275 && (verify_area(virt_path_ptr, MAX_PATHLEN).is_err() 276 || verify_area(virt_argv_ptr, PAGE_4K_SIZE).is_err()) 277 || verify_area(virt_env_ptr, PAGE_4K_SIZE).is_err() 278 { 279 Err(SystemError::EFAULT) 280 } else { 281 Self::execve( 282 path_ptr as *const u8, 283 argv_ptr as *const *const u8, 284 env_ptr as *const *const u8, 285 frame, 286 ) 287 .map(|_| 0) 288 } 289 } 290 SYS_WAIT4 => { 291 let pid = args[0] as i32; 292 let wstatus = args[1] as *mut i32; 293 let options = args[2] as c_int; 294 let rusage = args[3] as *mut c_void; 295 // 权限校验 296 // todo: 引入rusage之后,更正以下权限校验代码中,rusage的大小 297 Self::wait4(pid.into(), wstatus, options, rusage) 298 } 299 300 SYS_EXIT => { 301 let exit_code = args[0]; 302 Self::exit(exit_code) 303 } 304 #[cfg(target_arch = "x86_64")] 305 SYS_MKDIR => { 306 let path = args[0] as *const u8; 307 let mode = args[1]; 308 309 Self::mkdir(path, mode) 310 } 311 312 SYS_MKDIRAT => { 313 let dirfd = args[0] as i32; 314 let path = args[1] as *const u8; 315 let mode = args[2]; 316 Self::mkdir_at(dirfd, path, mode) 317 } 318 319 SYS_NANOSLEEP => { 320 let req = args[0] as *const PosixTimeSpec; 321 let rem = args[1] as *mut PosixTimeSpec; 322 let virt_req = VirtAddr::new(req as usize); 323 let virt_rem = VirtAddr::new(rem as usize); 324 if frame.is_from_user() 325 && (verify_area(virt_req, core::mem::size_of::<PosixTimeSpec>()).is_err() 326 || verify_area(virt_rem, core::mem::size_of::<PosixTimeSpec>()).is_err()) 327 { 328 Err(SystemError::EFAULT) 329 } else { 330 Self::nanosleep(req, rem) 331 } 332 } 333 334 SYS_CLOCK => Self::clock(), 335 #[cfg(target_arch = "x86_64")] 336 SYS_PIPE => { 337 let pipefd: *mut i32 = args[0] as *mut c_int; 338 if pipefd.is_null() { 339 Err(SystemError::EFAULT) 340 } else { 341 Self::pipe2(pipefd, FileMode::empty()) 342 } 343 } 344 345 SYS_PIPE2 => { 346 let pipefd: *mut i32 = args[0] as *mut c_int; 347 let arg1 = args[1]; 348 if pipefd.is_null() { 349 Err(SystemError::EFAULT) 350 } else { 351 let flags = FileMode::from_bits_truncate(arg1 as u32); 352 Self::pipe2(pipefd, flags) 353 } 354 } 355 356 SYS_UNLINKAT => { 357 let dirfd = args[0] as i32; 358 let path = args[1] as *const u8; 359 let flags = args[2] as u32; 360 Self::unlinkat(dirfd, path, flags) 361 } 362 363 #[cfg(target_arch = "x86_64")] 364 SYS_SYMLINK => { 365 let oldname = args[0] as *const u8; 366 let newname = args[1] as *const u8; 367 Self::symlink(oldname, newname) 368 } 369 370 SYS_SYMLINKAT => { 371 let oldname = args[0] as *const u8; 372 let newdfd = args[1] as i32; 373 let newname = args[2] as *const u8; 374 Self::symlinkat(oldname, newdfd, newname) 375 } 376 377 #[cfg(target_arch = "x86_64")] 378 SYS_RMDIR => { 379 let path = args[0] as *const u8; 380 Self::rmdir(path) 381 } 382 383 #[cfg(target_arch = "x86_64")] 384 SYS_LINK => { 385 let old = args[0] as *const u8; 386 let new = args[1] as *const u8; 387 return Self::link(old, new); 388 } 389 390 SYS_LINKAT => { 391 let oldfd = args[0] as i32; 392 let old = args[1] as *const u8; 393 let newfd = args[2] as i32; 394 let new = args[3] as *const u8; 395 let flags = args[4] as i32; 396 return Self::linkat(oldfd, old, newfd, new, flags); 397 } 398 399 #[cfg(target_arch = "x86_64")] 400 SYS_UNLINK => { 401 let path = args[0] as *const u8; 402 Self::unlink(path) 403 } 404 SYS_KILL => { 405 let pid = Pid::new(args[0]); 406 let sig = args[1] as c_int; 407 // debug!("KILL SYSCALL RECEIVED"); 408 Self::kill(pid, sig) 409 } 410 411 SYS_RT_SIGACTION => { 412 let sig = args[0] as c_int; 413 let act = args[1]; 414 let old_act = args[2]; 415 Self::sigaction(sig, act, old_act, frame.is_from_user()) 416 } 417 418 SYS_GETPID => Self::getpid().map(|pid| pid.into()), 419 420 SYS_SCHED => { 421 warn!("syscall sched"); 422 schedule(SchedMode::SM_NONE); 423 Ok(0) 424 } 425 SYS_DUP => { 426 let oldfd: i32 = args[0] as c_int; 427 Self::dup(oldfd) 428 } 429 430 #[cfg(target_arch = "x86_64")] 431 SYS_DUP2 => { 432 let oldfd: i32 = args[0] as c_int; 433 let newfd: i32 = args[1] as c_int; 434 Self::dup2(oldfd, newfd) 435 } 436 437 SYS_DUP3 => { 438 let oldfd: i32 = args[0] as c_int; 439 let newfd: i32 = args[1] as c_int; 440 let flags: u32 = args[2] as u32; 441 Self::dup3(oldfd, newfd, flags) 442 } 443 444 SYS_SOCKET => Self::socket(args[0], args[1], args[2]), 445 SYS_SETSOCKOPT => { 446 let optval = args[3] as *const u8; 447 let optlen = args[4]; 448 let virt_optval = VirtAddr::new(optval as usize); 449 // 验证optval的地址是否合法 450 if verify_area(virt_optval, optlen).is_err() { 451 // 地址空间超出了用户空间的范围,不合法 452 Err(SystemError::EFAULT) 453 } else { 454 let data: &[u8] = unsafe { core::slice::from_raw_parts(optval, optlen) }; 455 Self::setsockopt(args[0], args[1], args[2], data) 456 } 457 } 458 SYS_GETSOCKOPT => { 459 let optval = args[3] as *mut u8; 460 let optlen = args[4] as *mut usize; 461 let virt_optval = VirtAddr::new(optval as usize); 462 let virt_optlen = VirtAddr::new(optlen as usize); 463 let security_check = || { 464 // 验证optval的地址是否合法 465 if verify_area(virt_optval, PAGE_4K_SIZE).is_err() { 466 // 地址空间超出了用户空间的范围,不合法 467 return Err(SystemError::EFAULT); 468 } 469 470 // 验证optlen的地址是否合法 471 if verify_area(virt_optlen, core::mem::size_of::<u32>()).is_err() { 472 // 地址空间超出了用户空间的范围,不合法 473 return Err(SystemError::EFAULT); 474 } 475 return Ok(()); 476 }; 477 let r = security_check(); 478 if let Err(e) = r { 479 Err(e) 480 } else { 481 Self::getsockopt(args[0], args[1], args[2], optval, optlen as *mut u32) 482 } 483 } 484 485 SYS_CONNECT => { 486 let addr = args[1] as *const SockAddr; 487 let addrlen = args[2]; 488 let virt_addr = VirtAddr::new(addr as usize); 489 // 验证addr的地址是否合法 490 if verify_area(virt_addr, addrlen).is_err() { 491 // 地址空间超出了用户空间的范围,不合法 492 Err(SystemError::EFAULT) 493 } else { 494 Self::connect(args[0], addr, addrlen) 495 } 496 } 497 SYS_BIND => { 498 let addr = args[1] as *const SockAddr; 499 let addrlen = args[2]; 500 let virt_addr = VirtAddr::new(addr as usize); 501 // 验证addr的地址是否合法 502 if verify_area(virt_addr, addrlen).is_err() { 503 // 地址空间超出了用户空间的范围,不合法 504 Err(SystemError::EFAULT) 505 } else { 506 Self::bind(args[0], addr, addrlen) 507 } 508 } 509 510 SYS_SENDTO => { 511 let buf = args[1] as *const u8; 512 let len = args[2]; 513 let flags = args[3] as u32; 514 let addr = args[4] as *const SockAddr; 515 let addrlen = args[5]; 516 let virt_buf = VirtAddr::new(buf as usize); 517 let virt_addr = VirtAddr::new(addr as usize); 518 // 验证buf的地址是否合法 519 if verify_area(virt_buf, len).is_err() || verify_area(virt_addr, addrlen).is_err() { 520 // 地址空间超出了用户空间的范围,不合法 521 Err(SystemError::EFAULT) 522 } else { 523 let data: &[u8] = unsafe { core::slice::from_raw_parts(buf, len) }; 524 Self::sendto(args[0], data, flags, addr, addrlen) 525 } 526 } 527 528 SYS_RECVFROM => { 529 let buf = args[1] as *mut u8; 530 let len = args[2]; 531 let flags = args[3] as u32; 532 let addr = args[4] as *mut SockAddr; 533 let addrlen = args[5] as *mut usize; 534 let virt_buf = VirtAddr::new(buf as usize); 535 let virt_addrlen = VirtAddr::new(addrlen as usize); 536 let virt_addr = VirtAddr::new(addr as usize); 537 let security_check = || { 538 // 验证buf的地址是否合法 539 if verify_area(virt_buf, len).is_err() { 540 // 地址空间超出了用户空间的范围,不合法 541 return Err(SystemError::EFAULT); 542 } 543 544 // 验证addrlen的地址是否合法 545 if verify_area(virt_addrlen, core::mem::size_of::<u32>()).is_err() { 546 // 地址空间超出了用户空间的范围,不合法 547 return Err(SystemError::EFAULT); 548 } 549 550 if verify_area(virt_addr, core::mem::size_of::<SockAddr>()).is_err() { 551 // 地址空间超出了用户空间的范围,不合法 552 return Err(SystemError::EFAULT); 553 } 554 return Ok(()); 555 }; 556 let r = security_check(); 557 if let Err(e) = r { 558 Err(e) 559 } else { 560 let buf = unsafe { core::slice::from_raw_parts_mut(buf, len) }; 561 Self::recvfrom(args[0], buf, flags, addr, addrlen as *mut u32) 562 } 563 } 564 565 SYS_RECVMSG => { 566 let msg = args[1] as *mut MsgHdr; 567 let flags = args[2] as u32; 568 569 let mut user_buffer_writer = UserBufferWriter::new( 570 msg, 571 core::mem::size_of::<MsgHdr>(), 572 frame.is_from_user(), 573 )?; 574 let buffer = user_buffer_writer.buffer::<MsgHdr>(0)?; 575 576 let msg = &mut buffer[0]; 577 Self::recvmsg(args[0], msg, flags) 578 } 579 580 SYS_LISTEN => Self::listen(args[0], args[1]), 581 SYS_SHUTDOWN => Self::shutdown(args[0], args[1]), 582 SYS_ACCEPT => Self::accept(args[0], args[1] as *mut SockAddr, args[2] as *mut u32), 583 SYS_ACCEPT4 => Self::accept4( 584 args[0], 585 args[1] as *mut SockAddr, 586 args[2] as *mut u32, 587 args[3] as u32, 588 ), 589 SYS_GETSOCKNAME => { 590 Self::getsockname(args[0], args[1] as *mut SockAddr, args[2] as *mut u32) 591 } 592 SYS_GETPEERNAME => { 593 Self::getpeername(args[0], args[1] as *mut SockAddr, args[2] as *mut u32) 594 } 595 SYS_GETTIMEOFDAY => { 596 let timeval = args[0] as *mut PosixTimeval; 597 let timezone_ptr = args[1] as *mut PosixTimeZone; 598 Self::gettimeofday(timeval, timezone_ptr) 599 } 600 SYS_MMAP => { 601 let len = page_align_up(args[1]); 602 let virt_addr = VirtAddr::new(args[0]); 603 if verify_area(virt_addr, len).is_err() { 604 Err(SystemError::EFAULT) 605 } else { 606 Self::mmap( 607 VirtAddr::new(args[0]), 608 len, 609 args[2], 610 args[3], 611 args[4] as i32, 612 args[5], 613 ) 614 } 615 } 616 SYS_MREMAP => { 617 let old_vaddr = VirtAddr::new(args[0]); 618 let old_len = args[1]; 619 let new_len = args[2]; 620 let mremap_flags = MremapFlags::from_bits_truncate(args[3] as u8); 621 let new_vaddr = VirtAddr::new(args[4]); 622 623 Self::mremap(old_vaddr, old_len, new_len, mremap_flags, new_vaddr) 624 } 625 SYS_MUNMAP => { 626 let addr = args[0]; 627 let len = page_align_up(args[1]); 628 if addr & (MMArch::PAGE_SIZE - 1) != 0 { 629 // The addr argument is not a multiple of the page size 630 Err(SystemError::EINVAL) 631 } else { 632 Self::munmap(VirtAddr::new(addr), len) 633 } 634 } 635 SYS_MPROTECT => { 636 let addr = args[0]; 637 let len = page_align_up(args[1]); 638 if addr & (MMArch::PAGE_SIZE - 1) != 0 { 639 // The addr argument is not a multiple of the page size 640 Err(SystemError::EINVAL) 641 } else { 642 Self::mprotect(VirtAddr::new(addr), len, args[2]) 643 } 644 } 645 646 SYS_GETCWD => { 647 let buf = args[0] as *mut u8; 648 let size = args[1]; 649 let security_check = || { 650 verify_area(VirtAddr::new(buf as usize), size)?; 651 return Ok(()); 652 }; 653 let r = security_check(); 654 if let Err(e) = r { 655 Err(e) 656 } else { 657 let buf = unsafe { core::slice::from_raw_parts_mut(buf, size) }; 658 Self::getcwd(buf).map(|ptr| ptr.data()) 659 } 660 } 661 662 SYS_GETPGID => Self::getpgid(Pid::new(args[0])).map(|pid| pid.into()), 663 664 SYS_GETPPID => Self::getppid().map(|pid| pid.into()), 665 SYS_FSTAT => { 666 let fd = args[0] as i32; 667 let kstat: *mut PosixKstat = args[1] as *mut PosixKstat; 668 let vaddr = VirtAddr::new(kstat as usize); 669 // FIXME 由于c中的verify_area与rust中的verify_area重名,所以在引入时加了前缀区分 670 // TODO 应该将用了c版本的verify_area都改为rust的verify_area 671 match verify_area(vaddr, core::mem::size_of::<PosixKstat>()) { 672 Ok(_) => Self::fstat(fd, kstat), 673 Err(e) => Err(e), 674 } 675 } 676 677 SYS_FCNTL => { 678 let fd = args[0] as i32; 679 let cmd: Option<FcntlCommand> = 680 <FcntlCommand as FromPrimitive>::from_u32(args[1] as u32); 681 let arg = args[2] as i32; 682 let res = if let Some(cmd) = cmd { 683 Self::fcntl(fd, cmd, arg) 684 } else { 685 Err(SystemError::EINVAL) 686 }; 687 688 // debug!("FCNTL: fd: {}, cmd: {:?}, arg: {}, res: {:?}", fd, cmd, arg, res); 689 res 690 } 691 692 SYS_FTRUNCATE => { 693 let fd = args[0] as i32; 694 let len = args[1]; 695 let res = Self::ftruncate(fd, len); 696 // debug!("FTRUNCATE: fd: {}, len: {}, res: {:?}", fd, len, res); 697 res 698 } 699 700 #[cfg(target_arch = "x86_64")] 701 SYS_MKNOD => { 702 let path = args[0]; 703 let flags = args[1]; 704 let dev_t = args[2]; 705 let flags: ModeType = ModeType::from_bits_truncate(flags as u32); 706 Self::mknod( 707 path as *const u8, 708 flags, 709 crate::driver::base::device::device_number::DeviceNumber::from(dev_t as u32), 710 ) 711 } 712 713 SYS_CLONE => { 714 let parent_tid = VirtAddr::new(args[2]); 715 let child_tid = VirtAddr::new(args[3]); 716 717 // 地址校验 718 verify_area(parent_tid, core::mem::size_of::<i32>())?; 719 verify_area(child_tid, core::mem::size_of::<i32>())?; 720 721 let mut clone_args = KernelCloneArgs::new(); 722 clone_args.flags = CloneFlags::from_bits_truncate(args[0] as u64); 723 clone_args.stack = args[1]; 724 clone_args.parent_tid = parent_tid; 725 clone_args.child_tid = child_tid; 726 clone_args.tls = args[4]; 727 Self::clone(frame, clone_args) 728 } 729 730 SYS_FUTEX => { 731 let uaddr = VirtAddr::new(args[0]); 732 let operation = FutexFlag::from_bits(args[1] as u32).ok_or(SystemError::ENOSYS)?; 733 let val = args[2] as u32; 734 let utime = args[3]; 735 let uaddr2 = VirtAddr::new(args[4]); 736 let val3 = args[5] as u32; 737 738 let mut timespec = None; 739 if utime != 0 && operation.contains(FutexFlag::FLAGS_HAS_TIMEOUT) { 740 let reader = UserBufferReader::new( 741 utime as *const PosixTimeSpec, 742 core::mem::size_of::<PosixTimeSpec>(), 743 true, 744 )?; 745 746 timespec = Some(*reader.read_one_from_user::<PosixTimeSpec>(0)?); 747 } 748 749 Self::do_futex(uaddr, operation, val, timespec, uaddr2, utime as u32, val3) 750 } 751 752 SYS_SET_ROBUST_LIST => { 753 let head = args[0]; 754 let head_uaddr = VirtAddr::new(head); 755 let len = args[1]; 756 757 let ret = Self::set_robust_list(head_uaddr, len); 758 return ret; 759 } 760 761 SYS_GET_ROBUST_LIST => { 762 let pid = args[0]; 763 let head = args[1]; 764 let head_uaddr = VirtAddr::new(head); 765 let len_ptr = args[2]; 766 let len_ptr_uaddr = VirtAddr::new(len_ptr); 767 768 let ret = Self::get_robust_list(pid, head_uaddr, len_ptr_uaddr); 769 return ret; 770 } 771 772 SYS_READV => Self::readv(args[0] as i32, args[1], args[2]), 773 SYS_WRITEV => Self::writev(args[0] as i32, args[1], args[2]), 774 775 SYS_SET_TID_ADDRESS => Self::set_tid_address(args[0]), 776 777 #[cfg(target_arch = "x86_64")] 778 SYS_LSTAT => { 779 let path = args[0] as *const u8; 780 let kstat = args[1] as *mut PosixKstat; 781 Self::lstat(path, kstat) 782 } 783 784 #[cfg(target_arch = "x86_64")] 785 SYS_STAT => { 786 let path = args[0] as *const u8; 787 let kstat = args[1] as *mut PosixKstat; 788 Self::stat(path, kstat) 789 } 790 791 SYS_STATFS => { 792 let path = args[0] as *const u8; 793 let statfs = args[1] as *mut PosixStatfs; 794 Self::statfs(path, statfs) 795 } 796 797 SYS_FSTATFS => { 798 let fd = args[0] as i32; 799 let statfs = args[1] as *mut PosixStatfs; 800 Self::fstatfs(fd, statfs) 801 } 802 803 SYS_STATX => { 804 let fd = args[0] as i32; 805 let path = args[1] as *const u8; 806 let flags = args[2] as u32; 807 let mask = args[3] as u32; 808 let kstat = args[4] as *mut PosixStatx; 809 810 Self::do_statx(fd, path, flags, mask, kstat) 811 } 812 813 #[cfg(target_arch = "x86_64")] 814 SYS_EPOLL_CREATE => Self::epoll_create(args[0] as i32), 815 SYS_EPOLL_CREATE1 => Self::epoll_create1(args[0]), 816 817 SYS_EPOLL_CTL => Self::epoll_ctl( 818 args[0] as i32, 819 args[1], 820 args[2] as i32, 821 VirtAddr::new(args[3]), 822 ), 823 824 #[cfg(target_arch = "x86_64")] 825 SYS_EPOLL_WAIT => Self::epoll_wait( 826 args[0] as i32, 827 VirtAddr::new(args[1]), 828 args[2] as i32, 829 args[3] as i32, 830 ), 831 832 SYS_EPOLL_PWAIT => { 833 let epfd = args[0] as i32; 834 let epoll_event = VirtAddr::new(args[1]); 835 let max_events = args[2] as i32; 836 let timespec = args[3] as i32; 837 let sigmask_addr = args[4] as *mut SigSet; 838 839 if sigmask_addr.is_null() { 840 return Self::epoll_wait(epfd, epoll_event, max_events, timespec); 841 } 842 let sigmask_reader = 843 UserBufferReader::new(sigmask_addr, core::mem::size_of::<SigSet>(), true)?; 844 let mut sigmask = *sigmask_reader.read_one_from_user::<SigSet>(0)?; 845 846 Self::epoll_pwait( 847 args[0] as i32, 848 VirtAddr::new(args[1]), 849 args[2] as i32, 850 args[3] as i32, 851 &mut sigmask, 852 ) 853 } 854 855 // 目前为了适配musl-libc,以下系统调用先这样写着 856 SYS_GETRANDOM => { 857 let flags = GRandFlags::from_bits(args[2] as u8).ok_or(SystemError::EINVAL)?; 858 Self::get_random(args[0] as *mut u8, args[1], flags) 859 } 860 861 SYS_SOCKETPAIR => { 862 let mut user_buffer_writer = UserBufferWriter::new( 863 args[3] as *mut c_int, 864 core::mem::size_of::<[c_int; 2]>(), 865 frame.is_from_user(), 866 )?; 867 let fds = user_buffer_writer.buffer::<i32>(0)?; 868 Self::socketpair(args[0], args[1], args[2], fds) 869 } 870 871 #[cfg(target_arch = "x86_64")] 872 SYS_POLL => { 873 warn!("SYS_POLL has not yet been implemented"); 874 Ok(0) 875 } 876 877 SYS_SETPGID => { 878 warn!("SYS_SETPGID has not yet been implemented"); 879 Ok(0) 880 } 881 882 SYS_RT_SIGPROCMASK => { 883 warn!("SYS_RT_SIGPROCMASK has not yet been implemented"); 884 Ok(0) 885 } 886 887 SYS_TKILL => { 888 warn!("SYS_TKILL has not yet been implemented"); 889 Ok(0) 890 } 891 892 SYS_SIGALTSTACK => { 893 warn!("SYS_SIGALTSTACK has not yet been implemented"); 894 Ok(0) 895 } 896 897 SYS_EXIT_GROUP => { 898 warn!("SYS_EXIT_GROUP has not yet been implemented"); 899 Ok(0) 900 } 901 902 SYS_MADVISE => { 903 let addr = args[0]; 904 let len = page_align_up(args[1]); 905 if addr & (MMArch::PAGE_SIZE - 1) != 0 { 906 Err(SystemError::EINVAL) 907 } else { 908 Self::madvise(VirtAddr::new(addr), len, args[2]) 909 } 910 } 911 912 SYS_GETTID => Self::gettid().map(|tid| tid.into()), 913 914 SYS_SYSLOG => { 915 let syslog_action_type = args[0]; 916 let buf_vaddr = args[1]; 917 let len = args[2]; 918 let from_user = frame.is_from_user(); 919 let mut user_buffer_writer = 920 UserBufferWriter::new(buf_vaddr as *mut u8, len, from_user)?; 921 922 let user_buf = user_buffer_writer.buffer(0)?; 923 Self::do_syslog(syslog_action_type, user_buf, len) 924 } 925 926 SYS_GETUID => Self::getuid(), 927 SYS_GETGID => Self::getgid(), 928 SYS_SETUID => Self::setuid(args[0]), 929 SYS_SETGID => Self::setgid(args[0]), 930 931 SYS_GETEUID => Self::geteuid(), 932 SYS_GETEGID => Self::getegid(), 933 SYS_SETRESUID => Self::seteuid(args[1]), 934 SYS_SETRESGID => Self::setegid(args[1]), 935 936 SYS_SETFSUID => Self::setfsuid(args[0]), 937 SYS_SETFSGID => Self::setfsgid(args[0]), 938 939 SYS_SETSID => { 940 warn!("SYS_SETSID has not yet been implemented"); 941 Ok(0) 942 } 943 944 SYS_GETRUSAGE => { 945 let who = args[0] as c_int; 946 let rusage = args[1] as *mut RUsage; 947 Self::get_rusage(who, rusage) 948 } 949 #[cfg(target_arch = "x86_64")] 950 SYS_READLINK => { 951 let path = args[0] as *const u8; 952 let buf = args[1] as *mut u8; 953 let bufsiz = args[2]; 954 Self::readlink(path, buf, bufsiz) 955 } 956 957 SYS_READLINKAT => { 958 let dirfd = args[0] as i32; 959 let path = args[1] as *const u8; 960 let buf = args[2] as *mut u8; 961 let bufsiz = args[3]; 962 Self::readlink_at(dirfd, path, buf, bufsiz) 963 } 964 965 SYS_PRLIMIT64 => { 966 let pid = args[0]; 967 let pid = Pid::new(pid); 968 let resource = args[1]; 969 let new_limit = args[2] as *const RLimit64; 970 let old_limit = args[3] as *mut RLimit64; 971 972 Self::prlimit64(pid, resource, new_limit, old_limit) 973 } 974 975 #[cfg(target_arch = "x86_64")] 976 SYS_ACCESS => { 977 let pathname = args[0] as *const u8; 978 let mode = args[1] as u32; 979 Self::access(pathname, mode) 980 } 981 982 SYS_FACCESSAT => { 983 let dirfd = args[0] as i32; 984 let pathname = args[1] as *const u8; 985 let mode = args[2] as u32; 986 Self::faccessat2(dirfd, pathname, mode, 0) 987 } 988 989 SYS_FACCESSAT2 => { 990 let dirfd = args[0] as i32; 991 let pathname = args[1] as *const u8; 992 let mode = args[2] as u32; 993 let flags = args[3] as u32; 994 Self::faccessat2(dirfd, pathname, mode, flags) 995 } 996 997 SYS_CLOCK_GETTIME => { 998 let clockid = args[0] as i32; 999 let timespec = args[1] as *mut PosixTimeSpec; 1000 Self::clock_gettime(clockid, timespec) 1001 } 1002 1003 SYS_SYSINFO => { 1004 let info = args[0] as *mut SysInfo; 1005 Self::sysinfo(info) 1006 } 1007 1008 SYS_UMASK => { 1009 let mask = args[0] as u32; 1010 Self::umask(mask) 1011 } 1012 1013 SYS_FCHOWN => { 1014 let dirfd = args[0] as i32; 1015 let uid = args[1]; 1016 let gid = args[2]; 1017 Self::fchown(dirfd, uid, gid) 1018 } 1019 #[cfg(target_arch = "x86_64")] 1020 SYS_CHOWN => { 1021 let pathname = args[0] as *const u8; 1022 let uid = args[1]; 1023 let gid = args[2]; 1024 Self::chown(pathname, uid, gid) 1025 } 1026 #[cfg(target_arch = "x86_64")] 1027 SYS_LCHOWN => { 1028 let pathname = args[0] as *const u8; 1029 let uid = args[1]; 1030 let gid = args[2]; 1031 Self::lchown(pathname, uid, gid) 1032 } 1033 SYS_FCHOWNAT => { 1034 let dirfd = args[0] as i32; 1035 let pathname = args[1] as *const u8; 1036 let uid = args[2]; 1037 let gid = args[3]; 1038 let flag = args[4] as i32; 1039 Self::fchownat(dirfd, pathname, uid, gid, flag) 1040 } 1041 1042 SYS_FSYNC => { 1043 warn!("SYS_FSYNC has not yet been implemented"); 1044 Ok(0) 1045 } 1046 1047 SYS_RSEQ => { 1048 warn!("SYS_RSEQ has not yet been implemented"); 1049 Ok(0) 1050 } 1051 1052 #[cfg(target_arch = "x86_64")] 1053 SYS_CHMOD => { 1054 let pathname = args[0] as *const u8; 1055 let mode = args[1] as u32; 1056 Self::chmod(pathname, mode) 1057 } 1058 SYS_FCHMOD => { 1059 let fd = args[0] as i32; 1060 let mode = args[1] as u32; 1061 Self::fchmod(fd, mode) 1062 } 1063 SYS_FCHMODAT => { 1064 let dirfd = args[0] as i32; 1065 let pathname = args[1] as *const u8; 1066 let mode = args[2] as u32; 1067 Self::fchmodat(dirfd, pathname, mode) 1068 } 1069 1070 SYS_SCHED_YIELD => Self::do_sched_yield(), 1071 1072 SYS_SCHED_GETAFFINITY => { 1073 let pid = args[0] as i32; 1074 let size = args[1]; 1075 let set_vaddr = args[2]; 1076 1077 let mut user_buffer_writer = 1078 UserBufferWriter::new(set_vaddr as *mut u8, size, frame.is_from_user())?; 1079 let set: &mut [u8] = user_buffer_writer.buffer(0)?; 1080 1081 Self::getaffinity(pid, set) 1082 } 1083 1084 #[cfg(target_arch = "x86_64")] 1085 SYS_GETRLIMIT => { 1086 let resource = args[0]; 1087 let rlimit = args[1] as *mut RLimit64; 1088 1089 Self::prlimit64( 1090 ProcessManager::current_pcb().pid(), 1091 resource, 1092 core::ptr::null::<RLimit64>(), 1093 rlimit, 1094 ) 1095 } 1096 1097 SYS_FADVISE64 => { 1098 // todo: 这个系统调用还没有实现 1099 1100 Err(SystemError::ENOSYS) 1101 } 1102 1103 SYS_MOUNT => { 1104 let source = args[0] as *const u8; 1105 let target = args[1] as *const u8; 1106 let filesystemtype = args[2] as *const u8; 1107 let mountflags = args[3]; 1108 let data = args[4] as *const u8; // 额外的mount参数,实现自己的mountdata来获取 1109 return Self::mount(source, target, filesystemtype, mountflags, data); 1110 } 1111 1112 SYS_UMOUNT2 => { 1113 let target = args[0] as *const u8; 1114 let flags = args[1] as i32; 1115 Self::umount2(target, flags)?; 1116 return Ok(0); 1117 } 1118 1119 SYS_NEWFSTATAT => { 1120 // todo: 这个系统调用还没有实现 1121 1122 Err(SystemError::ENOSYS) 1123 } 1124 1125 // SYS_SCHED_YIELD => Self::sched_yield(), 1126 SYS_UNAME => { 1127 let name = args[0] as *mut PosixOldUtsName; 1128 Self::uname(name) 1129 } 1130 SYS_PRCTL => { 1131 // todo: 这个系统调用还没有实现 1132 1133 Err(SystemError::EINVAL) 1134 } 1135 1136 #[cfg(target_arch = "x86_64")] 1137 SYS_ALARM => { 1138 let second = args[0] as u32; 1139 Self::alarm(second) 1140 } 1141 1142 SYS_SHMGET => { 1143 let key = ShmKey::new(args[0]); 1144 let size = args[1]; 1145 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32); 1146 1147 Self::shmget(key, size, shmflg) 1148 } 1149 SYS_SHMAT => { 1150 let id = ShmId::new(args[0]); 1151 let vaddr = VirtAddr::new(args[1]); 1152 let shmflg = ShmFlags::from_bits_truncate(args[2] as u32); 1153 1154 Self::shmat(id, vaddr, shmflg) 1155 } 1156 SYS_SHMDT => { 1157 let vaddr = VirtAddr::new(args[0]); 1158 Self::shmdt(vaddr) 1159 } 1160 SYS_SHMCTL => { 1161 let id = ShmId::new(args[0]); 1162 let cmd = ShmCtlCmd::from(args[1]); 1163 let user_buf = args[2] as *const u8; 1164 let from_user = frame.is_from_user(); 1165 1166 Self::shmctl(id, cmd, user_buf, from_user) 1167 } 1168 SYS_MSYNC => { 1169 let start = page_align_up(args[0]); 1170 let len = page_align_up(args[1]); 1171 let flags = args[2]; 1172 Self::msync(VirtAddr::new(start), len, flags) 1173 } 1174 SYS_UTIMENSAT => Self::sys_utimensat( 1175 args[0] as i32, 1176 args[1] as *const u8, 1177 args[2] as *const PosixTimeSpec, 1178 args[3] as u32, 1179 ), 1180 #[cfg(target_arch = "x86_64")] 1181 SYS_FUTIMESAT => { 1182 let flags = UtimensFlags::empty(); 1183 Self::sys_utimensat( 1184 args[0] as i32, 1185 args[1] as *const u8, 1186 args[2] as *const PosixTimeSpec, 1187 flags.bits(), 1188 ) 1189 } 1190 #[cfg(target_arch = "x86_64")] 1191 SYS_UTIMES => Self::sys_utimes(args[0] as *const u8, args[1] as *const PosixTimeval), 1192 #[cfg(target_arch = "x86_64")] 1193 SYS_EVENTFD => { 1194 let initval = args[0] as u32; 1195 Self::sys_eventfd(initval, 0) 1196 } 1197 SYS_EVENTFD2 => { 1198 let initval = args[0] as u32; 1199 let flags = args[1] as u32; 1200 Self::sys_eventfd(initval, flags) 1201 } 1202 SYS_UNSHARE => Self::sys_unshare(args[0] as u64), 1203 SYS_BPF => { 1204 let cmd = args[0] as u32; 1205 let attr = args[1] as *mut u8; 1206 let size = args[2] as u32; 1207 Self::sys_bpf(cmd, attr, size) 1208 } 1209 SYS_PERF_EVENT_OPEN => { 1210 let attr = args[0] as *const u8; 1211 let pid = args[1] as i32; 1212 let cpu = args[2] as i32; 1213 let group_fd = args[3] as i32; 1214 let flags = args[4] as u32; 1215 Self::sys_perf_event_open(attr, pid, cpu, group_fd, flags) 1216 } 1217 _ => panic!("Unsupported syscall ID: {}", syscall_num), 1218 }; 1219 1220 if ProcessManager::current_pcb() 1221 .flags() 1222 .contains(ProcessFlags::NEED_SCHEDULE) 1223 { 1224 schedule(SchedMode::SM_PREEMPT); 1225 } 1226 1227 return r; 1228 } 1229 1230 pub fn put_string( 1231 s: *const u8, 1232 front_color: u32, 1233 back_color: u32, 1234 ) -> Result<usize, SystemError> { 1235 // todo: 删除这个系统调用 1236 let s = check_and_clone_cstr(s, Some(4096))? 1237 .into_string() 1238 .map_err(|_| SystemError::EINVAL)?; 1239 let fr = (front_color & 0x00ff0000) >> 16; 1240 let fg = (front_color & 0x0000ff00) >> 8; 1241 let fb = front_color & 0x000000ff; 1242 let br = (back_color & 0x00ff0000) >> 16; 1243 let bg = (back_color & 0x0000ff00) >> 8; 1244 let bb = back_color & 0x000000ff; 1245 print!("\x1B[38;2;{fr};{fg};{fb};48;2;{br};{bg};{bb}m{s}\x1B[0m"); 1246 return Ok(s.len()); 1247 } 1248 1249 pub fn reboot() -> Result<usize, SystemError> { 1250 unsafe { cpu_reset() }; 1251 } 1252 } 1253