1 use core::{ 2 fmt, 3 hash::Hash, 4 hint::spin_loop, 5 intrinsics::{likely, unlikely}, 6 mem::ManuallyDrop, 7 sync::atomic::{compiler_fence, fence, AtomicBool, AtomicUsize, Ordering}, 8 }; 9 10 use alloc::{ 11 ffi::CString, 12 string::{String, ToString}, 13 sync::{Arc, Weak}, 14 vec::Vec, 15 }; 16 use cred::INIT_CRED; 17 use hashbrown::HashMap; 18 use log::{debug, error, info, warn}; 19 use system_error::SystemError; 20 21 use crate::{ 22 arch::{ 23 cpu::current_cpu_id, 24 ipc::signal::{AtomicSignal, SigSet, Signal}, 25 process::ArchPCBInfo, 26 CurrentIrqArch, 27 }, 28 driver::tty::tty_core::TtyCore, 29 exception::InterruptArch, 30 filesystem::{ 31 procfs::procfs_unregister_pid, 32 vfs::{file::FileDescriptorVec, FileType}, 33 }, 34 ipc::signal_types::{SigInfo, SigPending, SignalStruct}, 35 libs::{ 36 align::AlignedBox, 37 casting::DowncastArc, 38 futex::{ 39 constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY}, 40 futex::{Futex, RobustListHead}, 41 }, 42 lock_free_flags::LockFreeFlags, 43 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 44 spinlock::{SpinLock, SpinLockGuard}, 45 wait_queue::WaitQueue, 46 }, 47 mm::{ 48 percpu::{PerCpu, PerCpuVar}, 49 set_IDLE_PROCESS_ADDRESS_SPACE, 50 ucontext::AddressSpace, 51 VirtAddr, 52 }, 53 net::socket::SocketInode, 54 sched::completion::Completion, 55 sched::{ 56 cpu_rq, fair::FairSchedEntity, prio::MAX_PRIO, DequeueFlag, EnqueueFlag, OnRq, SchedMode, 57 WakeupFlags, __schedule, 58 }, 59 smp::{ 60 core::smp_get_processor_id, 61 cpu::{AtomicProcessorId, ProcessorId}, 62 kick_cpu, 63 }, 64 syscall::{user_access::clear_user, Syscall}, 65 }; 66 use timer::AlarmTimer; 67 68 use self::{cred::Cred, kthread::WorkerPrivate}; 69 70 pub mod abi; 71 pub mod c_adapter; 72 pub mod cred; 73 pub mod exec; 74 pub mod exit; 75 pub mod fork; 76 pub mod idle; 77 pub mod kthread; 78 pub mod pid; 79 pub mod resource; 80 pub mod stdio; 81 pub mod syscall; 82 pub mod timer; 83 pub mod utils; 84 85 /// 系统中所有进程的pcb 86 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None); 87 88 pub static mut PROCESS_SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None; 89 90 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成 91 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false; 92 93 #[derive(Debug)] 94 pub struct SwitchResult { 95 pub prev_pcb: Option<Arc<ProcessControlBlock>>, 96 pub next_pcb: Option<Arc<ProcessControlBlock>>, 97 } 98 99 impl SwitchResult { 100 pub fn new() -> Self { 101 Self { 102 prev_pcb: None, 103 next_pcb: None, 104 } 105 } 106 } 107 108 #[derive(Debug)] 109 pub struct ProcessManager; 110 impl ProcessManager { 111 #[inline(never)] 112 fn init() { 113 static INIT_FLAG: AtomicBool = AtomicBool::new(false); 114 if INIT_FLAG 115 .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) 116 .is_err() 117 { 118 panic!("ProcessManager has been initialized!"); 119 } 120 121 unsafe { 122 compiler_fence(Ordering::SeqCst); 123 debug!("To create address space for INIT process."); 124 // test_buddy(); 125 set_IDLE_PROCESS_ADDRESS_SPACE( 126 AddressSpace::new(true).expect("Failed to create address space for INIT process."), 127 ); 128 debug!("INIT process address space created."); 129 compiler_fence(Ordering::SeqCst); 130 }; 131 132 ALL_PROCESS.lock_irqsave().replace(HashMap::new()); 133 Self::init_switch_result(); 134 Self::arch_init(); 135 debug!("process arch init done."); 136 Self::init_idle(); 137 debug!("process idle init done."); 138 139 unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true }; 140 info!("Process Manager initialized."); 141 } 142 143 fn init_switch_result() { 144 let mut switch_res_vec: Vec<SwitchResult> = Vec::new(); 145 for _ in 0..PerCpu::MAX_CPU_NUM { 146 switch_res_vec.push(SwitchResult::new()); 147 } 148 unsafe { 149 PROCESS_SWITCH_RESULT = Some(PerCpuVar::new(switch_res_vec).unwrap()); 150 } 151 } 152 153 /// 判断进程管理器是否已经初始化完成 154 #[allow(dead_code)] 155 pub fn initialized() -> bool { 156 unsafe { __PROCESS_MANAGEMENT_INIT_DONE } 157 } 158 159 /// 获取当前进程的pcb 160 pub fn current_pcb() -> Arc<ProcessControlBlock> { 161 if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) { 162 error!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false"); 163 loop { 164 spin_loop(); 165 } 166 } 167 return ProcessControlBlock::arch_current_pcb(); 168 } 169 170 /// 获取当前进程的pid 171 /// 172 /// 如果进程管理器未初始化完成,那么返回0 173 pub fn current_pid() -> Pid { 174 if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) { 175 return Pid(0); 176 } 177 178 return ProcessManager::current_pcb().pid(); 179 } 180 181 /// 增加当前进程的锁持有计数 182 #[inline(always)] 183 pub fn preempt_disable() { 184 if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { 185 ProcessManager::current_pcb().preempt_disable(); 186 } 187 } 188 189 /// 减少当前进程的锁持有计数 190 #[inline(always)] 191 pub fn preempt_enable() { 192 if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { 193 ProcessManager::current_pcb().preempt_enable(); 194 } 195 } 196 197 /// 根据pid获取进程的pcb 198 /// 199 /// ## 参数 200 /// 201 /// - `pid` : 进程的pid 202 /// 203 /// ## 返回值 204 /// 205 /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None 206 pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> { 207 return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned(); 208 } 209 210 /// 向系统中添加一个进程的pcb 211 /// 212 /// ## 参数 213 /// 214 /// - `pcb` : 进程的pcb 215 /// 216 /// ## 返回值 217 /// 218 /// 无 219 pub fn add_pcb(pcb: Arc<ProcessControlBlock>) { 220 ALL_PROCESS 221 .lock_irqsave() 222 .as_mut() 223 .unwrap() 224 .insert(pcb.pid(), pcb.clone()); 225 } 226 227 /// 唤醒一个进程 228 pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> { 229 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 230 let state = pcb.sched_info().inner_lock_read_irqsave().state(); 231 if state.is_blocked() { 232 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 233 let state = writer.state(); 234 if state.is_blocked() { 235 writer.set_state(ProcessState::Runnable); 236 writer.set_wakeup(); 237 238 // avoid deadlock 239 drop(writer); 240 241 let rq = 242 cpu_rq(pcb.sched_info().on_cpu().unwrap_or(current_cpu_id()).data() as usize); 243 244 let (rq, _guard) = rq.self_lock(); 245 rq.update_rq_clock(); 246 rq.activate_task( 247 pcb, 248 EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK, 249 ); 250 251 rq.check_preempt_currnet(pcb, WakeupFlags::empty()); 252 253 // sched_enqueue(pcb.clone(), true); 254 return Ok(()); 255 } else if state.is_exited() { 256 return Err(SystemError::EINVAL); 257 } else { 258 return Ok(()); 259 } 260 } else if state.is_exited() { 261 return Err(SystemError::EINVAL); 262 } else { 263 return Ok(()); 264 } 265 } 266 267 /// 唤醒暂停的进程 268 pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> { 269 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 270 let state = pcb.sched_info().inner_lock_read_irqsave().state(); 271 if let ProcessState::Stopped = state { 272 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 273 let state = writer.state(); 274 if let ProcessState::Stopped = state { 275 writer.set_state(ProcessState::Runnable); 276 // avoid deadlock 277 drop(writer); 278 279 let rq = cpu_rq(pcb.sched_info().on_cpu().unwrap().data() as usize); 280 281 let (rq, _guard) = rq.self_lock(); 282 rq.update_rq_clock(); 283 rq.activate_task( 284 pcb, 285 EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK, 286 ); 287 288 rq.check_preempt_currnet(pcb, WakeupFlags::empty()); 289 290 // sched_enqueue(pcb.clone(), true); 291 return Ok(()); 292 } else if state.is_runnable() { 293 return Ok(()); 294 } else { 295 return Err(SystemError::EINVAL); 296 } 297 } else if state.is_runnable() { 298 return Ok(()); 299 } else { 300 return Err(SystemError::EINVAL); 301 } 302 } 303 304 /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成 305 /// 306 /// ## 注意 307 /// 308 /// - 进入当前函数之前,不能持有sched_info的锁 309 /// - 进入当前函数之前,必须关闭中断 310 /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列 311 pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> { 312 assert!( 313 !CurrentIrqArch::is_irq_enabled(), 314 "interrupt must be disabled before enter ProcessManager::mark_sleep()" 315 ); 316 let pcb = ProcessManager::current_pcb(); 317 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 318 if !matches!(writer.state(), ProcessState::Exited(_)) { 319 writer.set_state(ProcessState::Blocked(interruptable)); 320 writer.set_sleep(); 321 pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); 322 fence(Ordering::SeqCst); 323 drop(writer); 324 return Ok(()); 325 } 326 return Err(SystemError::EINTR); 327 } 328 329 /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成 330 /// 331 /// ## 注意 332 /// 333 /// - 进入当前函数之前,不能持有sched_info的锁 334 /// - 进入当前函数之前,必须关闭中断 335 pub fn mark_stop() -> Result<(), SystemError> { 336 assert!( 337 !CurrentIrqArch::is_irq_enabled(), 338 "interrupt must be disabled before enter ProcessManager::mark_stop()" 339 ); 340 341 let pcb = ProcessManager::current_pcb(); 342 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 343 if !matches!(writer.state(), ProcessState::Exited(_)) { 344 writer.set_state(ProcessState::Stopped); 345 pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); 346 drop(writer); 347 348 return Ok(()); 349 } 350 return Err(SystemError::EINTR); 351 } 352 /// 当子进程退出后向父进程发送通知 353 fn exit_notify() { 354 let current = ProcessManager::current_pcb(); 355 // 让INIT进程收养所有子进程 356 if current.pid() != Pid(1) { 357 unsafe { 358 current 359 .adopt_childen() 360 .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}")) 361 }; 362 let r = current.parent_pcb.read_irqsave().upgrade(); 363 if r.is_none() { 364 return; 365 } 366 let parent_pcb = r.unwrap(); 367 let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32); 368 if r.is_err() { 369 warn!( 370 "failed to send kill signal to {:?}'s parent pcb {:?}", 371 current.pid(), 372 parent_pcb.pid() 373 ); 374 } 375 // todo: 这里需要向父进程发送SIGCHLD信号 376 // todo: 这里还需要根据线程组的信息,决定信号的发送 377 } 378 } 379 380 /// 退出当前进程 381 /// 382 /// ## 参数 383 /// 384 /// - `exit_code` : 进程的退出码 385 pub fn exit(exit_code: usize) -> ! { 386 // 关中断 387 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 388 let pcb = ProcessManager::current_pcb(); 389 let pid = pcb.pid(); 390 pcb.sched_info 391 .inner_lock_write_irqsave() 392 .set_state(ProcessState::Exited(exit_code)); 393 pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true))); 394 395 let rq = cpu_rq(smp_get_processor_id().data() as usize); 396 let (rq, guard) = rq.self_lock(); 397 rq.deactivate_task( 398 pcb.clone(), 399 DequeueFlag::DEQUEUE_SLEEP | DequeueFlag::DEQUEUE_NOCLOCK, 400 ); 401 drop(guard); 402 403 // 进行进程退出后的工作 404 let thread = pcb.thread.write_irqsave(); 405 if let Some(addr) = thread.set_child_tid { 406 unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") }; 407 } 408 409 if let Some(addr) = thread.clear_child_tid { 410 if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 { 411 let _ = 412 Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY); 413 } 414 unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") }; 415 } 416 417 RobustListHead::exit_robust_list(pcb.clone()); 418 419 // 如果是vfork出来的进程,则需要处理completion 420 if thread.vfork_done.is_some() { 421 thread.vfork_done.as_ref().unwrap().complete_all(); 422 } 423 drop(thread); 424 unsafe { pcb.basic_mut().set_user_vm(None) }; 425 426 // TODO 由于未实现进程组,tty记录的前台进程组等于当前进程,故退出前要置空 427 // 后续相关逻辑需要在SYS_EXIT_GROUP系统调用中实现 428 pcb.sig_info_irqsave() 429 .tty() 430 .unwrap() 431 .core() 432 .contorl_info_irqsave() 433 .pgid = None; 434 pcb.sig_info_mut().set_tty(None); 435 436 drop(pcb); 437 ProcessManager::exit_notify(); 438 // unsafe { CurrentIrqArch::interrupt_enable() }; 439 __schedule(SchedMode::SM_NONE); 440 error!("pid {pid:?} exited but sched again!"); 441 #[allow(clippy::empty_loop)] 442 loop { 443 spin_loop(); 444 } 445 } 446 447 pub unsafe fn release(pid: Pid) { 448 let pcb = ProcessManager::find(pid); 449 if pcb.is_some() { 450 // let pcb = pcb.unwrap(); 451 // 判断该pcb是否在全局没有任何引用 452 // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。 453 // 因此目前暂时注释掉,使得能跑 454 // if Arc::strong_count(&pcb) <= 2 { 455 // drop(pcb); 456 // ALL_PROCESS.lock().as_mut().unwrap().remove(&pid); 457 // } else { 458 // // 如果不为1就panic 459 // let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(), Arc::strong_count(&pcb)); 460 // error!("{}", msg); 461 // panic!() 462 // } 463 464 ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid); 465 } 466 } 467 468 /// 上下文切换完成后的钩子函数 469 unsafe fn switch_finish_hook() { 470 // debug!("switch_finish_hook"); 471 let prev_pcb = PROCESS_SWITCH_RESULT 472 .as_mut() 473 .unwrap() 474 .get_mut() 475 .prev_pcb 476 .take() 477 .expect("prev_pcb is None"); 478 let next_pcb = PROCESS_SWITCH_RESULT 479 .as_mut() 480 .unwrap() 481 .get_mut() 482 .next_pcb 483 .take() 484 .expect("next_pcb is None"); 485 486 // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁 487 fence(Ordering::SeqCst); 488 489 prev_pcb.arch_info.force_unlock(); 490 fence(Ordering::SeqCst); 491 492 next_pcb.arch_info.force_unlock(); 493 fence(Ordering::SeqCst); 494 } 495 496 /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态 497 /// 498 /// ## 参数 499 /// 500 /// - `pcb` : 进程的pcb 501 #[allow(dead_code)] 502 pub fn kick(pcb: &Arc<ProcessControlBlock>) { 503 ProcessManager::current_pcb().preempt_disable(); 504 let cpu_id = pcb.sched_info().on_cpu(); 505 506 if let Some(cpu_id) = cpu_id { 507 if pcb.pid() == cpu_rq(cpu_id.data() as usize).current().pid() { 508 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu"); 509 } 510 } 511 512 ProcessManager::current_pcb().preempt_enable(); 513 } 514 } 515 516 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换 517 #[cfg(target_arch = "x86_64")] 518 #[inline(never)] 519 pub unsafe extern "sysv64" fn switch_finish_hook() { 520 ProcessManager::switch_finish_hook(); 521 } 522 #[cfg(target_arch = "riscv64")] 523 #[inline(always)] 524 pub unsafe fn switch_finish_hook() { 525 ProcessManager::switch_finish_hook(); 526 } 527 528 int_like!(Pid, AtomicPid, usize, AtomicUsize); 529 530 impl fmt::Display for Pid { 531 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 532 write!(f, "{}", self.0) 533 } 534 } 535 536 #[derive(Debug, Clone, Copy, PartialEq, Eq)] 537 pub enum ProcessState { 538 /// The process is running on a CPU or in a run queue. 539 Runnable, 540 /// The process is waiting for an event to occur. 541 /// 其中的bool表示该等待过程是否可以被打断。 542 /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。 543 /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。 544 Blocked(bool), 545 /// 进程被信号终止 546 Stopped, 547 /// 进程已经退出,usize表示进程的退出码 548 Exited(usize), 549 } 550 551 #[allow(dead_code)] 552 impl ProcessState { 553 #[inline(always)] 554 pub fn is_runnable(&self) -> bool { 555 return matches!(self, ProcessState::Runnable); 556 } 557 558 #[inline(always)] 559 pub fn is_blocked(&self) -> bool { 560 return matches!(self, ProcessState::Blocked(_)); 561 } 562 563 #[inline(always)] 564 pub fn is_blocked_interruptable(&self) -> bool { 565 return matches!(self, ProcessState::Blocked(true)); 566 } 567 568 /// Returns `true` if the process state is [`Exited`]. 569 #[inline(always)] 570 pub fn is_exited(&self) -> bool { 571 return matches!(self, ProcessState::Exited(_)); 572 } 573 574 /// Returns `true` if the process state is [`Stopped`]. 575 /// 576 /// [`Stopped`]: ProcessState::Stopped 577 #[inline(always)] 578 pub fn is_stopped(&self) -> bool { 579 matches!(self, ProcessState::Stopped) 580 } 581 582 /// Returns exit code if the process state is [`Exited`]. 583 #[inline(always)] 584 pub fn exit_code(&self) -> Option<usize> { 585 match self { 586 ProcessState::Exited(code) => Some(*code), 587 _ => None, 588 } 589 } 590 } 591 592 bitflags! { 593 /// pcb的标志位 594 pub struct ProcessFlags: usize { 595 /// 当前pcb表示一个内核线程 596 const KTHREAD = 1 << 0; 597 /// 当前进程需要被调度 598 const NEED_SCHEDULE = 1 << 1; 599 /// 进程由于vfork而与父进程存在资源共享 600 const VFORK = 1 << 2; 601 /// 进程不可被冻结 602 const NOFREEZE = 1 << 3; 603 /// 进程正在退出 604 const EXITING = 1 << 4; 605 /// 进程由于接收到终止信号唤醒 606 const WAKEKILL = 1 << 5; 607 /// 进程由于接收到信号而退出.(Killed by a signal) 608 const SIGNALED = 1 << 6; 609 /// 进程需要迁移到其他cpu上 610 const NEED_MIGRATE = 1 << 7; 611 /// 随机化的虚拟地址空间,主要用于动态链接器的加载 612 const RANDOMIZE = 1 << 8; 613 } 614 } 615 616 #[derive(Debug)] 617 pub struct ProcessControlBlock { 618 /// 当前进程的pid 619 pid: Pid, 620 /// 当前进程的线程组id(这个值在同一个线程组内永远不变) 621 tgid: Pid, 622 623 basic: RwLock<ProcessBasicInfo>, 624 /// 当前进程的自旋锁持有计数 625 preempt_count: AtomicUsize, 626 627 flags: LockFreeFlags<ProcessFlags>, 628 worker_private: SpinLock<Option<WorkerPrivate>>, 629 /// 进程的内核栈 630 kernel_stack: RwLock<KernelStack>, 631 632 /// 系统调用栈 633 syscall_stack: RwLock<KernelStack>, 634 635 /// 与调度相关的信息 636 sched_info: ProcessSchedulerInfo, 637 /// 与处理器架构相关的信息 638 arch_info: SpinLock<ArchPCBInfo>, 639 /// 与信号处理相关的信息(似乎可以是无锁的) 640 sig_info: RwLock<ProcessSignalInfo>, 641 /// 信号处理结构体 642 sig_struct: SpinLock<SignalStruct>, 643 /// 退出信号S 644 exit_signal: AtomicSignal, 645 646 /// 父进程指针 647 parent_pcb: RwLock<Weak<ProcessControlBlock>>, 648 /// 真实父进程指针 649 real_parent_pcb: RwLock<Weak<ProcessControlBlock>>, 650 651 /// 子进程链表 652 children: RwLock<Vec<Pid>>, 653 654 /// 等待队列 655 wait_queue: WaitQueue, 656 657 /// 线程信息 658 thread: RwLock<ThreadInfo>, 659 660 ///闹钟定时器 661 alarm_timer: SpinLock<Option<AlarmTimer>>, 662 663 /// 进程的robust lock列表 664 robust_list: RwLock<Option<RobustListHead>>, 665 666 /// 进程作为主体的凭证集 667 cred: SpinLock<Cred>, 668 } 669 670 impl ProcessControlBlock { 671 /// Generate a new pcb. 672 /// 673 /// ## 参数 674 /// 675 /// - `name` : 进程的名字 676 /// - `kstack` : 进程的内核栈 677 /// 678 /// ## 返回值 679 /// 680 /// 返回一个新的pcb 681 pub fn new(name: String, kstack: KernelStack) -> Arc<Self> { 682 return Self::do_create_pcb(name, kstack, false); 683 } 684 685 /// 创建一个新的idle进程 686 /// 687 /// 请注意,这个函数只能在进程管理初始化的时候调用。 688 pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> { 689 let name = format!("idle-{}", cpu_id); 690 return Self::do_create_pcb(name, kstack, true); 691 } 692 693 /// # 函数的功能 694 /// 695 /// 返回此函数是否是内核进程 696 /// 697 /// # 返回值 698 /// 699 /// 若进程是内核进程则返回true 否则返回false 700 pub fn is_kthread(&self) -> bool { 701 return matches!(self.flags(), &mut ProcessFlags::KTHREAD); 702 } 703 704 #[inline(never)] 705 fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> { 706 let (pid, ppid, cwd, cred) = if is_idle { 707 let cred = INIT_CRED.clone(); 708 (Pid(0), Pid(0), "/".to_string(), cred) 709 } else { 710 let ppid = ProcessManager::current_pcb().pid(); 711 let mut cred = ProcessManager::current_pcb().cred(); 712 cred.cap_permitted = cred.cap_ambient; 713 cred.cap_effective = cred.cap_ambient; 714 let cwd = ProcessManager::current_pcb().basic().cwd(); 715 (Self::generate_pid(), ppid, cwd, cred) 716 }; 717 718 let basic_info = ProcessBasicInfo::new(Pid(0), ppid, Pid(0), name, cwd, None); 719 let preempt_count = AtomicUsize::new(0); 720 let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) }; 721 722 let sched_info = ProcessSchedulerInfo::new(None); 723 let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack)); 724 725 let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid) 726 .map(|p| Arc::downgrade(&p)) 727 .unwrap_or_default(); 728 729 let pcb = Self { 730 pid, 731 tgid: pid, 732 basic: basic_info, 733 preempt_count, 734 flags, 735 kernel_stack: RwLock::new(kstack), 736 syscall_stack: RwLock::new(KernelStack::new().unwrap()), 737 worker_private: SpinLock::new(None), 738 sched_info, 739 arch_info, 740 sig_info: RwLock::new(ProcessSignalInfo::default()), 741 sig_struct: SpinLock::new(SignalStruct::new()), 742 exit_signal: AtomicSignal::new(Signal::SIGCHLD), 743 parent_pcb: RwLock::new(ppcb.clone()), 744 real_parent_pcb: RwLock::new(ppcb), 745 children: RwLock::new(Vec::new()), 746 wait_queue: WaitQueue::default(), 747 thread: RwLock::new(ThreadInfo::new()), 748 alarm_timer: SpinLock::new(None), 749 robust_list: RwLock::new(None), 750 cred: SpinLock::new(cred), 751 }; 752 753 // 初始化系统调用栈 754 #[cfg(target_arch = "x86_64")] 755 pcb.arch_info 756 .lock() 757 .init_syscall_stack(&pcb.syscall_stack.read()); 758 759 let pcb = Arc::new(pcb); 760 761 pcb.sched_info() 762 .sched_entity() 763 .force_mut() 764 .set_pcb(Arc::downgrade(&pcb)); 765 // 设置进程的arc指针到内核栈和系统调用栈的最低地址处 766 unsafe { 767 pcb.kernel_stack 768 .write() 769 .set_pcb(Arc::downgrade(&pcb)) 770 .unwrap(); 771 772 pcb.syscall_stack 773 .write() 774 .set_pcb(Arc::downgrade(&pcb)) 775 .unwrap() 776 }; 777 778 // 将当前pcb加入父进程的子进程哈希表中 779 if pcb.pid() > Pid(1) { 780 if let Some(ppcb_arc) = pcb.parent_pcb.read_irqsave().upgrade() { 781 let mut children = ppcb_arc.children.write_irqsave(); 782 children.push(pcb.pid()); 783 } else { 784 panic!("parent pcb is None"); 785 } 786 } 787 788 return pcb; 789 } 790 791 /// 生成一个新的pid 792 #[inline(always)] 793 fn generate_pid() -> Pid { 794 static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1)); 795 return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst); 796 } 797 798 /// 返回当前进程的锁持有计数 799 #[inline(always)] 800 pub fn preempt_count(&self) -> usize { 801 return self.preempt_count.load(Ordering::SeqCst); 802 } 803 804 /// 增加当前进程的锁持有计数 805 #[inline(always)] 806 pub fn preempt_disable(&self) { 807 self.preempt_count.fetch_add(1, Ordering::SeqCst); 808 } 809 810 /// 减少当前进程的锁持有计数 811 #[inline(always)] 812 pub fn preempt_enable(&self) { 813 self.preempt_count.fetch_sub(1, Ordering::SeqCst); 814 } 815 816 #[inline(always)] 817 pub unsafe fn set_preempt_count(&self, count: usize) { 818 self.preempt_count.store(count, Ordering::SeqCst); 819 } 820 821 #[inline(always)] 822 pub fn flags(&self) -> &mut ProcessFlags { 823 return self.flags.get_mut(); 824 } 825 826 /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改 827 /// 否则会导致死锁 828 #[inline(always)] 829 pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> { 830 return self.basic.read_irqsave(); 831 } 832 833 #[inline(always)] 834 pub fn set_name(&self, name: String) { 835 self.basic.write().set_name(name); 836 } 837 838 #[inline(always)] 839 pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> { 840 return self.basic.write_irqsave(); 841 } 842 843 /// # 获取arch info的锁,同时关闭中断 844 #[inline(always)] 845 pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> { 846 return self.arch_info.lock_irqsave(); 847 } 848 849 /// # 获取arch info的锁,但是不关闭中断 850 /// 851 /// 由于arch info在进程切换的时候会使用到, 852 /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的. 853 /// 854 /// 只能在以下情况下使用这个函数: 855 /// - 在中断上下文中(中断已经禁用),获取arch info的锁。 856 /// - 刚刚创建新的pcb 857 #[inline(always)] 858 pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> { 859 return self.arch_info.lock(); 860 } 861 862 #[inline(always)] 863 pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> { 864 return self.kernel_stack.read(); 865 } 866 867 pub unsafe fn kernel_stack_force_ref(&self) -> &KernelStack { 868 self.kernel_stack.force_get_ref() 869 } 870 871 #[inline(always)] 872 #[allow(dead_code)] 873 pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> { 874 return self.kernel_stack.write(); 875 } 876 877 #[inline(always)] 878 pub fn sched_info(&self) -> &ProcessSchedulerInfo { 879 return &self.sched_info; 880 } 881 882 #[inline(always)] 883 pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> { 884 return self.worker_private.lock(); 885 } 886 887 #[inline(always)] 888 pub fn pid(&self) -> Pid { 889 return self.pid; 890 } 891 892 #[inline(always)] 893 pub fn tgid(&self) -> Pid { 894 return self.tgid; 895 } 896 897 /// 获取文件描述符表的Arc指针 898 #[inline(always)] 899 pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> { 900 return self.basic.read().fd_table().unwrap(); 901 } 902 903 #[inline(always)] 904 pub fn cred(&self) -> Cred { 905 self.cred.lock().clone() 906 } 907 908 /// 根据文件描述符序号,获取socket对象的Arc指针 909 /// 910 /// ## 参数 911 /// 912 /// - `fd` 文件描述符序号 913 /// 914 /// ## 返回值 915 /// 916 /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None 917 pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> { 918 let binding = ProcessManager::current_pcb().fd_table(); 919 let fd_table_guard = binding.read(); 920 921 let f = fd_table_guard.get_file_by_fd(fd)?; 922 drop(fd_table_guard); 923 924 if f.file_type() != FileType::Socket { 925 return None; 926 } 927 let socket: Arc<SocketInode> = f 928 .inode() 929 .downcast_arc::<SocketInode>() 930 .expect("Not a socket inode"); 931 return Some(socket); 932 } 933 934 /// 当前进程退出时,让初始进程收养所有子进程 935 unsafe fn adopt_childen(&self) -> Result<(), SystemError> { 936 match ProcessManager::find(Pid(1)) { 937 Some(init_pcb) => { 938 let childen_guard = self.children.write(); 939 let mut init_childen_guard = init_pcb.children.write(); 940 941 childen_guard.iter().for_each(|pid| { 942 init_childen_guard.push(*pid); 943 }); 944 945 return Ok(()); 946 } 947 _ => Err(SystemError::ECHILD), 948 } 949 } 950 951 /// 生成进程的名字 952 pub fn generate_name(program_path: &str, args: &Vec<CString>) -> String { 953 let mut name = program_path.to_string(); 954 for arg in args { 955 name.push(' '); 956 name.push_str(arg.to_string_lossy().as_ref()); 957 } 958 return name; 959 } 960 961 pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> { 962 self.sig_info.read_irqsave() 963 } 964 965 pub fn try_siginfo_irqsave(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> { 966 for _ in 0..times { 967 if let Some(r) = self.sig_info.try_read_irqsave() { 968 return Some(r); 969 } 970 } 971 972 return None; 973 } 974 975 pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> { 976 self.sig_info.write_irqsave() 977 } 978 979 pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> { 980 for _ in 0..times { 981 if let Some(r) = self.sig_info.try_write_irqsave() { 982 return Some(r); 983 } 984 } 985 986 return None; 987 } 988 989 /// 判断当前进程是否有未处理的信号 990 pub fn has_pending_signal(&self) -> bool { 991 let sig_info = self.sig_info_irqsave(); 992 let has_pending = sig_info.sig_pending().has_pending(); 993 drop(sig_info); 994 return has_pending; 995 } 996 997 pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> { 998 self.sig_struct.lock_irqsave() 999 } 1000 1001 pub fn try_sig_struct_irqsave(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> { 1002 for _ in 0..times { 1003 if let Ok(r) = self.sig_struct.try_lock_irqsave() { 1004 return Some(r); 1005 } 1006 } 1007 1008 return None; 1009 } 1010 1011 pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> { 1012 self.sig_struct.lock_irqsave() 1013 } 1014 1015 #[inline(always)] 1016 pub fn get_robust_list(&self) -> RwLockReadGuard<Option<RobustListHead>> { 1017 return self.robust_list.read_irqsave(); 1018 } 1019 1020 #[inline(always)] 1021 pub fn set_robust_list(&self, new_robust_list: Option<RobustListHead>) { 1022 *self.robust_list.write_irqsave() = new_robust_list; 1023 } 1024 1025 pub fn alarm_timer_irqsave(&self) -> SpinLockGuard<Option<AlarmTimer>> { 1026 return self.alarm_timer.lock_irqsave(); 1027 } 1028 } 1029 1030 impl Drop for ProcessControlBlock { 1031 fn drop(&mut self) { 1032 let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 1033 // 在ProcFS中,解除进程的注册 1034 procfs_unregister_pid(self.pid()) 1035 .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}")); 1036 1037 if let Some(ppcb) = self.parent_pcb.read_irqsave().upgrade() { 1038 ppcb.children 1039 .write_irqsave() 1040 .retain(|pid| *pid != self.pid()); 1041 } 1042 1043 drop(irq_guard); 1044 } 1045 } 1046 1047 /// 线程信息 1048 #[derive(Debug)] 1049 pub struct ThreadInfo { 1050 // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程 1051 clear_child_tid: Option<VirtAddr>, 1052 set_child_tid: Option<VirtAddr>, 1053 1054 vfork_done: Option<Arc<Completion>>, 1055 /// 线程组的组长 1056 group_leader: Weak<ProcessControlBlock>, 1057 } 1058 1059 impl ThreadInfo { 1060 pub fn new() -> Self { 1061 Self { 1062 clear_child_tid: None, 1063 set_child_tid: None, 1064 vfork_done: None, 1065 group_leader: Weak::default(), 1066 } 1067 } 1068 1069 pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> { 1070 return self.group_leader.upgrade(); 1071 } 1072 } 1073 1074 /// 进程的基本信息 1075 /// 1076 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。 1077 #[derive(Debug)] 1078 pub struct ProcessBasicInfo { 1079 /// 当前进程的进程组id 1080 pgid: Pid, 1081 /// 当前进程的父进程的pid 1082 ppid: Pid, 1083 /// 当前进程所属会话id 1084 sid: Pid, 1085 /// 进程的名字 1086 name: String, 1087 1088 /// 当前进程的工作目录 1089 cwd: String, 1090 1091 /// 用户地址空间 1092 user_vm: Option<Arc<AddressSpace>>, 1093 1094 /// 文件描述符表 1095 fd_table: Option<Arc<RwLock<FileDescriptorVec>>>, 1096 } 1097 1098 impl ProcessBasicInfo { 1099 #[inline(never)] 1100 pub fn new( 1101 pgid: Pid, 1102 ppid: Pid, 1103 sid: Pid, 1104 name: String, 1105 cwd: String, 1106 user_vm: Option<Arc<AddressSpace>>, 1107 ) -> RwLock<Self> { 1108 let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new())); 1109 return RwLock::new(Self { 1110 pgid, 1111 ppid, 1112 sid, 1113 name, 1114 cwd, 1115 user_vm, 1116 fd_table: Some(fd_table), 1117 }); 1118 } 1119 1120 pub fn pgid(&self) -> Pid { 1121 return self.pgid; 1122 } 1123 1124 pub fn ppid(&self) -> Pid { 1125 return self.ppid; 1126 } 1127 1128 pub fn sid(&self) -> Pid { 1129 return self.sid; 1130 } 1131 1132 pub fn name(&self) -> &str { 1133 return &self.name; 1134 } 1135 1136 pub fn set_name(&mut self, name: String) { 1137 self.name = name; 1138 } 1139 1140 pub fn cwd(&self) -> String { 1141 return self.cwd.clone(); 1142 } 1143 pub fn set_cwd(&mut self, path: String) { 1144 return self.cwd = path; 1145 } 1146 1147 pub fn user_vm(&self) -> Option<Arc<AddressSpace>> { 1148 return self.user_vm.clone(); 1149 } 1150 1151 pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) { 1152 self.user_vm = user_vm; 1153 } 1154 1155 pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> { 1156 return self.fd_table.clone(); 1157 } 1158 1159 pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) { 1160 self.fd_table = fd_table; 1161 } 1162 } 1163 1164 #[derive(Debug)] 1165 pub struct ProcessSchedulerInfo { 1166 /// 当前进程所在的cpu 1167 on_cpu: AtomicProcessorId, 1168 /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位), 1169 /// 该字段存储要被迁移到的目标处理器核心号 1170 // migrate_to: AtomicProcessorId, 1171 inner_locked: RwLock<InnerSchedInfo>, 1172 /// 进程的调度优先级 1173 // priority: SchedPriority, 1174 /// 当前进程的虚拟运行时间 1175 // virtual_runtime: AtomicIsize, 1176 /// 由实时调度器管理的时间片 1177 // rt_time_slice: AtomicIsize, 1178 pub sched_stat: RwLock<SchedInfo>, 1179 /// 调度策略 1180 pub sched_policy: RwLock<crate::sched::SchedPolicy>, 1181 /// cfs调度实体 1182 pub sched_entity: Arc<FairSchedEntity>, 1183 pub on_rq: SpinLock<OnRq>, 1184 1185 pub prio_data: RwLock<PrioData>, 1186 } 1187 1188 #[derive(Debug, Default)] 1189 #[allow(dead_code)] 1190 pub struct SchedInfo { 1191 /// 记录任务在特定 CPU 上运行的次数 1192 pub pcount: usize, 1193 /// 记录任务等待在运行队列上的时间 1194 pub run_delay: usize, 1195 /// 记录任务上次在 CPU 上运行的时间戳 1196 pub last_arrival: u64, 1197 /// 记录任务上次被加入到运行队列中的时间戳 1198 pub last_queued: u64, 1199 } 1200 1201 #[derive(Debug)] 1202 #[allow(dead_code)] 1203 pub struct PrioData { 1204 pub prio: i32, 1205 pub static_prio: i32, 1206 pub normal_prio: i32, 1207 } 1208 1209 impl Default for PrioData { 1210 fn default() -> Self { 1211 Self { 1212 prio: MAX_PRIO - 20, 1213 static_prio: MAX_PRIO - 20, 1214 normal_prio: MAX_PRIO - 20, 1215 } 1216 } 1217 } 1218 1219 #[derive(Debug)] 1220 pub struct InnerSchedInfo { 1221 /// 当前进程的状态 1222 state: ProcessState, 1223 /// 进程的调度策略 1224 sleep: bool, 1225 } 1226 1227 impl InnerSchedInfo { 1228 pub fn state(&self) -> ProcessState { 1229 return self.state; 1230 } 1231 1232 pub fn set_state(&mut self, state: ProcessState) { 1233 self.state = state; 1234 } 1235 1236 pub fn set_sleep(&mut self) { 1237 self.sleep = true; 1238 } 1239 1240 pub fn set_wakeup(&mut self) { 1241 self.sleep = false; 1242 } 1243 1244 pub fn is_mark_sleep(&self) -> bool { 1245 self.sleep 1246 } 1247 } 1248 1249 impl ProcessSchedulerInfo { 1250 #[inline(never)] 1251 pub fn new(on_cpu: Option<ProcessorId>) -> Self { 1252 let cpu_id = on_cpu.unwrap_or(ProcessorId::INVALID); 1253 return Self { 1254 on_cpu: AtomicProcessorId::new(cpu_id), 1255 // migrate_to: AtomicProcessorId::new(ProcessorId::INVALID), 1256 inner_locked: RwLock::new(InnerSchedInfo { 1257 state: ProcessState::Blocked(false), 1258 sleep: false, 1259 }), 1260 // virtual_runtime: AtomicIsize::new(0), 1261 // rt_time_slice: AtomicIsize::new(0), 1262 // priority: SchedPriority::new(100).unwrap(), 1263 sched_stat: RwLock::new(SchedInfo::default()), 1264 sched_policy: RwLock::new(crate::sched::SchedPolicy::CFS), 1265 sched_entity: FairSchedEntity::new(), 1266 on_rq: SpinLock::new(OnRq::None), 1267 prio_data: RwLock::new(PrioData::default()), 1268 }; 1269 } 1270 1271 pub fn sched_entity(&self) -> Arc<FairSchedEntity> { 1272 return self.sched_entity.clone(); 1273 } 1274 1275 pub fn on_cpu(&self) -> Option<ProcessorId> { 1276 let on_cpu = self.on_cpu.load(Ordering::SeqCst); 1277 if on_cpu == ProcessorId::INVALID { 1278 return None; 1279 } else { 1280 return Some(on_cpu); 1281 } 1282 } 1283 1284 pub fn set_on_cpu(&self, on_cpu: Option<ProcessorId>) { 1285 if let Some(cpu_id) = on_cpu { 1286 self.on_cpu.store(cpu_id, Ordering::SeqCst); 1287 } else { 1288 self.on_cpu.store(ProcessorId::INVALID, Ordering::SeqCst); 1289 } 1290 } 1291 1292 // pub fn migrate_to(&self) -> Option<ProcessorId> { 1293 // let migrate_to = self.migrate_to.load(Ordering::SeqCst); 1294 // if migrate_to == ProcessorId::INVALID { 1295 // return None; 1296 // } else { 1297 // return Some(migrate_to); 1298 // } 1299 // } 1300 1301 // pub fn set_migrate_to(&self, migrate_to: Option<ProcessorId>) { 1302 // if let Some(data) = migrate_to { 1303 // self.migrate_to.store(data, Ordering::SeqCst); 1304 // } else { 1305 // self.migrate_to 1306 // .store(ProcessorId::INVALID, Ordering::SeqCst) 1307 // } 1308 // } 1309 1310 pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> { 1311 return self.inner_locked.write_irqsave(); 1312 } 1313 1314 pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> { 1315 return self.inner_locked.read_irqsave(); 1316 } 1317 1318 // pub fn inner_lock_try_read_irqsave( 1319 // &self, 1320 // times: u8, 1321 // ) -> Option<RwLockReadGuard<InnerSchedInfo>> { 1322 // for _ in 0..times { 1323 // if let Some(r) = self.inner_locked.try_read_irqsave() { 1324 // return Some(r); 1325 // } 1326 // } 1327 1328 // return None; 1329 // } 1330 1331 // pub fn inner_lock_try_upgradable_read_irqsave( 1332 // &self, 1333 // times: u8, 1334 // ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> { 1335 // for _ in 0..times { 1336 // if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() { 1337 // return Some(r); 1338 // } 1339 // } 1340 1341 // return None; 1342 // } 1343 1344 // pub fn virtual_runtime(&self) -> isize { 1345 // return self.virtual_runtime.load(Ordering::SeqCst); 1346 // } 1347 1348 // pub fn set_virtual_runtime(&self, virtual_runtime: isize) { 1349 // self.virtual_runtime 1350 // .store(virtual_runtime, Ordering::SeqCst); 1351 // } 1352 // pub fn increase_virtual_runtime(&self, delta: isize) { 1353 // self.virtual_runtime.fetch_add(delta, Ordering::SeqCst); 1354 // } 1355 1356 // pub fn rt_time_slice(&self) -> isize { 1357 // return self.rt_time_slice.load(Ordering::SeqCst); 1358 // } 1359 1360 // pub fn set_rt_time_slice(&self, rt_time_slice: isize) { 1361 // self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst); 1362 // } 1363 1364 // pub fn increase_rt_time_slice(&self, delta: isize) { 1365 // self.rt_time_slice.fetch_add(delta, Ordering::SeqCst); 1366 // } 1367 1368 pub fn policy(&self) -> crate::sched::SchedPolicy { 1369 return *self.sched_policy.read_irqsave(); 1370 } 1371 } 1372 1373 #[derive(Debug, Clone)] 1374 pub struct KernelStack { 1375 stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>, 1376 /// 标记该内核栈是否可以被释放 1377 can_be_freed: bool, 1378 } 1379 1380 impl KernelStack { 1381 pub const SIZE: usize = 0x4000; 1382 pub const ALIGN: usize = 0x4000; 1383 1384 pub fn new() -> Result<Self, SystemError> { 1385 return Ok(Self { 1386 stack: Some( 1387 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?, 1388 ), 1389 can_be_freed: true, 1390 }); 1391 } 1392 1393 /// 根据已有的空间,构造一个内核栈结构体 1394 /// 1395 /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误! 1396 pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> { 1397 if base.is_null() || !base.check_aligned(Self::ALIGN) { 1398 return Err(SystemError::EFAULT); 1399 } 1400 1401 return Ok(Self { 1402 stack: Some( 1403 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked( 1404 base.data() as *mut [u8; KernelStack::SIZE], 1405 ), 1406 ), 1407 can_be_freed: false, 1408 }); 1409 } 1410 1411 /// 返回内核栈的起始虚拟地址(低地址) 1412 pub fn start_address(&self) -> VirtAddr { 1413 return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize); 1414 } 1415 1416 /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址) 1417 pub fn stack_max_address(&self) -> VirtAddr { 1418 return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE); 1419 } 1420 1421 pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> { 1422 // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处 1423 let p: *const ProcessControlBlock = Weak::into_raw(pcb); 1424 let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; 1425 1426 // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误 1427 if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) { 1428 error!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr); 1429 return Err(SystemError::EPERM); 1430 } 1431 // 将pcb的地址放到内核栈的最低地址处 1432 unsafe { 1433 *stack_bottom_ptr = p; 1434 } 1435 1436 return Ok(()); 1437 } 1438 1439 /// 清除内核栈的pcb指针 1440 /// 1441 /// ## 参数 1442 /// 1443 /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题 1444 pub unsafe fn clear_pcb(&mut self, force: bool) { 1445 let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; 1446 if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) { 1447 return; 1448 } 1449 1450 if !force { 1451 let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr); 1452 drop(pcb_ptr); 1453 } 1454 1455 *stack_bottom_ptr = core::ptr::null(); 1456 } 1457 1458 /// 返回指向当前内核栈pcb的Arc指针 1459 #[allow(dead_code)] 1460 pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> { 1461 // 从内核栈的最低地址处取出pcb的地址 1462 let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock; 1463 if unlikely(unsafe { (*p).is_null() }) { 1464 return None; 1465 } 1466 1467 // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用 1468 let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> = 1469 ManuallyDrop::new(Weak::from_raw(*p)); 1470 1471 let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?; 1472 return Some(new_arc); 1473 } 1474 } 1475 1476 impl Drop for KernelStack { 1477 fn drop(&mut self) { 1478 if self.stack.is_some() { 1479 let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock; 1480 if unsafe { !(*ptr).is_null() } { 1481 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) }; 1482 drop(pcb_ptr); 1483 } 1484 } 1485 // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数 1486 if !self.can_be_freed { 1487 let bx = self.stack.take(); 1488 core::mem::forget(bx); 1489 } 1490 } 1491 } 1492 1493 pub fn process_init() { 1494 ProcessManager::init(); 1495 } 1496 1497 #[derive(Debug)] 1498 pub struct ProcessSignalInfo { 1499 // 当前进程 1500 sig_block: SigSet, 1501 // sig_pending 中存储当前线程要处理的信号 1502 sig_pending: SigPending, 1503 // sig_shared_pending 中存储当前线程所属进程要处理的信号 1504 sig_shared_pending: SigPending, 1505 // 当前进程对应的tty 1506 tty: Option<Arc<TtyCore>>, 1507 } 1508 1509 impl ProcessSignalInfo { 1510 pub fn sig_block(&self) -> &SigSet { 1511 &self.sig_block 1512 } 1513 1514 pub fn sig_pending(&self) -> &SigPending { 1515 &self.sig_pending 1516 } 1517 1518 pub fn sig_pending_mut(&mut self) -> &mut SigPending { 1519 &mut self.sig_pending 1520 } 1521 1522 pub fn sig_block_mut(&mut self) -> &mut SigSet { 1523 &mut self.sig_block 1524 } 1525 1526 pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending { 1527 &mut self.sig_shared_pending 1528 } 1529 1530 pub fn sig_shared_pending(&self) -> &SigPending { 1531 &self.sig_shared_pending 1532 } 1533 1534 pub fn tty(&self) -> Option<Arc<TtyCore>> { 1535 self.tty.clone() 1536 } 1537 1538 pub fn set_tty(&mut self, tty: Option<Arc<TtyCore>>) { 1539 self.tty = tty; 1540 } 1541 1542 /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号 1543 /// 1544 /// ## 参数 1545 /// 1546 /// - `sig_mask` 被忽略掉的信号 1547 /// 1548 pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) { 1549 let res = self.sig_pending.dequeue_signal(sig_mask); 1550 if res.0 != Signal::INVALID { 1551 return res; 1552 } else { 1553 return self.sig_shared_pending.dequeue_signal(sig_mask); 1554 } 1555 } 1556 } 1557 1558 impl Default for ProcessSignalInfo { 1559 fn default() -> Self { 1560 Self { 1561 sig_block: SigSet::empty(), 1562 sig_pending: SigPending::default(), 1563 sig_shared_pending: SigPending::default(), 1564 tty: None, 1565 } 1566 } 1567 } 1568