xref: /DragonOS/kernel/src/process/mod.rs (revision edaf015400f83967c2fc940f07be0dbb5792246f)
1 use core::{
2     hash::{Hash, Hasher},
3     hint::spin_loop,
4     intrinsics::{likely, unlikely},
5     mem::ManuallyDrop,
6     sync::atomic::{compiler_fence, AtomicBool, AtomicI32, AtomicIsize, AtomicUsize, Ordering},
7 };
8 
9 use alloc::{
10     string::{String, ToString},
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 use hashbrown::HashMap;
15 
16 use crate::{
17     arch::{
18         ipc::signal::{AtomicSignal, SigSet, Signal},
19         process::ArchPCBInfo,
20         sched::sched,
21         CurrentIrqArch,
22     },
23     exception::InterruptArch,
24     filesystem::{
25         procfs::procfs_unregister_pid,
26         vfs::{file::FileDescriptorVec, FileType},
27     },
28     ipc::signal_types::{SigInfo, SigPending, SignalStruct},
29     kdebug, kinfo,
30     libs::{
31         align::AlignedBox,
32         casting::DowncastArc,
33         futex::{
34             constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
35             futex::Futex,
36         },
37         lock_free_flags::LockFreeFlags,
38         rwlock::{RwLock, RwLockReadGuard, RwLockUpgradableGuard, RwLockWriteGuard},
39         spinlock::{SpinLock, SpinLockGuard},
40         wait_queue::WaitQueue,
41     },
42     mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr},
43     net::socket::SocketInode,
44     sched::{
45         completion::Completion,
46         core::{sched_enqueue, CPU_EXECUTING},
47         SchedPolicy, SchedPriority,
48     },
49     smp::kick_cpu,
50     syscall::{user_access::clear_user, Syscall, SystemError},
51 };
52 
53 use self::kthread::WorkerPrivate;
54 
55 pub mod abi;
56 pub mod c_adapter;
57 pub mod exec;
58 pub mod exit;
59 pub mod fork;
60 pub mod idle;
61 pub mod init;
62 pub mod kthread;
63 pub mod pid;
64 pub mod process;
65 pub mod resource;
66 pub mod syscall;
67 
68 /// 系统中所有进程的pcb
69 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
70 
71 pub static mut SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
72 
73 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
74 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
75 
76 #[derive(Debug)]
77 pub struct SwitchResult {
78     pub prev_pcb: Option<Arc<ProcessControlBlock>>,
79     pub next_pcb: Option<Arc<ProcessControlBlock>>,
80 }
81 
82 impl SwitchResult {
83     pub fn new() -> Self {
84         Self {
85             prev_pcb: None,
86             next_pcb: None,
87         }
88     }
89 }
90 
91 #[derive(Debug)]
92 pub struct ProcessManager;
93 impl ProcessManager {
94     fn init() {
95         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
96         if INIT_FLAG
97             .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
98             .is_err()
99         {
100             panic!("ProcessManager has been initialized!");
101         }
102 
103         unsafe {
104             compiler_fence(Ordering::SeqCst);
105             kdebug!("To create address space for INIT process.");
106             // test_buddy();
107             set_INITIAL_PROCESS_ADDRESS_SPACE(
108                 AddressSpace::new(true).expect("Failed to create address space for INIT process."),
109             );
110             kdebug!("INIT process address space created.");
111             compiler_fence(Ordering::SeqCst);
112         };
113 
114         ALL_PROCESS.lock().replace(HashMap::new());
115         Self::arch_init();
116         kdebug!("process arch init done.");
117         Self::init_idle();
118         kdebug!("process idle init done.");
119 
120         unsafe {
121             __PROCESS_MANAGEMENT_INIT_DONE = true;
122         }
123         kinfo!("Process Manager initialized.");
124     }
125 
126     /// 判断进程管理器是否已经初始化完成
127     pub fn initialized() -> bool {
128         unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
129     }
130 
131     /// 获取当前进程的pcb
132     pub fn current_pcb() -> Arc<ProcessControlBlock> {
133         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
134             kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
135             loop {
136                 spin_loop();
137             }
138         }
139         return ProcessControlBlock::arch_current_pcb();
140     }
141 
142     /// 增加当前进程的锁持有计数
143     #[inline(always)]
144     pub fn preempt_disable() {
145         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
146             ProcessManager::current_pcb().preempt_disable();
147         }
148     }
149 
150     /// 减少当前进程的锁持有计数
151     #[inline(always)]
152     pub fn preempt_enable() {
153         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
154             ProcessManager::current_pcb().preempt_enable();
155         }
156     }
157 
158     /// 根据pid获取进程的pcb
159     ///
160     /// ## 参数
161     ///
162     /// - `pid` : 进程的pid
163     ///
164     /// ## 返回值
165     ///
166     /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
167     pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
168         return ALL_PROCESS.lock().as_ref()?.get(&pid).cloned();
169     }
170 
171     /// 向系统中添加一个进程的pcb
172     ///
173     /// ## 参数
174     ///
175     /// - `pcb` : 进程的pcb
176     ///
177     /// ## 返回值
178     ///
179     /// 无
180     pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
181         ALL_PROCESS
182             .lock()
183             .as_mut()
184             .unwrap()
185             .insert(pcb.pid(), pcb.clone());
186     }
187 
188     /// 唤醒一个进程
189     pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
190         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
191         let state = pcb.sched_info().state();
192         if state.is_blocked() {
193             let mut writer: RwLockWriteGuard<'_, ProcessSchedulerInfo> = pcb.sched_info_mut();
194             let state = writer.state();
195             if state.is_blocked() {
196                 writer.set_state(ProcessState::Runnable);
197                 // avoid deadlock
198                 drop(writer);
199 
200                 sched_enqueue(pcb.clone(), true);
201                 return Ok(());
202             } else if state.is_exited() {
203                 return Err(SystemError::EINVAL);
204             } else {
205                 return Ok(());
206             }
207         } else if state.is_exited() {
208             return Err(SystemError::EINVAL);
209         } else {
210             return Ok(());
211         }
212     }
213 
214     /// 唤醒暂停的进程
215     pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
216         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
217         let state = pcb.sched_info().state();
218         if let ProcessState::Stopped = state {
219             let mut writer = pcb.sched_info_mut();
220             let state = writer.state();
221             if let ProcessState::Stopped = state {
222                 writer.set_state(ProcessState::Runnable);
223                 // avoid deadlock
224                 drop(writer);
225 
226                 sched_enqueue(pcb.clone(), true);
227                 return Ok(());
228             } else if state.is_runnable() {
229                 return Ok(());
230             } else {
231                 return Err(SystemError::EINVAL);
232             }
233         } else if state.is_runnable() {
234             return Ok(());
235         } else {
236             return Err(SystemError::EINVAL);
237         }
238     }
239 
240     /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
241     ///
242     /// ## 注意
243     ///
244     /// - 进入当前函数之前,不能持有sched_info的锁
245     /// - 进入当前函数之前,必须关闭中断
246     /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
247     pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
248         assert_eq!(
249             CurrentIrqArch::is_irq_enabled(),
250             false,
251             "interrupt must be disabled before enter ProcessManager::mark_sleep()"
252         );
253 
254         let pcb = ProcessManager::current_pcb();
255         let mut writer = pcb.sched_info_mut_irqsave();
256         if !matches!(writer.state(), ProcessState::Exited(_)) {
257             writer.set_state(ProcessState::Blocked(interruptable));
258             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
259             drop(writer);
260 
261             return Ok(());
262         }
263         return Err(SystemError::EINTR);
264     }
265 
266     /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
267     ///
268     /// ## 注意
269     ///
270     /// - 进入当前函数之前,不能持有sched_info的锁
271     /// - 进入当前函数之前,必须关闭中断
272     pub fn mark_stop() -> Result<(), SystemError> {
273         assert_eq!(
274             CurrentIrqArch::is_irq_enabled(),
275             false,
276             "interrupt must be disabled before enter ProcessManager::mark_stop()"
277         );
278 
279         let pcb = ProcessManager::current_pcb();
280         let mut writer = pcb.sched_info_mut_irqsave();
281         if !matches!(writer.state(), ProcessState::Exited(_)) {
282             writer.set_state(ProcessState::Stopped);
283             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
284             drop(writer);
285 
286             return Ok(());
287         }
288         return Err(SystemError::EINTR);
289     }
290     /// 当子进程退出后向父进程发送通知
291     fn exit_notify() {
292         let current = ProcessManager::current_pcb();
293         // 让INIT进程收养所有子进程
294         if current.pid() != Pid(1) {
295             unsafe {
296                 current
297                     .adopt_childen()
298                     .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
299             };
300             let r = current.parent_pcb.read().upgrade();
301             if r.is_none() {
302                 return;
303             }
304             let parent_pcb = r.unwrap();
305             let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32);
306             if r.is_err() {
307                 kwarn!(
308                     "failed to send kill signal to {:?}'s parent pcb {:?}",
309                     current.pid(),
310                     parent_pcb.pid()
311                 );
312             }
313             // todo: 这里需要向父进程发送SIGCHLD信号
314             // todo: 这里还需要根据线程组的信息,决定信号的发送
315         }
316     }
317 
318     /// 退出当前进程
319     ///
320     /// ## 参数
321     ///
322     /// - `exit_code` : 进程的退出码
323     pub fn exit(exit_code: usize) -> ! {
324         // 关中断
325         let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
326         let pcb = ProcessManager::current_pcb();
327         pcb.sched_info
328             .write()
329             .set_state(ProcessState::Exited(exit_code));
330         pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true)));
331 
332         // 进行进程退出后的工作
333         let thread = pcb.thread.write();
334         if let Some(addr) = thread.set_child_tid {
335             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
336         }
337 
338         if let Some(addr) = thread.clear_child_tid {
339             if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
340                 let _ =
341                     Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY);
342             }
343             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
344         }
345 
346         // 如果是vfork出来的进程,则需要处理completion
347         if thread.vfork_done.is_some() {
348             thread.vfork_done.as_ref().unwrap().complete_all();
349         }
350         drop(thread);
351         unsafe { pcb.basic_mut().set_user_vm(None) };
352         drop(pcb);
353         ProcessManager::exit_notify();
354         drop(irq_guard);
355 
356         sched();
357         loop {}
358     }
359 
360     pub unsafe fn release(pid: Pid) {
361         let pcb = ProcessManager::find(pid);
362         if !pcb.is_none() {
363             // let pcb = pcb.unwrap();
364             // 判断该pcb是否在全局没有任何引用
365             // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
366             //          因此目前暂时注释掉,使得能跑
367             // if Arc::strong_count(&pcb) <= 2 {
368             //     drop(pcb);
369             //     ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
370             // } else {
371             //     // 如果不为1就panic
372             //     let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(),  Arc::strong_count(&pcb));
373             //     kerror!("{}", msg);
374             //     panic!()
375             // }
376 
377             ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
378         }
379     }
380 
381     /// 上下文切换完成后的钩子函数
382     unsafe fn switch_finish_hook() {
383         // kdebug!("switch_finish_hook");
384         let prev_pcb = SWITCH_RESULT
385             .as_mut()
386             .unwrap()
387             .get_mut()
388             .prev_pcb
389             .take()
390             .expect("prev_pcb is None");
391         let next_pcb = SWITCH_RESULT
392             .as_mut()
393             .unwrap()
394             .get_mut()
395             .next_pcb
396             .take()
397             .expect("next_pcb is None");
398 
399         // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
400         prev_pcb.arch_info.force_unlock();
401         next_pcb.arch_info.force_unlock();
402     }
403 
404     /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
405     ///
406     /// ## 参数
407     ///
408     /// - `pcb` : 进程的pcb
409     #[allow(dead_code)]
410     pub fn kick(pcb: &Arc<ProcessControlBlock>) {
411         ProcessManager::current_pcb().preempt_disable();
412         let cpu_id = pcb.sched_info().on_cpu();
413 
414         if let Some(cpu_id) = cpu_id {
415             let cpu_id = cpu_id;
416 
417             if pcb.pid() == CPU_EXECUTING.get(cpu_id) {
418                 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
419             }
420         }
421 
422         ProcessManager::current_pcb().preempt_enable();
423     }
424 }
425 
426 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
427 pub unsafe extern "sysv64" fn switch_finish_hook() {
428     ProcessManager::switch_finish_hook();
429 }
430 
431 int_like!(Pid, AtomicPid, usize, AtomicUsize);
432 
433 impl Hash for Pid {
434     fn hash<H: Hasher>(&self, state: &mut H) {
435         self.0.hash(state);
436     }
437 }
438 
439 impl Pid {
440     pub fn to_string(&self) -> String {
441         self.0.to_string()
442     }
443 }
444 
445 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
446 pub enum ProcessState {
447     /// The process is running on a CPU or in a run queue.
448     Runnable,
449     /// The process is waiting for an event to occur.
450     /// 其中的bool表示该等待过程是否可以被打断。
451     /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
452     /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
453     Blocked(bool),
454     /// 进程被信号终止
455     Stopped,
456     /// 进程已经退出,usize表示进程的退出码
457     Exited(usize),
458 }
459 
460 #[allow(dead_code)]
461 impl ProcessState {
462     #[inline(always)]
463     pub fn is_runnable(&self) -> bool {
464         return matches!(self, ProcessState::Runnable);
465     }
466 
467     #[inline(always)]
468     pub fn is_blocked(&self) -> bool {
469         return matches!(self, ProcessState::Blocked(_));
470     }
471 
472     #[inline(always)]
473     pub fn is_blocked_interruptable(&self) -> bool {
474         return matches!(self, ProcessState::Blocked(true));
475     }
476 
477     /// Returns `true` if the process state is [`Exited`].
478     #[inline(always)]
479     pub fn is_exited(&self) -> bool {
480         return matches!(self, ProcessState::Exited(_));
481     }
482 
483     /// Returns `true` if the process state is [`Stopped`].
484     ///
485     /// [`Stopped`]: ProcessState::Stopped
486     #[inline(always)]
487     pub fn is_stopped(&self) -> bool {
488         matches!(self, ProcessState::Stopped)
489     }
490 
491     /// Returns exit code if the process state is [`Exited`].
492     #[inline(always)]
493     pub fn exit_code(&self) -> Option<usize> {
494         match self {
495             ProcessState::Exited(code) => Some(*code),
496             _ => None,
497         }
498     }
499 }
500 
501 bitflags! {
502     /// pcb的标志位
503     pub struct ProcessFlags: usize {
504         /// 当前pcb表示一个内核线程
505         const KTHREAD = 1 << 0;
506         /// 当前进程需要被调度
507         const NEED_SCHEDULE = 1 << 1;
508         /// 进程由于vfork而与父进程存在资源共享
509         const VFORK = 1 << 2;
510         /// 进程不可被冻结
511         const NOFREEZE = 1 << 3;
512         /// 进程正在退出
513         const EXITING = 1 << 4;
514         /// 进程由于接收到终止信号唤醒
515         const WAKEKILL = 1 << 5;
516         /// 进程由于接收到信号而退出.(Killed by a signal)
517         const SIGNALED = 1 << 6;
518         /// 进程需要迁移到其他cpu上
519         const NEED_MIGRATE = 1 << 7;
520     }
521 }
522 
523 #[derive(Debug)]
524 pub struct ProcessControlBlock {
525     /// 当前进程的pid
526     pid: Pid,
527     /// 当前进程的线程组id(这个值在同一个线程组内永远不变)
528     tgid: Pid,
529 
530     basic: RwLock<ProcessBasicInfo>,
531     /// 当前进程的自旋锁持有计数
532     preempt_count: AtomicUsize,
533 
534     flags: LockFreeFlags<ProcessFlags>,
535     worker_private: SpinLock<Option<WorkerPrivate>>,
536     /// 进程的内核栈
537     kernel_stack: RwLock<KernelStack>,
538 
539     /// 系统调用栈
540     syscall_stack: RwLock<KernelStack>,
541 
542     /// 与调度相关的信息
543     sched_info: RwLock<ProcessSchedulerInfo>,
544     /// 与处理器架构相关的信息
545     arch_info: SpinLock<ArchPCBInfo>,
546     /// 与信号处理相关的信息(似乎可以是无锁的)
547     sig_info: RwLock<ProcessSignalInfo>,
548     /// 信号处理结构体
549     sig_struct: SpinLock<SignalStruct>,
550     /// 退出信号S
551     exit_signal: AtomicSignal,
552 
553     /// 父进程指针
554     parent_pcb: RwLock<Weak<ProcessControlBlock>>,
555     /// 真实父进程指针
556     real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
557 
558     /// 子进程链表
559     children: RwLock<Vec<Pid>>,
560 
561     /// 等待队列
562     wait_queue: WaitQueue,
563 
564     /// 线程信息
565     thread: RwLock<ThreadInfo>,
566 }
567 
568 impl ProcessControlBlock {
569     /// Generate a new pcb.
570     ///
571     /// ## 参数
572     ///
573     /// - `name` : 进程的名字
574     /// - `kstack` : 进程的内核栈
575     ///
576     /// ## 返回值
577     ///
578     /// 返回一个新的pcb
579     pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
580         return Self::do_create_pcb(name, kstack, false);
581     }
582 
583     /// 创建一个新的idle进程
584     ///
585     /// 请注意,这个函数只能在进程管理初始化的时候调用。
586     pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
587         let name = format!("idle-{}", cpu_id);
588         return Self::do_create_pcb(name, kstack, true);
589     }
590 
591     fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
592         let (pid, ppid, cwd) = if is_idle {
593             (Pid(0), Pid(0), "/".to_string())
594         } else {
595             (
596                 Self::generate_pid(),
597                 ProcessManager::current_pcb().pid(),
598                 ProcessManager::current_pcb().basic().cwd(),
599             )
600         };
601 
602         let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None);
603         let preempt_count = AtomicUsize::new(0);
604         let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
605 
606         let sched_info = ProcessSchedulerInfo::new(None);
607         let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
608 
609         let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
610             .map(|p| Arc::downgrade(&p))
611             .unwrap_or_else(|| Weak::new());
612 
613         let pcb = Self {
614             pid,
615             tgid: pid,
616             basic: basic_info,
617             preempt_count,
618             flags,
619             kernel_stack: RwLock::new(kstack),
620             syscall_stack: RwLock::new(KernelStack::new().unwrap()),
621             worker_private: SpinLock::new(None),
622             sched_info,
623             arch_info,
624             sig_info: RwLock::new(ProcessSignalInfo::default()),
625             sig_struct: SpinLock::new(SignalStruct::default()),
626             exit_signal: AtomicSignal::new(Signal::SIGCHLD),
627             parent_pcb: RwLock::new(ppcb.clone()),
628             real_parent_pcb: RwLock::new(ppcb),
629             children: RwLock::new(Vec::new()),
630             wait_queue: WaitQueue::INIT,
631             thread: RwLock::new(ThreadInfo::new()),
632         };
633 
634         // 初始化系统调用栈
635         pcb.arch_info
636             .lock()
637             .init_syscall_stack(&pcb.syscall_stack.read());
638 
639         let pcb = Arc::new(pcb);
640 
641         // 设置进程的arc指针到内核栈和系统调用栈的最低地址处
642         unsafe {
643             pcb.kernel_stack
644                 .write()
645                 .set_pcb(Arc::downgrade(&pcb))
646                 .unwrap();
647 
648             pcb.syscall_stack
649                 .write()
650                 .set_pcb(Arc::downgrade(&pcb))
651                 .unwrap()
652         };
653 
654         // 将当前pcb加入父进程的子进程哈希表中
655         if pcb.pid() > Pid(1) {
656             if let Some(ppcb_arc) = pcb.parent_pcb.read().upgrade() {
657                 let mut children = ppcb_arc.children.write();
658                 children.push(pcb.pid());
659             } else {
660                 panic!("parent pcb is None");
661             }
662         }
663 
664         return pcb;
665     }
666 
667     /// 生成一个新的pid
668     #[inline(always)]
669     fn generate_pid() -> Pid {
670         static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
671         return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
672     }
673 
674     /// 返回当前进程的锁持有计数
675     #[inline(always)]
676     pub fn preempt_count(&self) -> usize {
677         return self.preempt_count.load(Ordering::SeqCst);
678     }
679 
680     /// 增加当前进程的锁持有计数
681     #[inline(always)]
682     pub fn preempt_disable(&self) {
683         self.preempt_count.fetch_add(1, Ordering::SeqCst);
684     }
685 
686     /// 减少当前进程的锁持有计数
687     #[inline(always)]
688     pub fn preempt_enable(&self) {
689         self.preempt_count.fetch_sub(1, Ordering::SeqCst);
690     }
691 
692     #[inline(always)]
693     pub unsafe fn set_preempt_count(&self, count: usize) {
694         self.preempt_count.store(count, Ordering::SeqCst);
695     }
696 
697     #[inline(always)]
698     pub fn flags(&self) -> &mut ProcessFlags {
699         return self.flags.get_mut();
700     }
701 
702     #[inline(always)]
703     pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
704         return self.basic.read();
705     }
706 
707     #[inline(always)]
708     pub fn set_name(&self, name: String) {
709         self.basic.write().set_name(name);
710     }
711 
712     #[inline(always)]
713     pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
714         return self.basic.write();
715     }
716 
717     #[inline(always)]
718     pub fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
719         return self.arch_info.lock();
720     }
721 
722     #[inline(always)]
723     pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
724         return self.arch_info.lock_irqsave();
725     }
726 
727     #[inline(always)]
728     pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
729         return self.kernel_stack.read();
730     }
731 
732     #[inline(always)]
733     #[allow(dead_code)]
734     pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
735         return self.kernel_stack.write();
736     }
737 
738     #[inline(always)]
739     pub fn sched_info(&self) -> RwLockReadGuard<ProcessSchedulerInfo> {
740         return self.sched_info.read();
741     }
742 
743     #[inline(always)]
744     pub fn try_sched_info(&self, times: u8) -> Option<RwLockReadGuard<ProcessSchedulerInfo>> {
745         for _ in 0..times {
746             if let Some(r) = self.sched_info.try_read() {
747                 return Some(r);
748             }
749         }
750 
751         return None;
752     }
753 
754     #[allow(dead_code)]
755     #[inline(always)]
756     pub fn sched_info_irqsave(&self) -> RwLockReadGuard<ProcessSchedulerInfo> {
757         return self.sched_info.read_irqsave();
758     }
759 
760     #[inline(always)]
761     pub fn sched_info_try_upgradeable_irqsave(
762         &self,
763         times: u8,
764     ) -> Option<RwLockUpgradableGuard<ProcessSchedulerInfo>> {
765         for _ in 0..times {
766             if let Some(r) = self.sched_info.try_upgradeable_read_irqsave() {
767                 return Some(r);
768             }
769         }
770         return None;
771     }
772 
773     #[inline(always)]
774     pub fn sched_info_mut(&self) -> RwLockWriteGuard<ProcessSchedulerInfo> {
775         return self.sched_info.write();
776     }
777 
778     #[inline(always)]
779     pub fn sched_info_mut_irqsave(&self) -> RwLockWriteGuard<ProcessSchedulerInfo> {
780         return self.sched_info.write_irqsave();
781     }
782 
783     #[inline(always)]
784     pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
785         return self.worker_private.lock();
786     }
787 
788     #[inline(always)]
789     pub fn pid(&self) -> Pid {
790         return self.pid;
791     }
792 
793     #[inline(always)]
794     pub fn tgid(&self) -> Pid {
795         return self.tgid;
796     }
797 
798     /// 获取文件描述符表的Arc指针
799     #[inline(always)]
800     pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
801         return self.basic.read().fd_table().unwrap();
802     }
803 
804     /// 根据文件描述符序号,获取socket对象的Arc指针
805     ///
806     /// ## 参数
807     ///
808     /// - `fd` 文件描述符序号
809     ///
810     /// ## 返回值
811     ///
812     /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
813     pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
814         let binding = ProcessManager::current_pcb().fd_table();
815         let fd_table_guard = binding.read();
816 
817         let f = fd_table_guard.get_file_by_fd(fd)?;
818         drop(fd_table_guard);
819 
820         let guard = f.lock();
821         if guard.file_type() != FileType::Socket {
822             return None;
823         }
824         let socket: Arc<SocketInode> = guard
825             .inode()
826             .downcast_arc::<SocketInode>()
827             .expect("Not a socket inode");
828         return Some(socket);
829     }
830 
831     /// 当前进程退出时,让初始进程收养所有子进程
832     unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
833         match ProcessManager::find(Pid(1)) {
834             Some(init_pcb) => {
835                 let childen_guard = self.children.write();
836                 let mut init_childen_guard = init_pcb.children.write();
837 
838                 childen_guard.iter().for_each(|pid| {
839                     init_childen_guard.push(*pid);
840                 });
841 
842                 return Ok(());
843             }
844             _ => Err(SystemError::ECHILD),
845         }
846     }
847 
848     /// 生成进程的名字
849     pub fn generate_name(program_path: &str, args: &Vec<String>) -> String {
850         let mut name = program_path.to_string();
851         for arg in args {
852             name.push_str(arg);
853             name.push(' ');
854         }
855         return name;
856     }
857 
858     pub fn sig_info(&self) -> RwLockReadGuard<ProcessSignalInfo> {
859         self.sig_info.read()
860     }
861 
862     pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
863         self.sig_info.read_irqsave()
864     }
865 
866     pub fn try_siginfo(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
867         for _ in 0..times {
868             if let Some(r) = self.sig_info.try_read() {
869                 return Some(r);
870             }
871         }
872 
873         return None;
874     }
875 
876     pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
877         self.sig_info.write()
878     }
879 
880     pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
881         for _ in 0..times {
882             if let Some(r) = self.sig_info.try_write() {
883                 return Some(r);
884             }
885         }
886 
887         return None;
888     }
889 
890     pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
891         self.sig_struct.lock()
892     }
893 
894     pub fn try_sig_struct_irq(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
895         for _ in 0..times {
896             if let Ok(r) = self.sig_struct.try_lock_irqsave() {
897                 return Some(r);
898             }
899         }
900 
901         return None;
902     }
903 
904     pub fn sig_struct_irq(&self) -> SpinLockGuard<SignalStruct> {
905         self.sig_struct.lock_irqsave()
906     }
907 }
908 
909 impl Drop for ProcessControlBlock {
910     fn drop(&mut self) {
911         // 在ProcFS中,解除进程的注册
912         procfs_unregister_pid(self.pid())
913             .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
914 
915         if let Some(ppcb) = self.parent_pcb.read().upgrade() {
916             ppcb.children.write().drain_filter(|pid| *pid == self.pid());
917         }
918     }
919 }
920 
921 /// 线程信息
922 #[derive(Debug)]
923 pub struct ThreadInfo {
924     // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
925     clear_child_tid: Option<VirtAddr>,
926     set_child_tid: Option<VirtAddr>,
927 
928     vfork_done: Option<Arc<Completion>>,
929     /// 线程组的组长
930     group_leader: Weak<ProcessControlBlock>,
931 }
932 
933 impl ThreadInfo {
934     pub fn new() -> Self {
935         Self {
936             clear_child_tid: None,
937             set_child_tid: None,
938             vfork_done: None,
939             group_leader: Weak::default(),
940         }
941     }
942 
943     pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
944         return self.group_leader.upgrade();
945     }
946 }
947 
948 /// 进程的基本信息
949 ///
950 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
951 #[derive(Debug)]
952 pub struct ProcessBasicInfo {
953     /// 当前进程的进程组id
954     pgid: Pid,
955     /// 当前进程的父进程的pid
956     ppid: Pid,
957     /// 进程的名字
958     name: String,
959 
960     /// 当前进程的工作目录
961     cwd: String,
962 
963     /// 用户地址空间
964     user_vm: Option<Arc<AddressSpace>>,
965 
966     /// 文件描述符表
967     fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
968 }
969 
970 impl ProcessBasicInfo {
971     pub fn new(
972         pgid: Pid,
973         ppid: Pid,
974         name: String,
975         cwd: String,
976         user_vm: Option<Arc<AddressSpace>>,
977     ) -> RwLock<Self> {
978         let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
979         return RwLock::new(Self {
980             pgid,
981             ppid,
982             name,
983             cwd,
984             user_vm,
985             fd_table: Some(fd_table),
986         });
987     }
988 
989     pub fn pgid(&self) -> Pid {
990         return self.pgid;
991     }
992 
993     pub fn ppid(&self) -> Pid {
994         return self.ppid;
995     }
996 
997     pub fn name(&self) -> &str {
998         return &self.name;
999     }
1000 
1001     pub fn set_name(&mut self, name: String) {
1002         self.name = name;
1003     }
1004 
1005     pub fn cwd(&self) -> String {
1006         return self.cwd.clone();
1007     }
1008     pub fn set_cwd(&mut self, path: String) {
1009         return self.cwd = path;
1010     }
1011 
1012     pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
1013         return self.user_vm.clone();
1014     }
1015 
1016     pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
1017         self.user_vm = user_vm;
1018     }
1019 
1020     pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
1021         return self.fd_table.clone();
1022     }
1023 
1024     pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
1025         self.fd_table = fd_table;
1026     }
1027 }
1028 
1029 #[derive(Debug)]
1030 pub struct ProcessSchedulerInfo {
1031     /// 当前进程所在的cpu
1032     on_cpu: AtomicI32,
1033     /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
1034     /// 该字段存储要被迁移到的目标处理器核心号
1035     migrate_to: AtomicI32,
1036 
1037     /// 当前进程的状态
1038     state: ProcessState,
1039     /// 进程的调度策略
1040     sched_policy: SchedPolicy,
1041     /// 进程的调度优先级
1042     priority: SchedPriority,
1043     /// 当前进程的虚拟运行时间
1044     virtual_runtime: AtomicIsize,
1045     /// 由实时调度器管理的时间片
1046     rt_time_slice: AtomicIsize,
1047 }
1048 
1049 impl ProcessSchedulerInfo {
1050     pub fn new(on_cpu: Option<u32>) -> RwLock<Self> {
1051         let cpu_id = match on_cpu {
1052             Some(cpu_id) => cpu_id as i32,
1053             None => -1,
1054         };
1055         return RwLock::new(Self {
1056             on_cpu: AtomicI32::new(cpu_id),
1057             migrate_to: AtomicI32::new(-1),
1058             state: ProcessState::Blocked(false),
1059             sched_policy: SchedPolicy::CFS,
1060             virtual_runtime: AtomicIsize::new(0),
1061             rt_time_slice: AtomicIsize::new(0),
1062             priority: SchedPriority::new(100).unwrap(),
1063         });
1064     }
1065 
1066     pub fn on_cpu(&self) -> Option<u32> {
1067         let on_cpu = self.on_cpu.load(Ordering::SeqCst);
1068         if on_cpu == -1 {
1069             return None;
1070         } else {
1071             return Some(on_cpu as u32);
1072         }
1073     }
1074 
1075     pub fn set_on_cpu(&self, on_cpu: Option<u32>) {
1076         if let Some(cpu_id) = on_cpu {
1077             self.on_cpu.store(cpu_id as i32, Ordering::SeqCst);
1078         } else {
1079             self.on_cpu.store(-1, Ordering::SeqCst);
1080         }
1081     }
1082 
1083     pub fn migrate_to(&self) -> Option<u32> {
1084         let migrate_to = self.migrate_to.load(Ordering::SeqCst);
1085         if migrate_to == -1 {
1086             return None;
1087         } else {
1088             return Some(migrate_to as u32);
1089         }
1090     }
1091 
1092     pub fn set_migrate_to(&self, migrate_to: Option<u32>) {
1093         if let Some(data) = migrate_to {
1094             self.migrate_to.store(data as i32, Ordering::SeqCst);
1095         } else {
1096             self.migrate_to.store(-1, Ordering::SeqCst)
1097         }
1098     }
1099 
1100     pub fn state(&self) -> ProcessState {
1101         return self.state;
1102     }
1103 
1104     pub fn set_state(&mut self, state: ProcessState) {
1105         self.state = state;
1106     }
1107 
1108     pub fn policy(&self) -> SchedPolicy {
1109         return self.sched_policy;
1110     }
1111 
1112     pub fn virtual_runtime(&self) -> isize {
1113         return self.virtual_runtime.load(Ordering::SeqCst);
1114     }
1115 
1116     pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
1117         self.virtual_runtime
1118             .store(virtual_runtime, Ordering::SeqCst);
1119     }
1120     pub fn increase_virtual_runtime(&self, delta: isize) {
1121         self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
1122     }
1123 
1124     pub fn rt_time_slice(&self) -> isize {
1125         return self.rt_time_slice.load(Ordering::SeqCst);
1126     }
1127 
1128     pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
1129         self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
1130     }
1131 
1132     pub fn increase_rt_time_slice(&self, delta: isize) {
1133         self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
1134     }
1135 
1136     pub fn priority(&self) -> SchedPriority {
1137         return self.priority;
1138     }
1139 }
1140 
1141 #[derive(Debug, Clone)]
1142 pub struct KernelStack {
1143     stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
1144     /// 标记该内核栈是否可以被释放
1145     can_be_freed: bool,
1146 }
1147 
1148 impl KernelStack {
1149     pub const SIZE: usize = 0x4000;
1150     pub const ALIGN: usize = 0x4000;
1151 
1152     pub fn new() -> Result<Self, SystemError> {
1153         return Ok(Self {
1154             stack: Some(
1155                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
1156             ),
1157             can_be_freed: true,
1158         });
1159     }
1160 
1161     /// 根据已有的空间,构造一个内核栈结构体
1162     ///
1163     /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
1164     pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
1165         if base.is_null() || base.check_aligned(Self::ALIGN) == false {
1166             return Err(SystemError::EFAULT);
1167         }
1168 
1169         return Ok(Self {
1170             stack: Some(
1171                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
1172                     base.data() as *mut [u8; KernelStack::SIZE],
1173                 ),
1174             ),
1175             can_be_freed: false,
1176         });
1177     }
1178 
1179     /// 返回内核栈的起始虚拟地址(低地址)
1180     pub fn start_address(&self) -> VirtAddr {
1181         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
1182     }
1183 
1184     /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
1185     pub fn stack_max_address(&self) -> VirtAddr {
1186         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
1187     }
1188 
1189     pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
1190         // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
1191         let p: *const ProcessControlBlock = Weak::into_raw(pcb);
1192         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1193 
1194         // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
1195         if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
1196             kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
1197             return Err(SystemError::EPERM);
1198         }
1199         // 将pcb的地址放到内核栈的最低地址处
1200         unsafe {
1201             *stack_bottom_ptr = p;
1202         }
1203 
1204         return Ok(());
1205     }
1206 
1207     /// 清除内核栈的pcb指针
1208     ///
1209     /// ## 参数
1210     ///
1211     /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
1212     pub unsafe fn clear_pcb(&mut self, force: bool) {
1213         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1214         if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
1215             return;
1216         }
1217 
1218         if !force {
1219             let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
1220             drop(pcb_ptr);
1221         }
1222 
1223         *stack_bottom_ptr = core::ptr::null();
1224     }
1225 
1226     /// 返回指向当前内核栈pcb的Arc指针
1227     #[allow(dead_code)]
1228     pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
1229         // 从内核栈的最低地址处取出pcb的地址
1230         let p = self.stack.as_ref().unwrap().as_ptr() as *const ProcessControlBlock;
1231         if unlikely(p.is_null()) {
1232             return None;
1233         }
1234 
1235         // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
1236         let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
1237             ManuallyDrop::new(Weak::from_raw(p));
1238 
1239         let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
1240         return Some(new_arc);
1241     }
1242 }
1243 
1244 impl Drop for KernelStack {
1245     fn drop(&mut self) {
1246         if !self.stack.is_none() {
1247             let pcb_ptr: Weak<ProcessControlBlock> = unsafe {
1248                 Weak::from_raw(self.stack.as_ref().unwrap().as_ptr() as *const ProcessControlBlock)
1249             };
1250             drop(pcb_ptr);
1251         }
1252         // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
1253         if !self.can_be_freed {
1254             let bx = self.stack.take();
1255             core::mem::forget(bx);
1256         }
1257     }
1258 }
1259 
1260 pub fn process_init() {
1261     ProcessManager::init();
1262 }
1263 
1264 #[derive(Debug)]
1265 pub struct ProcessSignalInfo {
1266     // 当前进程
1267     sig_block: SigSet,
1268     // sig_pending 中存储当前线程要处理的信号
1269     sig_pending: SigPending,
1270     // sig_shared_pending 中存储当前线程所属进程要处理的信号
1271     sig_shared_pending: SigPending,
1272 }
1273 
1274 impl ProcessSignalInfo {
1275     pub fn sig_block(&self) -> &SigSet {
1276         &self.sig_block
1277     }
1278 
1279     pub fn sig_pending(&self) -> &SigPending {
1280         &self.sig_pending
1281     }
1282 
1283     pub fn sig_pending_mut(&mut self) -> &mut SigPending {
1284         &mut self.sig_pending
1285     }
1286 
1287     pub fn sig_block_mut(&mut self) -> &mut SigSet {
1288         &mut self.sig_block
1289     }
1290 
1291     pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
1292         &mut self.sig_shared_pending
1293     }
1294 
1295     pub fn sig_shared_pending(&self) -> &SigPending {
1296         &self.sig_shared_pending
1297     }
1298 
1299     /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
1300     ///
1301     /// ## 参数
1302     ///
1303     /// - `sig_mask` 被忽略掉的信号
1304     ///
1305     pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) {
1306         let res = self.sig_pending.dequeue_signal(sig_mask);
1307         if res.0 != Signal::INVALID {
1308             return res;
1309         } else {
1310             return self.sig_shared_pending.dequeue_signal(sig_mask);
1311         }
1312     }
1313 }
1314 
1315 impl Default for ProcessSignalInfo {
1316     fn default() -> Self {
1317         Self {
1318             sig_block: SigSet::empty(),
1319             sig_pending: SigPending::default(),
1320             sig_shared_pending: SigPending::default(),
1321         }
1322     }
1323 }
1324