1 use core::{ 2 hash::{Hash, Hasher}, 3 hint::spin_loop, 4 intrinsics::{likely, unlikely}, 5 mem::ManuallyDrop, 6 sync::atomic::{compiler_fence, AtomicBool, AtomicI32, AtomicIsize, AtomicUsize, Ordering}, 7 }; 8 9 use alloc::{ 10 string::{String, ToString}, 11 sync::{Arc, Weak}, 12 vec::Vec, 13 }; 14 use hashbrown::HashMap; 15 use system_error::SystemError; 16 17 use crate::{ 18 arch::{ 19 ipc::signal::{AtomicSignal, SigSet, Signal}, 20 process::ArchPCBInfo, 21 sched::sched, 22 CurrentIrqArch, 23 }, 24 exception::InterruptArch, 25 filesystem::{ 26 procfs::procfs_unregister_pid, 27 vfs::{file::FileDescriptorVec, FileType}, 28 }, 29 ipc::signal_types::{SigInfo, SigPending, SignalStruct}, 30 kdebug, kinfo, 31 libs::{ 32 align::AlignedBox, 33 casting::DowncastArc, 34 futex::{ 35 constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY}, 36 futex::Futex, 37 }, 38 lock_free_flags::LockFreeFlags, 39 rwlock::{RwLock, RwLockReadGuard, RwLockUpgradableGuard, RwLockWriteGuard}, 40 spinlock::{SpinLock, SpinLockGuard}, 41 wait_queue::WaitQueue, 42 }, 43 mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr}, 44 net::socket::SocketInode, 45 sched::{ 46 completion::Completion, 47 core::{sched_enqueue, CPU_EXECUTING}, 48 SchedPolicy, SchedPriority, 49 }, 50 smp::kick_cpu, 51 syscall::{user_access::clear_user, Syscall}, 52 }; 53 54 use self::kthread::WorkerPrivate; 55 56 pub mod abi; 57 pub mod c_adapter; 58 pub mod exec; 59 pub mod exit; 60 pub mod fork; 61 pub mod idle; 62 pub mod kthread; 63 pub mod pid; 64 pub mod process; 65 pub mod resource; 66 pub mod syscall; 67 68 /// 系统中所有进程的pcb 69 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None); 70 71 pub static mut SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None; 72 73 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成 74 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false; 75 76 #[derive(Debug)] 77 pub struct SwitchResult { 78 pub prev_pcb: Option<Arc<ProcessControlBlock>>, 79 pub next_pcb: Option<Arc<ProcessControlBlock>>, 80 } 81 82 impl SwitchResult { 83 pub fn new() -> Self { 84 Self { 85 prev_pcb: None, 86 next_pcb: None, 87 } 88 } 89 } 90 91 #[derive(Debug)] 92 pub struct ProcessManager; 93 impl ProcessManager { 94 #[inline(never)] 95 fn init() { 96 static INIT_FLAG: AtomicBool = AtomicBool::new(false); 97 if INIT_FLAG 98 .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) 99 .is_err() 100 { 101 panic!("ProcessManager has been initialized!"); 102 } 103 104 unsafe { 105 compiler_fence(Ordering::SeqCst); 106 kdebug!("To create address space for INIT process."); 107 // test_buddy(); 108 set_INITIAL_PROCESS_ADDRESS_SPACE( 109 AddressSpace::new(true).expect("Failed to create address space for INIT process."), 110 ); 111 kdebug!("INIT process address space created."); 112 compiler_fence(Ordering::SeqCst); 113 }; 114 115 ALL_PROCESS.lock_irqsave().replace(HashMap::new()); 116 Self::arch_init(); 117 kdebug!("process arch init done."); 118 Self::init_idle(); 119 kdebug!("process idle init done."); 120 121 unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true }; 122 kinfo!("Process Manager initialized."); 123 } 124 125 /// 判断进程管理器是否已经初始化完成 126 pub fn initialized() -> bool { 127 unsafe { __PROCESS_MANAGEMENT_INIT_DONE } 128 } 129 130 /// 获取当前进程的pcb 131 pub fn current_pcb() -> Arc<ProcessControlBlock> { 132 if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) { 133 kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false"); 134 loop { 135 spin_loop(); 136 } 137 } 138 return ProcessControlBlock::arch_current_pcb(); 139 } 140 141 /// 增加当前进程的锁持有计数 142 #[inline(always)] 143 pub fn preempt_disable() { 144 if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { 145 ProcessManager::current_pcb().preempt_disable(); 146 } 147 } 148 149 /// 减少当前进程的锁持有计数 150 #[inline(always)] 151 pub fn preempt_enable() { 152 if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { 153 ProcessManager::current_pcb().preempt_enable(); 154 } 155 } 156 157 /// 根据pid获取进程的pcb 158 /// 159 /// ## 参数 160 /// 161 /// - `pid` : 进程的pid 162 /// 163 /// ## 返回值 164 /// 165 /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None 166 pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> { 167 return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned(); 168 } 169 170 /// 向系统中添加一个进程的pcb 171 /// 172 /// ## 参数 173 /// 174 /// - `pcb` : 进程的pcb 175 /// 176 /// ## 返回值 177 /// 178 /// 无 179 pub fn add_pcb(pcb: Arc<ProcessControlBlock>) { 180 ALL_PROCESS 181 .lock_irqsave() 182 .as_mut() 183 .unwrap() 184 .insert(pcb.pid(), pcb.clone()); 185 } 186 187 /// 唤醒一个进程 188 pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> { 189 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 190 let state = pcb.sched_info().inner_lock_read_irqsave().state(); 191 if state.is_blocked() { 192 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 193 let state = writer.state(); 194 if state.is_blocked() { 195 writer.set_state(ProcessState::Runnable); 196 // avoid deadlock 197 drop(writer); 198 199 sched_enqueue(pcb.clone(), true); 200 return Ok(()); 201 } else if state.is_exited() { 202 return Err(SystemError::EINVAL); 203 } else { 204 return Ok(()); 205 } 206 } else if state.is_exited() { 207 return Err(SystemError::EINVAL); 208 } else { 209 return Ok(()); 210 } 211 } 212 213 /// 唤醒暂停的进程 214 pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> { 215 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 216 let state = pcb.sched_info().inner_lock_read_irqsave().state(); 217 if let ProcessState::Stopped = state { 218 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 219 let state = writer.state(); 220 if let ProcessState::Stopped = state { 221 writer.set_state(ProcessState::Runnable); 222 // avoid deadlock 223 drop(writer); 224 225 sched_enqueue(pcb.clone(), true); 226 return Ok(()); 227 } else if state.is_runnable() { 228 return Ok(()); 229 } else { 230 return Err(SystemError::EINVAL); 231 } 232 } else if state.is_runnable() { 233 return Ok(()); 234 } else { 235 return Err(SystemError::EINVAL); 236 } 237 } 238 239 /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成 240 /// 241 /// ## 注意 242 /// 243 /// - 进入当前函数之前,不能持有sched_info的锁 244 /// - 进入当前函数之前,必须关闭中断 245 /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列 246 pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> { 247 assert_eq!( 248 CurrentIrqArch::is_irq_enabled(), 249 false, 250 "interrupt must be disabled before enter ProcessManager::mark_sleep()" 251 ); 252 253 let pcb = ProcessManager::current_pcb(); 254 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 255 if !matches!(writer.state(), ProcessState::Exited(_)) { 256 writer.set_state(ProcessState::Blocked(interruptable)); 257 pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); 258 drop(writer); 259 260 return Ok(()); 261 } 262 return Err(SystemError::EINTR); 263 } 264 265 /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成 266 /// 267 /// ## 注意 268 /// 269 /// - 进入当前函数之前,不能持有sched_info的锁 270 /// - 进入当前函数之前,必须关闭中断 271 pub fn mark_stop() -> Result<(), SystemError> { 272 assert_eq!( 273 CurrentIrqArch::is_irq_enabled(), 274 false, 275 "interrupt must be disabled before enter ProcessManager::mark_stop()" 276 ); 277 278 let pcb = ProcessManager::current_pcb(); 279 let mut writer = pcb.sched_info().inner_lock_write_irqsave(); 280 if !matches!(writer.state(), ProcessState::Exited(_)) { 281 writer.set_state(ProcessState::Stopped); 282 pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); 283 drop(writer); 284 285 return Ok(()); 286 } 287 return Err(SystemError::EINTR); 288 } 289 /// 当子进程退出后向父进程发送通知 290 fn exit_notify() { 291 let current = ProcessManager::current_pcb(); 292 // 让INIT进程收养所有子进程 293 if current.pid() != Pid(1) { 294 unsafe { 295 current 296 .adopt_childen() 297 .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}")) 298 }; 299 let r = current.parent_pcb.read().upgrade(); 300 if r.is_none() { 301 return; 302 } 303 let parent_pcb = r.unwrap(); 304 let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32); 305 if r.is_err() { 306 kwarn!( 307 "failed to send kill signal to {:?}'s parent pcb {:?}", 308 current.pid(), 309 parent_pcb.pid() 310 ); 311 } 312 // todo: 这里需要向父进程发送SIGCHLD信号 313 // todo: 这里还需要根据线程组的信息,决定信号的发送 314 } 315 } 316 317 /// 退出当前进程 318 /// 319 /// ## 参数 320 /// 321 /// - `exit_code` : 进程的退出码 322 pub fn exit(exit_code: usize) -> ! { 323 // 关中断 324 unsafe { CurrentIrqArch::interrupt_disable() }; 325 let pcb = ProcessManager::current_pcb(); 326 pcb.sched_info 327 .inner_lock_write_irqsave() 328 .set_state(ProcessState::Exited(exit_code)); 329 pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true))); 330 331 // 进行进程退出后的工作 332 let thread = pcb.thread.write(); 333 if let Some(addr) = thread.set_child_tid { 334 unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") }; 335 } 336 337 if let Some(addr) = thread.clear_child_tid { 338 if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 { 339 let _ = 340 Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY); 341 } 342 unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") }; 343 } 344 345 // 如果是vfork出来的进程,则需要处理completion 346 if thread.vfork_done.is_some() { 347 thread.vfork_done.as_ref().unwrap().complete_all(); 348 } 349 drop(thread); 350 unsafe { pcb.basic_mut().set_user_vm(None) }; 351 drop(pcb); 352 ProcessManager::exit_notify(); 353 unsafe { CurrentIrqArch::interrupt_enable() }; 354 355 sched(); 356 loop {} 357 } 358 359 pub unsafe fn release(pid: Pid) { 360 let pcb = ProcessManager::find(pid); 361 if !pcb.is_none() { 362 // let pcb = pcb.unwrap(); 363 // 判断该pcb是否在全局没有任何引用 364 // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。 365 // 因此目前暂时注释掉,使得能跑 366 // if Arc::strong_count(&pcb) <= 2 { 367 // drop(pcb); 368 // ALL_PROCESS.lock().as_mut().unwrap().remove(&pid); 369 // } else { 370 // // 如果不为1就panic 371 // let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(), Arc::strong_count(&pcb)); 372 // kerror!("{}", msg); 373 // panic!() 374 // } 375 376 ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid); 377 } 378 } 379 380 /// 上下文切换完成后的钩子函数 381 unsafe fn switch_finish_hook() { 382 // kdebug!("switch_finish_hook"); 383 let prev_pcb = SWITCH_RESULT 384 .as_mut() 385 .unwrap() 386 .get_mut() 387 .prev_pcb 388 .take() 389 .expect("prev_pcb is None"); 390 let next_pcb = SWITCH_RESULT 391 .as_mut() 392 .unwrap() 393 .get_mut() 394 .next_pcb 395 .take() 396 .expect("next_pcb is None"); 397 398 // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁 399 prev_pcb.arch_info.force_unlock(); 400 next_pcb.arch_info.force_unlock(); 401 } 402 403 /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态 404 /// 405 /// ## 参数 406 /// 407 /// - `pcb` : 进程的pcb 408 #[allow(dead_code)] 409 pub fn kick(pcb: &Arc<ProcessControlBlock>) { 410 ProcessManager::current_pcb().preempt_disable(); 411 let cpu_id = pcb.sched_info().on_cpu(); 412 413 if let Some(cpu_id) = cpu_id { 414 let cpu_id = cpu_id; 415 416 if pcb.pid() == CPU_EXECUTING.get(cpu_id) { 417 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu"); 418 } 419 } 420 421 ProcessManager::current_pcb().preempt_enable(); 422 } 423 } 424 425 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换 426 #[cfg(target_arch = "x86_64")] 427 pub unsafe extern "sysv64" fn switch_finish_hook() { 428 ProcessManager::switch_finish_hook(); 429 } 430 #[cfg(target_arch = "riscv64")] 431 pub unsafe extern "C" fn switch_finish_hook() { 432 ProcessManager::switch_finish_hook(); 433 } 434 435 int_like!(Pid, AtomicPid, usize, AtomicUsize); 436 437 impl Hash for Pid { 438 fn hash<H: Hasher>(&self, state: &mut H) { 439 self.0.hash(state); 440 } 441 } 442 443 impl Pid { 444 pub fn to_string(&self) -> String { 445 self.0.to_string() 446 } 447 } 448 449 #[derive(Debug, Clone, Copy, PartialEq, Eq)] 450 pub enum ProcessState { 451 /// The process is running on a CPU or in a run queue. 452 Runnable, 453 /// The process is waiting for an event to occur. 454 /// 其中的bool表示该等待过程是否可以被打断。 455 /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。 456 /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。 457 Blocked(bool), 458 /// 进程被信号终止 459 Stopped, 460 /// 进程已经退出,usize表示进程的退出码 461 Exited(usize), 462 } 463 464 #[allow(dead_code)] 465 impl ProcessState { 466 #[inline(always)] 467 pub fn is_runnable(&self) -> bool { 468 return matches!(self, ProcessState::Runnable); 469 } 470 471 #[inline(always)] 472 pub fn is_blocked(&self) -> bool { 473 return matches!(self, ProcessState::Blocked(_)); 474 } 475 476 #[inline(always)] 477 pub fn is_blocked_interruptable(&self) -> bool { 478 return matches!(self, ProcessState::Blocked(true)); 479 } 480 481 /// Returns `true` if the process state is [`Exited`]. 482 #[inline(always)] 483 pub fn is_exited(&self) -> bool { 484 return matches!(self, ProcessState::Exited(_)); 485 } 486 487 /// Returns `true` if the process state is [`Stopped`]. 488 /// 489 /// [`Stopped`]: ProcessState::Stopped 490 #[inline(always)] 491 pub fn is_stopped(&self) -> bool { 492 matches!(self, ProcessState::Stopped) 493 } 494 495 /// Returns exit code if the process state is [`Exited`]. 496 #[inline(always)] 497 pub fn exit_code(&self) -> Option<usize> { 498 match self { 499 ProcessState::Exited(code) => Some(*code), 500 _ => None, 501 } 502 } 503 } 504 505 bitflags! { 506 /// pcb的标志位 507 pub struct ProcessFlags: usize { 508 /// 当前pcb表示一个内核线程 509 const KTHREAD = 1 << 0; 510 /// 当前进程需要被调度 511 const NEED_SCHEDULE = 1 << 1; 512 /// 进程由于vfork而与父进程存在资源共享 513 const VFORK = 1 << 2; 514 /// 进程不可被冻结 515 const NOFREEZE = 1 << 3; 516 /// 进程正在退出 517 const EXITING = 1 << 4; 518 /// 进程由于接收到终止信号唤醒 519 const WAKEKILL = 1 << 5; 520 /// 进程由于接收到信号而退出.(Killed by a signal) 521 const SIGNALED = 1 << 6; 522 /// 进程需要迁移到其他cpu上 523 const NEED_MIGRATE = 1 << 7; 524 /// 随机化的虚拟地址空间,主要用于动态链接器的加载 525 const RANDOMIZE = 1 << 8; 526 } 527 } 528 529 #[derive(Debug)] 530 pub struct ProcessControlBlock { 531 /// 当前进程的pid 532 pid: Pid, 533 /// 当前进程的线程组id(这个值在同一个线程组内永远不变) 534 tgid: Pid, 535 536 basic: RwLock<ProcessBasicInfo>, 537 /// 当前进程的自旋锁持有计数 538 preempt_count: AtomicUsize, 539 540 flags: LockFreeFlags<ProcessFlags>, 541 worker_private: SpinLock<Option<WorkerPrivate>>, 542 /// 进程的内核栈 543 kernel_stack: RwLock<KernelStack>, 544 545 /// 系统调用栈 546 syscall_stack: RwLock<KernelStack>, 547 548 /// 与调度相关的信息 549 sched_info: ProcessSchedulerInfo, 550 /// 与处理器架构相关的信息 551 arch_info: SpinLock<ArchPCBInfo>, 552 /// 与信号处理相关的信息(似乎可以是无锁的) 553 sig_info: RwLock<ProcessSignalInfo>, 554 /// 信号处理结构体 555 sig_struct: SpinLock<SignalStruct>, 556 /// 退出信号S 557 exit_signal: AtomicSignal, 558 559 /// 父进程指针 560 parent_pcb: RwLock<Weak<ProcessControlBlock>>, 561 /// 真实父进程指针 562 real_parent_pcb: RwLock<Weak<ProcessControlBlock>>, 563 564 /// 子进程链表 565 children: RwLock<Vec<Pid>>, 566 567 /// 等待队列 568 wait_queue: WaitQueue, 569 570 /// 线程信息 571 thread: RwLock<ThreadInfo>, 572 } 573 574 impl ProcessControlBlock { 575 /// Generate a new pcb. 576 /// 577 /// ## 参数 578 /// 579 /// - `name` : 进程的名字 580 /// - `kstack` : 进程的内核栈 581 /// 582 /// ## 返回值 583 /// 584 /// 返回一个新的pcb 585 pub fn new(name: String, kstack: KernelStack) -> Arc<Self> { 586 return Self::do_create_pcb(name, kstack, false); 587 } 588 589 /// 创建一个新的idle进程 590 /// 591 /// 请注意,这个函数只能在进程管理初始化的时候调用。 592 pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> { 593 let name = format!("idle-{}", cpu_id); 594 return Self::do_create_pcb(name, kstack, true); 595 } 596 597 #[inline(never)] 598 fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> { 599 let (pid, ppid, cwd) = if is_idle { 600 (Pid(0), Pid(0), "/".to_string()) 601 } else { 602 let ppid = ProcessManager::current_pcb().pid(); 603 let cwd = ProcessManager::current_pcb().basic().cwd(); 604 (Self::generate_pid(), ppid, cwd) 605 }; 606 607 let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None); 608 let preempt_count = AtomicUsize::new(0); 609 let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) }; 610 611 let sched_info = ProcessSchedulerInfo::new(None); 612 let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack)); 613 614 let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid) 615 .map(|p| Arc::downgrade(&p)) 616 .unwrap_or_else(|| Weak::new()); 617 618 let pcb = Self { 619 pid, 620 tgid: pid, 621 basic: basic_info, 622 preempt_count, 623 flags, 624 kernel_stack: RwLock::new(kstack), 625 syscall_stack: RwLock::new(KernelStack::new().unwrap()), 626 worker_private: SpinLock::new(None), 627 sched_info, 628 arch_info, 629 sig_info: RwLock::new(ProcessSignalInfo::default()), 630 sig_struct: SpinLock::new(SignalStruct::new()), 631 exit_signal: AtomicSignal::new(Signal::SIGCHLD), 632 parent_pcb: RwLock::new(ppcb.clone()), 633 real_parent_pcb: RwLock::new(ppcb), 634 children: RwLock::new(Vec::new()), 635 wait_queue: WaitQueue::INIT, 636 thread: RwLock::new(ThreadInfo::new()), 637 }; 638 639 // 初始化系统调用栈 640 #[cfg(target_arch = "x86_64")] 641 pcb.arch_info 642 .lock() 643 .init_syscall_stack(&pcb.syscall_stack.read()); 644 645 let pcb = Arc::new(pcb); 646 647 // 设置进程的arc指针到内核栈和系统调用栈的最低地址处 648 unsafe { 649 pcb.kernel_stack 650 .write() 651 .set_pcb(Arc::downgrade(&pcb)) 652 .unwrap(); 653 654 pcb.syscall_stack 655 .write() 656 .set_pcb(Arc::downgrade(&pcb)) 657 .unwrap() 658 }; 659 660 // 将当前pcb加入父进程的子进程哈希表中 661 if pcb.pid() > Pid(1) { 662 if let Some(ppcb_arc) = pcb.parent_pcb.read().upgrade() { 663 let mut children = ppcb_arc.children.write_irqsave(); 664 children.push(pcb.pid()); 665 } else { 666 panic!("parent pcb is None"); 667 } 668 } 669 670 return pcb; 671 } 672 673 /// 生成一个新的pid 674 #[inline(always)] 675 fn generate_pid() -> Pid { 676 static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1)); 677 return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst); 678 } 679 680 /// 返回当前进程的锁持有计数 681 #[inline(always)] 682 pub fn preempt_count(&self) -> usize { 683 return self.preempt_count.load(Ordering::SeqCst); 684 } 685 686 /// 增加当前进程的锁持有计数 687 #[inline(always)] 688 pub fn preempt_disable(&self) { 689 self.preempt_count.fetch_add(1, Ordering::SeqCst); 690 } 691 692 /// 减少当前进程的锁持有计数 693 #[inline(always)] 694 pub fn preempt_enable(&self) { 695 self.preempt_count.fetch_sub(1, Ordering::SeqCst); 696 } 697 698 #[inline(always)] 699 pub unsafe fn set_preempt_count(&self, count: usize) { 700 self.preempt_count.store(count, Ordering::SeqCst); 701 } 702 703 #[inline(always)] 704 pub fn flags(&self) -> &mut ProcessFlags { 705 return self.flags.get_mut(); 706 } 707 708 /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改 709 /// 否则会导致死锁 710 #[inline(always)] 711 pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> { 712 return self.basic.read(); 713 } 714 715 #[inline(always)] 716 pub fn set_name(&self, name: String) { 717 self.basic.write().set_name(name); 718 } 719 720 #[inline(always)] 721 pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> { 722 return self.basic.write_irqsave(); 723 } 724 725 /// # 获取arch info的锁,同时关闭中断 726 #[inline(always)] 727 pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> { 728 return self.arch_info.lock_irqsave(); 729 } 730 731 /// # 获取arch info的锁,但是不关闭中断 732 /// 733 /// 由于arch info在进程切换的时候会使用到, 734 /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的. 735 /// 736 /// 只能在以下情况下使用这个函数: 737 /// - 在中断上下文中(中断已经禁用),获取arch info的锁。 738 /// - 刚刚创建新的pcb 739 #[inline(always)] 740 pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> { 741 return self.arch_info.lock(); 742 } 743 744 #[inline(always)] 745 pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> { 746 return self.kernel_stack.read(); 747 } 748 749 #[inline(always)] 750 #[allow(dead_code)] 751 pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> { 752 return self.kernel_stack.write(); 753 } 754 755 #[inline(always)] 756 pub fn sched_info(&self) -> &ProcessSchedulerInfo { 757 return &self.sched_info; 758 } 759 760 #[inline(always)] 761 pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> { 762 return self.worker_private.lock(); 763 } 764 765 #[inline(always)] 766 pub fn pid(&self) -> Pid { 767 return self.pid; 768 } 769 770 #[inline(always)] 771 pub fn tgid(&self) -> Pid { 772 return self.tgid; 773 } 774 775 /// 获取文件描述符表的Arc指针 776 #[inline(always)] 777 pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> { 778 return self.basic.read().fd_table().unwrap(); 779 } 780 781 /// 根据文件描述符序号,获取socket对象的Arc指针 782 /// 783 /// ## 参数 784 /// 785 /// - `fd` 文件描述符序号 786 /// 787 /// ## 返回值 788 /// 789 /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None 790 pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> { 791 let binding = ProcessManager::current_pcb().fd_table(); 792 let fd_table_guard = binding.read(); 793 794 let f = fd_table_guard.get_file_by_fd(fd)?; 795 drop(fd_table_guard); 796 797 let guard = f.lock(); 798 if guard.file_type() != FileType::Socket { 799 return None; 800 } 801 let socket: Arc<SocketInode> = guard 802 .inode() 803 .downcast_arc::<SocketInode>() 804 .expect("Not a socket inode"); 805 return Some(socket); 806 } 807 808 /// 当前进程退出时,让初始进程收养所有子进程 809 unsafe fn adopt_childen(&self) -> Result<(), SystemError> { 810 match ProcessManager::find(Pid(1)) { 811 Some(init_pcb) => { 812 let childen_guard = self.children.write(); 813 let mut init_childen_guard = init_pcb.children.write(); 814 815 childen_guard.iter().for_each(|pid| { 816 init_childen_guard.push(*pid); 817 }); 818 819 return Ok(()); 820 } 821 _ => Err(SystemError::ECHILD), 822 } 823 } 824 825 /// 生成进程的名字 826 pub fn generate_name(program_path: &str, args: &Vec<String>) -> String { 827 let mut name = program_path.to_string(); 828 for arg in args { 829 name.push(' '); 830 name.push_str(arg); 831 } 832 return name; 833 } 834 835 pub fn sig_info(&self) -> RwLockReadGuard<ProcessSignalInfo> { 836 self.sig_info.read() 837 } 838 839 pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> { 840 self.sig_info.read_irqsave() 841 } 842 843 pub fn try_siginfo(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> { 844 for _ in 0..times { 845 if let Some(r) = self.sig_info.try_read() { 846 return Some(r); 847 } 848 } 849 850 return None; 851 } 852 853 pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> { 854 self.sig_info.write_irqsave() 855 } 856 857 pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> { 858 for _ in 0..times { 859 if let Some(r) = self.sig_info.try_write() { 860 return Some(r); 861 } 862 } 863 864 return None; 865 } 866 867 pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> { 868 self.sig_struct.lock() 869 } 870 871 pub fn try_sig_struct_irq(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> { 872 for _ in 0..times { 873 if let Ok(r) = self.sig_struct.try_lock_irqsave() { 874 return Some(r); 875 } 876 } 877 878 return None; 879 } 880 881 pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> { 882 self.sig_struct.lock_irqsave() 883 } 884 } 885 886 impl Drop for ProcessControlBlock { 887 fn drop(&mut self) { 888 // 在ProcFS中,解除进程的注册 889 procfs_unregister_pid(self.pid()) 890 .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}")); 891 892 if let Some(ppcb) = self.parent_pcb.read().upgrade() { 893 ppcb.children.write().retain(|pid| *pid != self.pid()); 894 } 895 } 896 } 897 898 /// 线程信息 899 #[derive(Debug)] 900 pub struct ThreadInfo { 901 // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程 902 clear_child_tid: Option<VirtAddr>, 903 set_child_tid: Option<VirtAddr>, 904 905 vfork_done: Option<Arc<Completion>>, 906 /// 线程组的组长 907 group_leader: Weak<ProcessControlBlock>, 908 } 909 910 impl ThreadInfo { 911 pub fn new() -> Self { 912 Self { 913 clear_child_tid: None, 914 set_child_tid: None, 915 vfork_done: None, 916 group_leader: Weak::default(), 917 } 918 } 919 920 pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> { 921 return self.group_leader.upgrade(); 922 } 923 } 924 925 /// 进程的基本信息 926 /// 927 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。 928 #[derive(Debug)] 929 pub struct ProcessBasicInfo { 930 /// 当前进程的进程组id 931 pgid: Pid, 932 /// 当前进程的父进程的pid 933 ppid: Pid, 934 /// 进程的名字 935 name: String, 936 937 /// 当前进程的工作目录 938 cwd: String, 939 940 /// 用户地址空间 941 user_vm: Option<Arc<AddressSpace>>, 942 943 /// 文件描述符表 944 fd_table: Option<Arc<RwLock<FileDescriptorVec>>>, 945 } 946 947 impl ProcessBasicInfo { 948 #[inline(never)] 949 pub fn new( 950 pgid: Pid, 951 ppid: Pid, 952 name: String, 953 cwd: String, 954 user_vm: Option<Arc<AddressSpace>>, 955 ) -> RwLock<Self> { 956 let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new())); 957 return RwLock::new(Self { 958 pgid, 959 ppid, 960 name, 961 cwd, 962 user_vm, 963 fd_table: Some(fd_table), 964 }); 965 } 966 967 pub fn pgid(&self) -> Pid { 968 return self.pgid; 969 } 970 971 pub fn ppid(&self) -> Pid { 972 return self.ppid; 973 } 974 975 pub fn name(&self) -> &str { 976 return &self.name; 977 } 978 979 pub fn set_name(&mut self, name: String) { 980 self.name = name; 981 } 982 983 pub fn cwd(&self) -> String { 984 return self.cwd.clone(); 985 } 986 pub fn set_cwd(&mut self, path: String) { 987 return self.cwd = path; 988 } 989 990 pub fn user_vm(&self) -> Option<Arc<AddressSpace>> { 991 return self.user_vm.clone(); 992 } 993 994 pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) { 995 self.user_vm = user_vm; 996 } 997 998 pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> { 999 return self.fd_table.clone(); 1000 } 1001 1002 pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) { 1003 self.fd_table = fd_table; 1004 } 1005 } 1006 1007 #[derive(Debug)] 1008 pub struct ProcessSchedulerInfo { 1009 /// 当前进程所在的cpu 1010 on_cpu: AtomicI32, 1011 /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位), 1012 /// 该字段存储要被迁移到的目标处理器核心号 1013 migrate_to: AtomicI32, 1014 inner_locked: RwLock<InnerSchedInfo>, 1015 /// 进程的调度优先级 1016 priority: SchedPriority, 1017 /// 当前进程的虚拟运行时间 1018 virtual_runtime: AtomicIsize, 1019 /// 由实时调度器管理的时间片 1020 rt_time_slice: AtomicIsize, 1021 } 1022 1023 #[derive(Debug)] 1024 pub struct InnerSchedInfo { 1025 /// 当前进程的状态 1026 state: ProcessState, 1027 /// 进程的调度策略 1028 sched_policy: SchedPolicy, 1029 } 1030 1031 impl InnerSchedInfo { 1032 pub fn state(&self) -> ProcessState { 1033 return self.state; 1034 } 1035 1036 pub fn set_state(&mut self, state: ProcessState) { 1037 self.state = state; 1038 } 1039 1040 pub fn policy(&self) -> SchedPolicy { 1041 return self.sched_policy; 1042 } 1043 } 1044 1045 impl ProcessSchedulerInfo { 1046 #[inline(never)] 1047 pub fn new(on_cpu: Option<u32>) -> Self { 1048 let cpu_id = match on_cpu { 1049 Some(cpu_id) => cpu_id as i32, 1050 None => -1, 1051 }; 1052 return Self { 1053 on_cpu: AtomicI32::new(cpu_id), 1054 migrate_to: AtomicI32::new(-1), 1055 inner_locked: RwLock::new(InnerSchedInfo { 1056 state: ProcessState::Blocked(false), 1057 sched_policy: SchedPolicy::CFS, 1058 }), 1059 virtual_runtime: AtomicIsize::new(0), 1060 rt_time_slice: AtomicIsize::new(0), 1061 priority: SchedPriority::new(100).unwrap(), 1062 }; 1063 } 1064 1065 pub fn on_cpu(&self) -> Option<u32> { 1066 let on_cpu = self.on_cpu.load(Ordering::SeqCst); 1067 if on_cpu == -1 { 1068 return None; 1069 } else { 1070 return Some(on_cpu as u32); 1071 } 1072 } 1073 1074 pub fn set_on_cpu(&self, on_cpu: Option<u32>) { 1075 if let Some(cpu_id) = on_cpu { 1076 self.on_cpu.store(cpu_id as i32, Ordering::SeqCst); 1077 } else { 1078 self.on_cpu.store(-1, Ordering::SeqCst); 1079 } 1080 } 1081 1082 pub fn migrate_to(&self) -> Option<u32> { 1083 let migrate_to = self.migrate_to.load(Ordering::SeqCst); 1084 if migrate_to == -1 { 1085 return None; 1086 } else { 1087 return Some(migrate_to as u32); 1088 } 1089 } 1090 1091 pub fn set_migrate_to(&self, migrate_to: Option<u32>) { 1092 if let Some(data) = migrate_to { 1093 self.migrate_to.store(data as i32, Ordering::SeqCst); 1094 } else { 1095 self.migrate_to.store(-1, Ordering::SeqCst) 1096 } 1097 } 1098 1099 pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> { 1100 return self.inner_locked.write_irqsave(); 1101 } 1102 1103 pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> { 1104 return self.inner_locked.read_irqsave(); 1105 } 1106 1107 pub fn inner_lock_try_read_irqsave( 1108 &self, 1109 times: u8, 1110 ) -> Option<RwLockReadGuard<InnerSchedInfo>> { 1111 for _ in 0..times { 1112 if let Some(r) = self.inner_locked.try_read_irqsave() { 1113 return Some(r); 1114 } 1115 } 1116 1117 return None; 1118 } 1119 1120 pub fn inner_lock_try_upgradable_read_irqsave( 1121 &self, 1122 times: u8, 1123 ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> { 1124 for _ in 0..times { 1125 if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() { 1126 return Some(r); 1127 } 1128 } 1129 1130 return None; 1131 } 1132 1133 pub fn virtual_runtime(&self) -> isize { 1134 return self.virtual_runtime.load(Ordering::SeqCst); 1135 } 1136 1137 pub fn set_virtual_runtime(&self, virtual_runtime: isize) { 1138 self.virtual_runtime 1139 .store(virtual_runtime, Ordering::SeqCst); 1140 } 1141 pub fn increase_virtual_runtime(&self, delta: isize) { 1142 self.virtual_runtime.fetch_add(delta, Ordering::SeqCst); 1143 } 1144 1145 pub fn rt_time_slice(&self) -> isize { 1146 return self.rt_time_slice.load(Ordering::SeqCst); 1147 } 1148 1149 pub fn set_rt_time_slice(&self, rt_time_slice: isize) { 1150 self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst); 1151 } 1152 1153 pub fn increase_rt_time_slice(&self, delta: isize) { 1154 self.rt_time_slice.fetch_add(delta, Ordering::SeqCst); 1155 } 1156 1157 pub fn priority(&self) -> SchedPriority { 1158 return self.priority; 1159 } 1160 } 1161 1162 #[derive(Debug, Clone)] 1163 pub struct KernelStack { 1164 stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>, 1165 /// 标记该内核栈是否可以被释放 1166 can_be_freed: bool, 1167 } 1168 1169 impl KernelStack { 1170 pub const SIZE: usize = 0x4000; 1171 pub const ALIGN: usize = 0x4000; 1172 1173 pub fn new() -> Result<Self, SystemError> { 1174 return Ok(Self { 1175 stack: Some( 1176 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?, 1177 ), 1178 can_be_freed: true, 1179 }); 1180 } 1181 1182 /// 根据已有的空间,构造一个内核栈结构体 1183 /// 1184 /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误! 1185 pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> { 1186 if base.is_null() || base.check_aligned(Self::ALIGN) == false { 1187 return Err(SystemError::EFAULT); 1188 } 1189 1190 return Ok(Self { 1191 stack: Some( 1192 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked( 1193 base.data() as *mut [u8; KernelStack::SIZE], 1194 ), 1195 ), 1196 can_be_freed: false, 1197 }); 1198 } 1199 1200 /// 返回内核栈的起始虚拟地址(低地址) 1201 pub fn start_address(&self) -> VirtAddr { 1202 return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize); 1203 } 1204 1205 /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址) 1206 pub fn stack_max_address(&self) -> VirtAddr { 1207 return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE); 1208 } 1209 1210 pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> { 1211 // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处 1212 let p: *const ProcessControlBlock = Weak::into_raw(pcb); 1213 let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; 1214 1215 // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误 1216 if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) { 1217 kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr); 1218 return Err(SystemError::EPERM); 1219 } 1220 // 将pcb的地址放到内核栈的最低地址处 1221 unsafe { 1222 *stack_bottom_ptr = p; 1223 } 1224 1225 return Ok(()); 1226 } 1227 1228 /// 清除内核栈的pcb指针 1229 /// 1230 /// ## 参数 1231 /// 1232 /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题 1233 pub unsafe fn clear_pcb(&mut self, force: bool) { 1234 let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; 1235 if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) { 1236 return; 1237 } 1238 1239 if !force { 1240 let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr); 1241 drop(pcb_ptr); 1242 } 1243 1244 *stack_bottom_ptr = core::ptr::null(); 1245 } 1246 1247 /// 返回指向当前内核栈pcb的Arc指针 1248 #[allow(dead_code)] 1249 pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> { 1250 // 从内核栈的最低地址处取出pcb的地址 1251 let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock; 1252 if unlikely(unsafe { (*p).is_null() }) { 1253 return None; 1254 } 1255 1256 // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用 1257 let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> = 1258 ManuallyDrop::new(Weak::from_raw(*p)); 1259 1260 let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?; 1261 return Some(new_arc); 1262 } 1263 } 1264 1265 impl Drop for KernelStack { 1266 fn drop(&mut self) { 1267 if !self.stack.is_none() { 1268 let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock; 1269 if unsafe { !(*ptr).is_null() } { 1270 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) }; 1271 drop(pcb_ptr); 1272 } 1273 } 1274 // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数 1275 if !self.can_be_freed { 1276 let bx = self.stack.take(); 1277 core::mem::forget(bx); 1278 } 1279 } 1280 } 1281 1282 pub fn process_init() { 1283 ProcessManager::init(); 1284 } 1285 1286 #[derive(Debug)] 1287 pub struct ProcessSignalInfo { 1288 // 当前进程 1289 sig_block: SigSet, 1290 // sig_pending 中存储当前线程要处理的信号 1291 sig_pending: SigPending, 1292 // sig_shared_pending 中存储当前线程所属进程要处理的信号 1293 sig_shared_pending: SigPending, 1294 } 1295 1296 impl ProcessSignalInfo { 1297 pub fn sig_block(&self) -> &SigSet { 1298 &self.sig_block 1299 } 1300 1301 pub fn sig_pending(&self) -> &SigPending { 1302 &self.sig_pending 1303 } 1304 1305 pub fn sig_pending_mut(&mut self) -> &mut SigPending { 1306 &mut self.sig_pending 1307 } 1308 1309 pub fn sig_block_mut(&mut self) -> &mut SigSet { 1310 &mut self.sig_block 1311 } 1312 1313 pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending { 1314 &mut self.sig_shared_pending 1315 } 1316 1317 pub fn sig_shared_pending(&self) -> &SigPending { 1318 &self.sig_shared_pending 1319 } 1320 1321 /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号 1322 /// 1323 /// ## 参数 1324 /// 1325 /// - `sig_mask` 被忽略掉的信号 1326 /// 1327 pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) { 1328 let res = self.sig_pending.dequeue_signal(sig_mask); 1329 if res.0 != Signal::INVALID { 1330 return res; 1331 } else { 1332 return self.sig_shared_pending.dequeue_signal(sig_mask); 1333 } 1334 } 1335 } 1336 1337 impl Default for ProcessSignalInfo { 1338 fn default() -> Self { 1339 Self { 1340 sig_block: SigSet::empty(), 1341 sig_pending: SigPending::default(), 1342 sig_shared_pending: SigPending::default(), 1343 } 1344 } 1345 } 1346