1 use core::{ 2 hash::{Hash, Hasher}, 3 hint::spin_loop, 4 intrinsics::{likely, unlikely}, 5 mem::ManuallyDrop, 6 sync::atomic::{compiler_fence, AtomicBool, AtomicI32, AtomicIsize, AtomicUsize, Ordering}, 7 }; 8 9 use alloc::{ 10 string::{String, ToString}, 11 sync::{Arc, Weak}, 12 vec::Vec, 13 }; 14 use hashbrown::HashMap; 15 16 use crate::{ 17 arch::{ 18 ipc::signal::{SigSet, Signal}, 19 process::ArchPCBInfo, 20 sched::sched, 21 CurrentIrqArch, 22 }, 23 exception::InterruptArch, 24 filesystem::{ 25 procfs::procfs_unregister_pid, 26 vfs::{file::FileDescriptorVec, FileType}, 27 }, 28 ipc::signal_types::{SigInfo, SigPending, SignalStruct}, 29 kdebug, kinfo, 30 libs::{ 31 align::AlignedBox, 32 casting::DowncastArc, 33 futex::{ 34 constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY}, 35 futex::Futex, 36 }, 37 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 38 spinlock::{SpinLock, SpinLockGuard}, 39 wait_queue::WaitQueue, 40 }, 41 mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr}, 42 net::socket::SocketInode, 43 sched::{ 44 completion::Completion, 45 core::{sched_enqueue, CPU_EXECUTING}, 46 SchedPolicy, SchedPriority, 47 }, 48 smp::kick_cpu, 49 syscall::{user_access::clear_user, Syscall, SystemError}, 50 }; 51 52 use self::kthread::WorkerPrivate; 53 54 pub mod abi; 55 pub mod c_adapter; 56 pub mod exec; 57 pub mod fork; 58 pub mod idle; 59 pub mod init; 60 pub mod kthread; 61 pub mod pid; 62 pub mod process; 63 pub mod syscall; 64 65 /// 系统中所有进程的pcb 66 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None); 67 68 pub static mut SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None; 69 70 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成 71 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false; 72 73 #[derive(Debug)] 74 pub struct SwitchResult { 75 pub prev_pcb: Option<Arc<ProcessControlBlock>>, 76 pub next_pcb: Option<Arc<ProcessControlBlock>>, 77 } 78 79 impl SwitchResult { 80 pub fn new() -> Self { 81 Self { 82 prev_pcb: None, 83 next_pcb: None, 84 } 85 } 86 } 87 88 #[derive(Debug)] 89 pub struct ProcessManager; 90 impl ProcessManager { 91 fn init() { 92 static INIT_FLAG: AtomicBool = AtomicBool::new(false); 93 if INIT_FLAG 94 .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) 95 .is_err() 96 { 97 panic!("ProcessManager has been initialized!"); 98 } 99 100 unsafe { 101 compiler_fence(Ordering::SeqCst); 102 kdebug!("To create address space for INIT process."); 103 // test_buddy(); 104 set_INITIAL_PROCESS_ADDRESS_SPACE( 105 AddressSpace::new(true).expect("Failed to create address space for INIT process."), 106 ); 107 kdebug!("INIT process address space created."); 108 compiler_fence(Ordering::SeqCst); 109 }; 110 111 ALL_PROCESS.lock().replace(HashMap::new()); 112 Self::arch_init(); 113 kdebug!("process arch init done."); 114 Self::init_idle(); 115 kdebug!("process idle init done."); 116 117 unsafe { 118 __PROCESS_MANAGEMENT_INIT_DONE = true; 119 } 120 kinfo!("Process Manager initialized."); 121 } 122 123 /// 获取当前进程的pcb 124 pub fn current_pcb() -> Arc<ProcessControlBlock> { 125 if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) { 126 kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false"); 127 loop { 128 spin_loop(); 129 } 130 } 131 return ProcessControlBlock::arch_current_pcb(); 132 } 133 134 /// 增加当前进程的锁持有计数 135 #[inline(always)] 136 pub fn preempt_disable() { 137 if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { 138 ProcessManager::current_pcb().preempt_disable(); 139 } 140 } 141 142 /// 减少当前进程的锁持有计数 143 #[inline(always)] 144 pub fn preempt_enable() { 145 if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { 146 ProcessManager::current_pcb().preempt_enable(); 147 } 148 } 149 150 /// 根据pid获取进程的pcb 151 /// 152 /// ## 参数 153 /// 154 /// - `pid` : 进程的pid 155 /// 156 /// ## 返回值 157 /// 158 /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None 159 pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> { 160 return ALL_PROCESS.lock().as_ref()?.get(&pid).cloned(); 161 } 162 163 /// 向系统中添加一个进程的pcb 164 /// 165 /// ## 参数 166 /// 167 /// - `pcb` : 进程的pcb 168 /// 169 /// ## 返回值 170 /// 171 /// 无 172 pub fn add_pcb(pcb: Arc<ProcessControlBlock>) { 173 ALL_PROCESS 174 .lock() 175 .as_mut() 176 .unwrap() 177 .insert(pcb.pid(), pcb.clone()); 178 } 179 180 /// 唤醒一个进程 181 pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> { 182 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 183 let state = pcb.sched_info().state(); 184 if state.is_blocked() { 185 let mut writer = pcb.sched_info_mut(); 186 let state = writer.state(); 187 if state.is_blocked() { 188 writer.set_state(ProcessState::Runnable); 189 // avoid deadlock 190 drop(writer); 191 192 sched_enqueue(pcb.clone(), true); 193 return Ok(()); 194 } else if state.is_exited() { 195 return Err(SystemError::EINVAL); 196 } else { 197 return Ok(()); 198 } 199 } else if state.is_exited() { 200 return Err(SystemError::EINVAL); 201 } else { 202 return Ok(()); 203 } 204 } 205 206 /// 唤醒暂停的进程 207 pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> { 208 let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 209 let state = pcb.sched_info().state(); 210 if let ProcessState::Stopped = state { 211 let mut writer = pcb.sched_info_mut(); 212 let state = writer.state(); 213 if let ProcessState::Stopped = state { 214 writer.set_state(ProcessState::Runnable); 215 // avoid deadlock 216 drop(writer); 217 218 sched_enqueue(pcb.clone(), true); 219 return Ok(()); 220 } else if state.is_runnable() { 221 return Ok(()); 222 } else { 223 return Err(SystemError::EINVAL); 224 } 225 } else if state.is_runnable() { 226 return Ok(()); 227 } else { 228 return Err(SystemError::EINVAL); 229 } 230 } 231 232 /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成 233 /// 234 /// ## 注意 235 /// 236 /// - 进入当前函数之前,不能持有sched_info的锁 237 /// - 进入当前函数之前,必须关闭中断 238 pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> { 239 assert_eq!( 240 CurrentIrqArch::is_irq_enabled(), 241 false, 242 "interrupt must be disabled before enter ProcessManager::mark_sleep()" 243 ); 244 245 let pcb = ProcessManager::current_pcb(); 246 let mut writer = pcb.sched_info_mut_irqsave(); 247 if !matches!(writer.state(), ProcessState::Exited(_)) { 248 writer.set_state(ProcessState::Blocked(interruptable)); 249 pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); 250 drop(writer); 251 252 return Ok(()); 253 } 254 return Err(SystemError::EINTR); 255 } 256 257 /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成 258 /// 259 /// ## 注意 260 /// 261 /// - 进入当前函数之前,不能持有sched_info的锁 262 /// - 进入当前函数之前,必须关闭中断 263 pub fn mark_stop() -> Result<(), SystemError> { 264 assert_eq!( 265 CurrentIrqArch::is_irq_enabled(), 266 false, 267 "interrupt must be disabled before enter ProcessManager::mark_stop()" 268 ); 269 270 let pcb = ProcessManager::current_pcb(); 271 let mut writer = pcb.sched_info_mut_irqsave(); 272 if !matches!(writer.state(), ProcessState::Exited(_)) { 273 writer.set_state(ProcessState::Stopped); 274 pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); 275 drop(writer); 276 277 return Ok(()); 278 } 279 return Err(SystemError::EINTR); 280 } 281 /// 当子进程退出后向父进程发送通知 282 fn exit_notify() { 283 let current = ProcessManager::current_pcb(); 284 // 让INIT进程收养所有子进程 285 if current.pid() != Pid(1) { 286 unsafe { 287 current 288 .adopt_childen() 289 .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}")) 290 }; 291 let r = current.parent_pcb.read().upgrade(); 292 if r.is_none() { 293 return; 294 } 295 let parent_pcb = r.unwrap(); 296 let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32); 297 if r.is_err() { 298 kwarn!( 299 "failed to send kill signal to {:?}'s parent pcb {:?}", 300 current.pid(), 301 parent_pcb.pid() 302 ); 303 } 304 // todo: 当信号机制重写后,这里需要向父进程发送SIGCHLD信号 305 } 306 } 307 308 /// 退出当前进程 309 /// 310 /// ## 参数 311 /// 312 /// - `exit_code` : 进程的退出码 313 pub fn exit(exit_code: usize) -> ! { 314 // 关中断 315 let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; 316 let pcb = ProcessManager::current_pcb(); 317 pcb.sched_info 318 .write() 319 .set_state(ProcessState::Exited(exit_code)); 320 pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true))); 321 322 // 进行进程退出后的工作 323 let thread = pcb.thread.write(); 324 if let Some(addr) = thread.set_child_tid { 325 unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") }; 326 } 327 328 if let Some(addr) = thread.clear_child_tid { 329 if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 { 330 let _ = 331 Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY); 332 } 333 unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") }; 334 } 335 336 // 如果是vfork出来的进程,则需要处理completion 337 if thread.vfork_done.is_some() { 338 thread.vfork_done.as_ref().unwrap().complete_all(); 339 } 340 drop(thread); 341 unsafe { pcb.basic_mut().set_user_vm(None) }; 342 drop(pcb); 343 ProcessManager::exit_notify(); 344 drop(irq_guard); 345 346 sched(); 347 loop {} 348 } 349 350 pub unsafe fn release(pid: Pid) { 351 let pcb = ProcessManager::find(pid); 352 if !pcb.is_none() { 353 // let pcb = pcb.unwrap(); 354 // 判断该pcb是否在全局没有任何引用 355 // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。 356 // 因此目前暂时注释掉,使得能跑 357 // if Arc::strong_count(&pcb) <= 2 { 358 // drop(pcb); 359 // ALL_PROCESS.lock().as_mut().unwrap().remove(&pid); 360 // } else { 361 // // 如果不为1就panic 362 // let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(), Arc::strong_count(&pcb)); 363 // kerror!("{}", msg); 364 // panic!() 365 // } 366 367 ALL_PROCESS.lock().as_mut().unwrap().remove(&pid); 368 } 369 } 370 371 /// 上下文切换完成后的钩子函数 372 unsafe fn switch_finish_hook() { 373 // kdebug!("switch_finish_hook"); 374 let prev_pcb = SWITCH_RESULT 375 .as_mut() 376 .unwrap() 377 .get_mut() 378 .prev_pcb 379 .take() 380 .expect("prev_pcb is None"); 381 let next_pcb = SWITCH_RESULT 382 .as_mut() 383 .unwrap() 384 .get_mut() 385 .next_pcb 386 .take() 387 .expect("next_pcb is None"); 388 389 // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁 390 prev_pcb.arch_info.force_unlock(); 391 next_pcb.arch_info.force_unlock(); 392 } 393 394 /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态 395 /// 396 /// ## 参数 397 /// 398 /// - `pcb` : 进程的pcb 399 #[allow(dead_code)] 400 pub fn kick(pcb: &Arc<ProcessControlBlock>) { 401 ProcessManager::current_pcb().preempt_disable(); 402 let cpu_id = pcb.sched_info().on_cpu(); 403 404 if let Some(cpu_id) = cpu_id { 405 let cpu_id = cpu_id; 406 407 if pcb.pid() == CPU_EXECUTING.get(cpu_id) { 408 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu"); 409 } 410 } 411 412 ProcessManager::current_pcb().preempt_enable(); 413 } 414 } 415 416 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换 417 pub unsafe extern "sysv64" fn switch_finish_hook() { 418 ProcessManager::switch_finish_hook(); 419 } 420 421 int_like!(Pid, AtomicPid, usize, AtomicUsize); 422 423 impl Hash for Pid { 424 fn hash<H: Hasher>(&self, state: &mut H) { 425 self.0.hash(state); 426 } 427 } 428 429 impl Pid { 430 pub fn to_string(&self) -> String { 431 self.0.to_string() 432 } 433 } 434 435 #[derive(Debug, Clone, Copy, PartialEq, Eq)] 436 pub enum ProcessState { 437 /// The process is running on a CPU or in a run queue. 438 Runnable, 439 /// The process is waiting for an event to occur. 440 /// 其中的bool表示该等待过程是否可以被打断。 441 /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。 442 /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。 443 Blocked(bool), 444 /// 进程被信号终止 445 Stopped, 446 /// 进程已经退出,usize表示进程的退出码 447 Exited(usize), 448 } 449 450 #[allow(dead_code)] 451 impl ProcessState { 452 #[inline(always)] 453 pub fn is_runnable(&self) -> bool { 454 return matches!(self, ProcessState::Runnable); 455 } 456 457 #[inline(always)] 458 pub fn is_blocked(&self) -> bool { 459 return matches!(self, ProcessState::Blocked(_)); 460 } 461 462 #[inline(always)] 463 pub fn is_exited(&self) -> bool { 464 return matches!(self, ProcessState::Exited(_)); 465 } 466 467 /// Returns `true` if the process state is [`Stopped`]. 468 /// 469 /// [`Stopped`]: ProcessState::Stopped 470 #[inline(always)] 471 pub fn is_stopped(&self) -> bool { 472 matches!(self, ProcessState::Stopped) 473 } 474 } 475 476 bitflags! { 477 /// pcb的标志位 478 pub struct ProcessFlags: usize { 479 /// 当前pcb表示一个内核线程 480 const KTHREAD = 1 << 0; 481 /// 当前进程需要被调度 482 const NEED_SCHEDULE = 1 << 1; 483 /// 进程由于vfork而与父进程存在资源共享 484 const VFORK = 1 << 2; 485 /// 进程不可被冻结 486 const NOFREEZE = 1 << 3; 487 /// 进程正在退出 488 const EXITING = 1 << 4; 489 /// 进程由于接收到终止信号唤醒 490 const WAKEKILL = 1 << 5; 491 /// 进程由于接收到信号而退出.(Killed by a signal) 492 const SIGNALED = 1 << 6; 493 /// 进程需要迁移到其他cpu上 494 const NEED_MIGRATE = 1 << 7; 495 } 496 } 497 498 #[derive(Debug)] 499 pub struct ProcessControlBlock { 500 /// 当前进程的pid 501 pid: Pid, 502 503 basic: RwLock<ProcessBasicInfo>, 504 /// 当前进程的自旋锁持有计数 505 preempt_count: AtomicUsize, 506 507 flags: SpinLock<ProcessFlags>, 508 worker_private: SpinLock<Option<WorkerPrivate>>, 509 /// 进程的内核栈 510 kernel_stack: RwLock<KernelStack>, 511 512 /// 与调度相关的信息 513 sched_info: RwLock<ProcessSchedulerInfo>, 514 /// 与处理器架构相关的信息 515 arch_info: SpinLock<ArchPCBInfo>, 516 /// 与信号处理相关的信息(似乎可以是无锁的) 517 sig_info: RwLock<ProcessSignalInfo>, 518 /// 信号处理结构体 519 sig_struct: SpinLock<SignalStruct>, 520 521 /// 父进程指针 522 parent_pcb: RwLock<Weak<ProcessControlBlock>>, 523 524 /// 子进程链表 525 children: RwLock<Vec<Pid>>, 526 527 /// 等待队列 528 wait_queue: WaitQueue, 529 530 /// 线程信息 531 thread: RwLock<ThreadInfo>, 532 } 533 534 impl ProcessControlBlock { 535 /// Generate a new pcb. 536 /// 537 /// ## 参数 538 /// 539 /// - `name` : 进程的名字 540 /// - `kstack` : 进程的内核栈 541 /// 542 /// ## 返回值 543 /// 544 /// 返回一个新的pcb 545 pub fn new(name: String, kstack: KernelStack) -> Arc<Self> { 546 return Self::do_create_pcb(name, kstack, false); 547 } 548 549 /// 创建一个新的idle进程 550 /// 551 /// 请注意,这个函数只能在进程管理初始化的时候调用。 552 pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> { 553 let name = format!("idle-{}", cpu_id); 554 return Self::do_create_pcb(name, kstack, true); 555 } 556 557 fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> { 558 let (pid, ppid, cwd) = if is_idle { 559 (Pid(0), Pid(0), "/".to_string()) 560 } else { 561 ( 562 Self::generate_pid(), 563 ProcessManager::current_pcb().pid(), 564 ProcessManager::current_pcb().basic().cwd(), 565 ) 566 }; 567 568 let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None); 569 let preempt_count = AtomicUsize::new(0); 570 let flags = SpinLock::new(ProcessFlags::empty()); 571 572 let sched_info = ProcessSchedulerInfo::new(None); 573 let arch_info = SpinLock::new(ArchPCBInfo::new(Some(&kstack))); 574 575 let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid) 576 .map(|p| Arc::downgrade(&p)) 577 .unwrap_or_else(|| Weak::new()); 578 579 let pcb = Self { 580 pid, 581 basic: basic_info, 582 preempt_count, 583 flags, 584 kernel_stack: RwLock::new(kstack), 585 worker_private: SpinLock::new(None), 586 sched_info, 587 arch_info, 588 sig_info: RwLock::new(ProcessSignalInfo::default()), 589 sig_struct: SpinLock::new(SignalStruct::default()), 590 parent_pcb: RwLock::new(ppcb), 591 children: RwLock::new(Vec::new()), 592 wait_queue: WaitQueue::INIT, 593 thread: RwLock::new(ThreadInfo::new()), 594 }; 595 596 let pcb = Arc::new(pcb); 597 598 // 设置进程的arc指针到内核栈的最低地址处 599 unsafe { 600 pcb.kernel_stack 601 .write() 602 .set_pcb(Arc::downgrade(&pcb)) 603 .unwrap() 604 }; 605 606 // 将当前pcb加入父进程的子进程哈希表中 607 if pcb.pid() > Pid(1) { 608 if let Some(ppcb_arc) = pcb.parent_pcb.read().upgrade() { 609 let mut children = ppcb_arc.children.write(); 610 children.push(pcb.pid()); 611 } else { 612 panic!("parent pcb is None"); 613 } 614 } 615 616 return pcb; 617 } 618 619 /// 生成一个新的pid 620 #[inline(always)] 621 fn generate_pid() -> Pid { 622 static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1)); 623 return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst); 624 } 625 626 /// 返回当前进程的锁持有计数 627 #[inline(always)] 628 pub fn preempt_count(&self) -> usize { 629 return self.preempt_count.load(Ordering::SeqCst); 630 } 631 632 /// 增加当前进程的锁持有计数 633 #[inline(always)] 634 pub fn preempt_disable(&self) { 635 self.preempt_count.fetch_add(1, Ordering::SeqCst); 636 } 637 638 /// 减少当前进程的锁持有计数 639 #[inline(always)] 640 pub fn preempt_enable(&self) { 641 self.preempt_count.fetch_sub(1, Ordering::SeqCst); 642 } 643 644 #[inline(always)] 645 pub unsafe fn set_preempt_count(&self, count: usize) { 646 self.preempt_count.store(count, Ordering::SeqCst); 647 } 648 649 #[inline(always)] 650 pub fn flags(&self) -> SpinLockGuard<ProcessFlags> { 651 return self.flags.lock(); 652 } 653 654 #[inline(always)] 655 pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> { 656 return self.basic.read(); 657 } 658 659 #[inline(always)] 660 pub fn set_name(&self, name: String) { 661 self.basic.write().set_name(name); 662 } 663 664 #[inline(always)] 665 pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> { 666 return self.basic.write(); 667 } 668 669 #[inline(always)] 670 pub fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> { 671 return self.arch_info.lock(); 672 } 673 674 #[inline(always)] 675 pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> { 676 return self.arch_info.lock_irqsave(); 677 } 678 679 #[inline(always)] 680 pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> { 681 return self.kernel_stack.read(); 682 } 683 684 #[inline(always)] 685 #[allow(dead_code)] 686 pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> { 687 return self.kernel_stack.write(); 688 } 689 690 #[inline(always)] 691 pub fn sched_info(&self) -> RwLockReadGuard<ProcessSchedulerInfo> { 692 return self.sched_info.read(); 693 } 694 695 #[inline(always)] 696 pub fn sched_info_mut(&self) -> RwLockWriteGuard<ProcessSchedulerInfo> { 697 return self.sched_info.write(); 698 } 699 700 #[inline(always)] 701 pub fn sched_info_mut_irqsave(&self) -> RwLockWriteGuard<ProcessSchedulerInfo> { 702 return self.sched_info.write_irqsave(); 703 } 704 705 #[inline(always)] 706 pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> { 707 return self.worker_private.lock(); 708 } 709 710 #[inline(always)] 711 pub fn pid(&self) -> Pid { 712 return self.pid; 713 } 714 715 /// 获取文件描述符表的Arc指针 716 #[inline(always)] 717 pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> { 718 return self.basic.read().fd_table().unwrap(); 719 } 720 721 /// 根据文件描述符序号,获取socket对象的Arc指针 722 /// 723 /// ## 参数 724 /// 725 /// - `fd` 文件描述符序号 726 /// 727 /// ## 返回值 728 /// 729 /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None 730 pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> { 731 let binding = ProcessManager::current_pcb().fd_table(); 732 let fd_table_guard = binding.read(); 733 734 let f = fd_table_guard.get_file_by_fd(fd)?; 735 drop(fd_table_guard); 736 737 let guard = f.lock(); 738 if guard.file_type() != FileType::Socket { 739 return None; 740 } 741 let socket: Arc<SocketInode> = guard 742 .inode() 743 .downcast_arc::<SocketInode>() 744 .expect("Not a socket inode"); 745 return Some(socket); 746 } 747 748 /// 当前进程退出时,让初始进程收养所有子进程 749 unsafe fn adopt_childen(&self) -> Result<(), SystemError> { 750 match ProcessManager::find(Pid(1)) { 751 Some(init_pcb) => { 752 let childen_guard = self.children.write(); 753 let mut init_childen_guard = init_pcb.children.write(); 754 755 childen_guard.iter().for_each(|pid| { 756 init_childen_guard.push(*pid); 757 }); 758 759 return Ok(()); 760 } 761 _ => Err(SystemError::ECHILD), 762 } 763 } 764 765 /// 生成进程的名字 766 pub fn generate_name(program_path: &str, args: &Vec<String>) -> String { 767 let mut name = program_path.to_string(); 768 for arg in args { 769 name.push_str(arg); 770 name.push(' '); 771 } 772 return name; 773 } 774 775 pub fn sig_info(&self) -> RwLockReadGuard<ProcessSignalInfo> { 776 self.sig_info.read() 777 } 778 779 pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> { 780 self.sig_info.write() 781 } 782 783 pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> { 784 self.sig_struct.lock() 785 } 786 787 pub fn sig_struct_irq(&self) -> SpinLockGuard<SignalStruct> { 788 self.sig_struct.lock_irqsave() 789 } 790 } 791 792 impl Drop for ProcessControlBlock { 793 fn drop(&mut self) { 794 // 在ProcFS中,解除进程的注册 795 procfs_unregister_pid(self.pid()) 796 .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}")); 797 798 if let Some(ppcb) = self.parent_pcb.read().upgrade() { 799 ppcb.children.write().drain_filter(|pid| *pid == self.pid()); 800 } 801 } 802 } 803 804 /// 线程信息 805 #[derive(Debug)] 806 pub struct ThreadInfo { 807 // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程 808 clear_child_tid: Option<VirtAddr>, 809 set_child_tid: Option<VirtAddr>, 810 811 vfork_done: Option<Arc<Completion>>, 812 } 813 814 impl ThreadInfo { 815 pub fn new() -> Self { 816 Self { 817 clear_child_tid: None, 818 set_child_tid: None, 819 vfork_done: None, 820 } 821 } 822 } 823 824 /// 进程的基本信息 825 /// 826 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。 827 #[derive(Debug)] 828 pub struct ProcessBasicInfo { 829 /// 当前进程的进程组id 830 pgid: Pid, 831 /// 当前进程的父进程的pid 832 ppid: Pid, 833 /// 进程的名字 834 name: String, 835 836 /// 当前进程的工作目录 837 cwd: String, 838 839 /// 用户地址空间 840 user_vm: Option<Arc<AddressSpace>>, 841 842 /// 文件描述符表 843 fd_table: Option<Arc<RwLock<FileDescriptorVec>>>, 844 } 845 846 impl ProcessBasicInfo { 847 pub fn new( 848 pgid: Pid, 849 ppid: Pid, 850 name: String, 851 cwd: String, 852 user_vm: Option<Arc<AddressSpace>>, 853 ) -> RwLock<Self> { 854 let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new())); 855 return RwLock::new(Self { 856 pgid, 857 ppid, 858 name, 859 cwd, 860 user_vm, 861 fd_table: Some(fd_table), 862 }); 863 } 864 865 pub fn pgid(&self) -> Pid { 866 return self.pgid; 867 } 868 869 pub fn ppid(&self) -> Pid { 870 return self.ppid; 871 } 872 873 pub fn name(&self) -> &str { 874 return &self.name; 875 } 876 877 pub fn set_name(&mut self, name: String) { 878 self.name = name; 879 } 880 881 pub fn cwd(&self) -> String { 882 return self.cwd.clone(); 883 } 884 pub fn set_cwd(&mut self, path: String) { 885 return self.cwd = path; 886 } 887 888 pub fn user_vm(&self) -> Option<Arc<AddressSpace>> { 889 return self.user_vm.clone(); 890 } 891 892 pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) { 893 self.user_vm = user_vm; 894 } 895 896 pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> { 897 return self.fd_table.clone(); 898 } 899 900 pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) { 901 self.fd_table = fd_table; 902 } 903 } 904 905 #[derive(Debug)] 906 pub struct ProcessSchedulerInfo { 907 /// 当前进程所在的cpu 908 on_cpu: AtomicI32, 909 /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位), 910 /// 该字段存储要被迁移到的目标处理器核心号 911 migrate_to: AtomicI32, 912 913 /// 当前进程的状态 914 state: ProcessState, 915 /// 进程的调度策略 916 sched_policy: SchedPolicy, 917 /// 进程的调度优先级 918 priority: SchedPriority, 919 /// 当前进程的虚拟运行时间 920 virtual_runtime: AtomicIsize, 921 /// 由实时调度器管理的时间片 922 rt_time_slice: AtomicIsize, 923 } 924 925 impl ProcessSchedulerInfo { 926 pub fn new(on_cpu: Option<u32>) -> RwLock<Self> { 927 let cpu_id = match on_cpu { 928 Some(cpu_id) => cpu_id as i32, 929 None => -1, 930 }; 931 return RwLock::new(Self { 932 on_cpu: AtomicI32::new(cpu_id), 933 migrate_to: AtomicI32::new(-1), 934 state: ProcessState::Blocked(false), 935 sched_policy: SchedPolicy::CFS, 936 virtual_runtime: AtomicIsize::new(0), 937 rt_time_slice: AtomicIsize::new(0), 938 priority: SchedPriority::new(100).unwrap(), 939 }); 940 } 941 942 pub fn on_cpu(&self) -> Option<u32> { 943 let on_cpu = self.on_cpu.load(Ordering::SeqCst); 944 if on_cpu == -1 { 945 return None; 946 } else { 947 return Some(on_cpu as u32); 948 } 949 } 950 951 pub fn set_on_cpu(&self, on_cpu: Option<u32>) { 952 if let Some(cpu_id) = on_cpu { 953 self.on_cpu.store(cpu_id as i32, Ordering::SeqCst); 954 } else { 955 self.on_cpu.store(-1, Ordering::SeqCst); 956 } 957 } 958 959 pub fn migrate_to(&self) -> Option<u32> { 960 let migrate_to = self.migrate_to.load(Ordering::SeqCst); 961 if migrate_to == -1 { 962 return None; 963 } else { 964 return Some(migrate_to as u32); 965 } 966 } 967 968 pub fn set_migrate_to(&self, migrate_to: Option<u32>) { 969 if let Some(data) = migrate_to { 970 self.migrate_to.store(data as i32, Ordering::SeqCst); 971 } else { 972 self.migrate_to.store(-1, Ordering::SeqCst) 973 } 974 } 975 976 pub fn state(&self) -> ProcessState { 977 return self.state; 978 } 979 980 fn set_state(&mut self, state: ProcessState) { 981 self.state = state; 982 } 983 984 pub fn policy(&self) -> SchedPolicy { 985 return self.sched_policy; 986 } 987 988 pub fn virtual_runtime(&self) -> isize { 989 return self.virtual_runtime.load(Ordering::SeqCst); 990 } 991 992 pub fn set_virtual_runtime(&self, virtual_runtime: isize) { 993 self.virtual_runtime 994 .store(virtual_runtime, Ordering::SeqCst); 995 } 996 pub fn increase_virtual_runtime(&self, delta: isize) { 997 self.virtual_runtime.fetch_add(delta, Ordering::SeqCst); 998 } 999 1000 pub fn rt_time_slice(&self) -> isize { 1001 return self.rt_time_slice.load(Ordering::SeqCst); 1002 } 1003 1004 pub fn set_rt_time_slice(&self, rt_time_slice: isize) { 1005 self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst); 1006 } 1007 1008 pub fn increase_rt_time_slice(&self, delta: isize) { 1009 self.rt_time_slice.fetch_add(delta, Ordering::SeqCst); 1010 } 1011 1012 pub fn priority(&self) -> SchedPriority { 1013 return self.priority; 1014 } 1015 } 1016 1017 #[derive(Debug)] 1018 pub struct KernelStack { 1019 stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>, 1020 /// 标记该内核栈是否可以被释放 1021 can_be_freed: bool, 1022 } 1023 1024 impl KernelStack { 1025 pub const SIZE: usize = 0x4000; 1026 pub const ALIGN: usize = 0x4000; 1027 1028 pub fn new() -> Result<Self, SystemError> { 1029 return Ok(Self { 1030 stack: Some( 1031 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?, 1032 ), 1033 can_be_freed: true, 1034 }); 1035 } 1036 1037 /// 根据已有的空间,构造一个内核栈结构体 1038 /// 1039 /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误! 1040 pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> { 1041 if base.is_null() || base.check_aligned(Self::ALIGN) == false { 1042 return Err(SystemError::EFAULT); 1043 } 1044 1045 return Ok(Self { 1046 stack: Some( 1047 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked( 1048 base.data() as *mut [u8; KernelStack::SIZE], 1049 ), 1050 ), 1051 can_be_freed: false, 1052 }); 1053 } 1054 1055 /// 返回内核栈的起始虚拟地址(低地址) 1056 pub fn start_address(&self) -> VirtAddr { 1057 return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize); 1058 } 1059 1060 /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址) 1061 pub fn stack_max_address(&self) -> VirtAddr { 1062 return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE); 1063 } 1064 1065 pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> { 1066 // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处 1067 let p: *const ProcessControlBlock = Weak::into_raw(pcb); 1068 let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; 1069 1070 // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误 1071 if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) { 1072 return Err(SystemError::EPERM); 1073 } 1074 // 将pcb的地址放到内核栈的最低地址处 1075 unsafe { 1076 *stack_bottom_ptr = p; 1077 } 1078 1079 return Ok(()); 1080 } 1081 1082 /// 返回指向当前内核栈pcb的Arc指针 1083 #[allow(dead_code)] 1084 pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> { 1085 // 从内核栈的最低地址处取出pcb的地址 1086 let p = self.stack.as_ref().unwrap().as_ptr() as *const ProcessControlBlock; 1087 if unlikely(p.is_null()) { 1088 return None; 1089 } 1090 1091 // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用 1092 let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> = 1093 ManuallyDrop::new(Weak::from_raw(p)); 1094 1095 let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?; 1096 return Some(new_arc); 1097 } 1098 } 1099 1100 impl Drop for KernelStack { 1101 fn drop(&mut self) { 1102 if !self.stack.is_none() { 1103 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { 1104 Weak::from_raw(self.stack.as_ref().unwrap().as_ptr() as *const ProcessControlBlock) 1105 }; 1106 drop(pcb_ptr); 1107 } 1108 // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数 1109 if !self.can_be_freed { 1110 let bx = self.stack.take(); 1111 core::mem::forget(bx); 1112 } 1113 } 1114 } 1115 1116 pub fn process_init() { 1117 ProcessManager::init(); 1118 } 1119 1120 #[derive(Debug)] 1121 pub struct ProcessSignalInfo { 1122 // 当前进程 1123 sig_block: SigSet, 1124 // sig_pending 中存储当前线程要处理的信号 1125 sig_pending: SigPending, 1126 // sig_shared_pending 中存储当前线程所属进程要处理的信号 1127 sig_shared_pending: SigPending, 1128 } 1129 1130 impl ProcessSignalInfo { 1131 pub fn sig_block(&self) -> &SigSet { 1132 &self.sig_block 1133 } 1134 1135 pub fn sig_pending(&self) -> &SigPending { 1136 &self.sig_pending 1137 } 1138 1139 pub fn sig_pending_mut(&mut self) -> &mut SigPending { 1140 &mut self.sig_pending 1141 } 1142 1143 pub fn sig_block_mut(&mut self) -> &mut SigSet { 1144 &mut self.sig_block 1145 } 1146 1147 pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending { 1148 &mut self.sig_shared_pending 1149 } 1150 1151 pub fn sig_shared_pending(&self) -> &SigPending { 1152 &self.sig_shared_pending 1153 } 1154 1155 /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号 1156 /// 1157 /// ## 参数 1158 /// 1159 /// - `sig_mask` 被忽略掉的信号 1160 /// 1161 pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) { 1162 let res = self.sig_pending.dequeue_signal(sig_mask); 1163 if res.0 != Signal::INVALID { 1164 return res; 1165 } else { 1166 return self.sig_shared_pending.dequeue_signal(sig_mask); 1167 } 1168 } 1169 } 1170 1171 impl Default for ProcessSignalInfo { 1172 fn default() -> Self { 1173 Self { 1174 sig_block: SigSet::empty(), 1175 sig_pending: SigPending::default(), 1176 sig_shared_pending: SigPending::default(), 1177 } 1178 } 1179 } 1180