xref: /DragonOS/kernel/src/process/mod.rs (revision 52da9a59374752b4d01907b052135a0d317781dd)
1 use core::{
2     hash::{Hash, Hasher},
3     hint::spin_loop,
4     intrinsics::{likely, unlikely},
5     mem::ManuallyDrop,
6     sync::atomic::{compiler_fence, AtomicBool, AtomicI32, AtomicIsize, AtomicUsize, Ordering},
7 };
8 
9 use alloc::{
10     string::{String, ToString},
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 use hashbrown::HashMap;
15 use system_error::SystemError;
16 
17 use crate::{
18     arch::{
19         ipc::signal::{AtomicSignal, SigSet, Signal},
20         process::ArchPCBInfo,
21         sched::sched,
22         CurrentIrqArch,
23     },
24     driver::tty::tty_core::TtyCore,
25     exception::InterruptArch,
26     filesystem::{
27         procfs::procfs_unregister_pid,
28         vfs::{file::FileDescriptorVec, FileType},
29     },
30     ipc::signal_types::{SigInfo, SigPending, SignalStruct},
31     kdebug, kinfo,
32     libs::{
33         align::AlignedBox,
34         casting::DowncastArc,
35         futex::{
36             constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
37             futex::Futex,
38         },
39         lock_free_flags::LockFreeFlags,
40         rwlock::{RwLock, RwLockReadGuard, RwLockUpgradableGuard, RwLockWriteGuard},
41         spinlock::{SpinLock, SpinLockGuard},
42         wait_queue::WaitQueue,
43     },
44     mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr},
45     net::socket::SocketInode,
46     sched::{
47         completion::Completion,
48         core::{sched_enqueue, CPU_EXECUTING},
49         SchedPolicy, SchedPriority,
50     },
51     smp::kick_cpu,
52     syscall::{user_access::clear_user, Syscall},
53 };
54 
55 use self::kthread::WorkerPrivate;
56 
57 pub mod abi;
58 pub mod c_adapter;
59 pub mod exec;
60 pub mod exit;
61 pub mod fork;
62 pub mod idle;
63 pub mod kthread;
64 pub mod pid;
65 pub mod process;
66 pub mod resource;
67 pub mod syscall;
68 
69 /// 系统中所有进程的pcb
70 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
71 
72 pub static mut SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
73 
74 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
75 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
76 
77 #[derive(Debug)]
78 pub struct SwitchResult {
79     pub prev_pcb: Option<Arc<ProcessControlBlock>>,
80     pub next_pcb: Option<Arc<ProcessControlBlock>>,
81 }
82 
83 impl SwitchResult {
84     pub fn new() -> Self {
85         Self {
86             prev_pcb: None,
87             next_pcb: None,
88         }
89     }
90 }
91 
92 #[derive(Debug)]
93 pub struct ProcessManager;
94 impl ProcessManager {
95     #[inline(never)]
96     fn init() {
97         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
98         if INIT_FLAG
99             .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
100             .is_err()
101         {
102             panic!("ProcessManager has been initialized!");
103         }
104 
105         unsafe {
106             compiler_fence(Ordering::SeqCst);
107             kdebug!("To create address space for INIT process.");
108             // test_buddy();
109             set_INITIAL_PROCESS_ADDRESS_SPACE(
110                 AddressSpace::new(true).expect("Failed to create address space for INIT process."),
111             );
112             kdebug!("INIT process address space created.");
113             compiler_fence(Ordering::SeqCst);
114         };
115 
116         ALL_PROCESS.lock_irqsave().replace(HashMap::new());
117         Self::arch_init();
118         kdebug!("process arch init done.");
119         Self::init_idle();
120         kdebug!("process idle init done.");
121 
122         unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true };
123         kinfo!("Process Manager initialized.");
124     }
125 
126     /// 判断进程管理器是否已经初始化完成
127     pub fn initialized() -> bool {
128         unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
129     }
130 
131     /// 获取当前进程的pcb
132     pub fn current_pcb() -> Arc<ProcessControlBlock> {
133         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
134             kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
135             loop {
136                 spin_loop();
137             }
138         }
139         return ProcessControlBlock::arch_current_pcb();
140     }
141 
142     /// 获取当前进程的pid
143     ///
144     /// 如果进程管理器未初始化完成,那么返回0
145     pub fn current_pid() -> Pid {
146         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
147             return Pid(0);
148         }
149 
150         return ProcessManager::current_pcb().pid();
151     }
152 
153     /// 增加当前进程的锁持有计数
154     #[inline(always)]
155     pub fn preempt_disable() {
156         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
157             ProcessManager::current_pcb().preempt_disable();
158         }
159     }
160 
161     /// 减少当前进程的锁持有计数
162     #[inline(always)]
163     pub fn preempt_enable() {
164         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
165             ProcessManager::current_pcb().preempt_enable();
166         }
167     }
168 
169     /// 根据pid获取进程的pcb
170     ///
171     /// ## 参数
172     ///
173     /// - `pid` : 进程的pid
174     ///
175     /// ## 返回值
176     ///
177     /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
178     pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
179         return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned();
180     }
181 
182     /// 向系统中添加一个进程的pcb
183     ///
184     /// ## 参数
185     ///
186     /// - `pcb` : 进程的pcb
187     ///
188     /// ## 返回值
189     ///
190     /// 无
191     pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
192         ALL_PROCESS
193             .lock_irqsave()
194             .as_mut()
195             .unwrap()
196             .insert(pcb.pid(), pcb.clone());
197     }
198 
199     /// 唤醒一个进程
200     pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
201         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
202         let state = pcb.sched_info().inner_lock_read_irqsave().state();
203         if state.is_blocked() {
204             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
205             let state = writer.state();
206             if state.is_blocked() {
207                 writer.set_state(ProcessState::Runnable);
208                 // avoid deadlock
209                 drop(writer);
210 
211                 sched_enqueue(pcb.clone(), true);
212                 return Ok(());
213             } else if state.is_exited() {
214                 return Err(SystemError::EINVAL);
215             } else {
216                 return Ok(());
217             }
218         } else if state.is_exited() {
219             return Err(SystemError::EINVAL);
220         } else {
221             return Ok(());
222         }
223     }
224 
225     /// 唤醒暂停的进程
226     pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
227         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
228         let state = pcb.sched_info().inner_lock_read_irqsave().state();
229         if let ProcessState::Stopped = state {
230             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
231             let state = writer.state();
232             if let ProcessState::Stopped = state {
233                 writer.set_state(ProcessState::Runnable);
234                 // avoid deadlock
235                 drop(writer);
236 
237                 sched_enqueue(pcb.clone(), true);
238                 return Ok(());
239             } else if state.is_runnable() {
240                 return Ok(());
241             } else {
242                 return Err(SystemError::EINVAL);
243             }
244         } else if state.is_runnable() {
245             return Ok(());
246         } else {
247             return Err(SystemError::EINVAL);
248         }
249     }
250 
251     /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
252     ///
253     /// ## 注意
254     ///
255     /// - 进入当前函数之前,不能持有sched_info的锁
256     /// - 进入当前函数之前,必须关闭中断
257     /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
258     pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
259         assert_eq!(
260             CurrentIrqArch::is_irq_enabled(),
261             false,
262             "interrupt must be disabled before enter ProcessManager::mark_sleep()"
263         );
264 
265         let pcb = ProcessManager::current_pcb();
266         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
267         if !matches!(writer.state(), ProcessState::Exited(_)) {
268             writer.set_state(ProcessState::Blocked(interruptable));
269             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
270             drop(writer);
271 
272             return Ok(());
273         }
274         return Err(SystemError::EINTR);
275     }
276 
277     /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
278     ///
279     /// ## 注意
280     ///
281     /// - 进入当前函数之前,不能持有sched_info的锁
282     /// - 进入当前函数之前,必须关闭中断
283     pub fn mark_stop() -> Result<(), SystemError> {
284         assert_eq!(
285             CurrentIrqArch::is_irq_enabled(),
286             false,
287             "interrupt must be disabled before enter ProcessManager::mark_stop()"
288         );
289 
290         let pcb = ProcessManager::current_pcb();
291         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
292         if !matches!(writer.state(), ProcessState::Exited(_)) {
293             writer.set_state(ProcessState::Stopped);
294             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
295             drop(writer);
296 
297             return Ok(());
298         }
299         return Err(SystemError::EINTR);
300     }
301     /// 当子进程退出后向父进程发送通知
302     fn exit_notify() {
303         let current = ProcessManager::current_pcb();
304         // 让INIT进程收养所有子进程
305         if current.pid() != Pid(1) {
306             unsafe {
307                 current
308                     .adopt_childen()
309                     .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
310             };
311             let r = current.parent_pcb.read().upgrade();
312             if r.is_none() {
313                 return;
314             }
315             let parent_pcb = r.unwrap();
316             let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32);
317             if r.is_err() {
318                 kwarn!(
319                     "failed to send kill signal to {:?}'s parent pcb {:?}",
320                     current.pid(),
321                     parent_pcb.pid()
322                 );
323             }
324             // todo: 这里需要向父进程发送SIGCHLD信号
325             // todo: 这里还需要根据线程组的信息,决定信号的发送
326         }
327     }
328 
329     /// 退出当前进程
330     ///
331     /// ## 参数
332     ///
333     /// - `exit_code` : 进程的退出码
334     pub fn exit(exit_code: usize) -> ! {
335         // 关中断
336         unsafe { CurrentIrqArch::interrupt_disable() };
337         let pcb = ProcessManager::current_pcb();
338         pcb.sched_info
339             .inner_lock_write_irqsave()
340             .set_state(ProcessState::Exited(exit_code));
341         pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true)));
342 
343         // 进行进程退出后的工作
344         let thread = pcb.thread.write();
345         if let Some(addr) = thread.set_child_tid {
346             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
347         }
348 
349         if let Some(addr) = thread.clear_child_tid {
350             if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
351                 let _ =
352                     Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY);
353             }
354             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
355         }
356 
357         // 如果是vfork出来的进程,则需要处理completion
358         if thread.vfork_done.is_some() {
359             thread.vfork_done.as_ref().unwrap().complete_all();
360         }
361         drop(thread);
362         unsafe { pcb.basic_mut().set_user_vm(None) };
363         drop(pcb);
364         ProcessManager::exit_notify();
365         unsafe { CurrentIrqArch::interrupt_enable() };
366 
367         sched();
368         loop {}
369     }
370 
371     pub unsafe fn release(pid: Pid) {
372         let pcb = ProcessManager::find(pid);
373         if pcb.is_some() {
374             // let pcb = pcb.unwrap();
375             // 判断该pcb是否在全局没有任何引用
376             // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
377             //          因此目前暂时注释掉,使得能跑
378             // if Arc::strong_count(&pcb) <= 2 {
379             //     drop(pcb);
380             //     ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
381             // } else {
382             //     // 如果不为1就panic
383             //     let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(),  Arc::strong_count(&pcb));
384             //     kerror!("{}", msg);
385             //     panic!()
386             // }
387 
388             ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid);
389         }
390     }
391 
392     /// 上下文切换完成后的钩子函数
393     unsafe fn switch_finish_hook() {
394         // kdebug!("switch_finish_hook");
395         let prev_pcb = SWITCH_RESULT
396             .as_mut()
397             .unwrap()
398             .get_mut()
399             .prev_pcb
400             .take()
401             .expect("prev_pcb is None");
402         let next_pcb = SWITCH_RESULT
403             .as_mut()
404             .unwrap()
405             .get_mut()
406             .next_pcb
407             .take()
408             .expect("next_pcb is None");
409 
410         // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
411         prev_pcb.arch_info.force_unlock();
412         next_pcb.arch_info.force_unlock();
413     }
414 
415     /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
416     ///
417     /// ## 参数
418     ///
419     /// - `pcb` : 进程的pcb
420     #[allow(dead_code)]
421     pub fn kick(pcb: &Arc<ProcessControlBlock>) {
422         ProcessManager::current_pcb().preempt_disable();
423         let cpu_id = pcb.sched_info().on_cpu();
424 
425         if let Some(cpu_id) = cpu_id {
426             let cpu_id = cpu_id;
427 
428             if pcb.pid() == CPU_EXECUTING.get(cpu_id) {
429                 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
430             }
431         }
432 
433         ProcessManager::current_pcb().preempt_enable();
434     }
435 }
436 
437 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
438 #[cfg(target_arch = "x86_64")]
439 pub unsafe extern "sysv64" fn switch_finish_hook() {
440     ProcessManager::switch_finish_hook();
441 }
442 #[cfg(target_arch = "riscv64")]
443 pub unsafe extern "C" fn switch_finish_hook() {
444     ProcessManager::switch_finish_hook();
445 }
446 
447 int_like!(Pid, AtomicPid, usize, AtomicUsize);
448 
449 impl Hash for Pid {
450     fn hash<H: Hasher>(&self, state: &mut H) {
451         self.0.hash(state);
452     }
453 }
454 
455 impl Pid {
456     pub fn to_string(&self) -> String {
457         self.0.to_string()
458     }
459 }
460 
461 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
462 pub enum ProcessState {
463     /// The process is running on a CPU or in a run queue.
464     Runnable,
465     /// The process is waiting for an event to occur.
466     /// 其中的bool表示该等待过程是否可以被打断。
467     /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
468     /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
469     Blocked(bool),
470     /// 进程被信号终止
471     Stopped,
472     /// 进程已经退出,usize表示进程的退出码
473     Exited(usize),
474 }
475 
476 #[allow(dead_code)]
477 impl ProcessState {
478     #[inline(always)]
479     pub fn is_runnable(&self) -> bool {
480         return matches!(self, ProcessState::Runnable);
481     }
482 
483     #[inline(always)]
484     pub fn is_blocked(&self) -> bool {
485         return matches!(self, ProcessState::Blocked(_));
486     }
487 
488     #[inline(always)]
489     pub fn is_blocked_interruptable(&self) -> bool {
490         return matches!(self, ProcessState::Blocked(true));
491     }
492 
493     /// Returns `true` if the process state is [`Exited`].
494     #[inline(always)]
495     pub fn is_exited(&self) -> bool {
496         return matches!(self, ProcessState::Exited(_));
497     }
498 
499     /// Returns `true` if the process state is [`Stopped`].
500     ///
501     /// [`Stopped`]: ProcessState::Stopped
502     #[inline(always)]
503     pub fn is_stopped(&self) -> bool {
504         matches!(self, ProcessState::Stopped)
505     }
506 
507     /// Returns exit code if the process state is [`Exited`].
508     #[inline(always)]
509     pub fn exit_code(&self) -> Option<usize> {
510         match self {
511             ProcessState::Exited(code) => Some(*code),
512             _ => None,
513         }
514     }
515 }
516 
517 bitflags! {
518     /// pcb的标志位
519     pub struct ProcessFlags: usize {
520         /// 当前pcb表示一个内核线程
521         const KTHREAD = 1 << 0;
522         /// 当前进程需要被调度
523         const NEED_SCHEDULE = 1 << 1;
524         /// 进程由于vfork而与父进程存在资源共享
525         const VFORK = 1 << 2;
526         /// 进程不可被冻结
527         const NOFREEZE = 1 << 3;
528         /// 进程正在退出
529         const EXITING = 1 << 4;
530         /// 进程由于接收到终止信号唤醒
531         const WAKEKILL = 1 << 5;
532         /// 进程由于接收到信号而退出.(Killed by a signal)
533         const SIGNALED = 1 << 6;
534         /// 进程需要迁移到其他cpu上
535         const NEED_MIGRATE = 1 << 7;
536         /// 随机化的虚拟地址空间,主要用于动态链接器的加载
537         const RANDOMIZE = 1 << 8;
538     }
539 }
540 
541 #[derive(Debug)]
542 pub struct ProcessControlBlock {
543     /// 当前进程的pid
544     pid: Pid,
545     /// 当前进程的线程组id(这个值在同一个线程组内永远不变)
546     tgid: Pid,
547 
548     basic: RwLock<ProcessBasicInfo>,
549     /// 当前进程的自旋锁持有计数
550     preempt_count: AtomicUsize,
551 
552     flags: LockFreeFlags<ProcessFlags>,
553     worker_private: SpinLock<Option<WorkerPrivate>>,
554     /// 进程的内核栈
555     kernel_stack: RwLock<KernelStack>,
556 
557     /// 系统调用栈
558     syscall_stack: RwLock<KernelStack>,
559 
560     /// 与调度相关的信息
561     sched_info: ProcessSchedulerInfo,
562     /// 与处理器架构相关的信息
563     arch_info: SpinLock<ArchPCBInfo>,
564     /// 与信号处理相关的信息(似乎可以是无锁的)
565     sig_info: RwLock<ProcessSignalInfo>,
566     /// 信号处理结构体
567     sig_struct: SpinLock<SignalStruct>,
568     /// 退出信号S
569     exit_signal: AtomicSignal,
570 
571     /// 父进程指针
572     parent_pcb: RwLock<Weak<ProcessControlBlock>>,
573     /// 真实父进程指针
574     real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
575 
576     /// 子进程链表
577     children: RwLock<Vec<Pid>>,
578 
579     /// 等待队列
580     wait_queue: WaitQueue,
581 
582     /// 线程信息
583     thread: RwLock<ThreadInfo>,
584 }
585 
586 impl ProcessControlBlock {
587     /// Generate a new pcb.
588     ///
589     /// ## 参数
590     ///
591     /// - `name` : 进程的名字
592     /// - `kstack` : 进程的内核栈
593     ///
594     /// ## 返回值
595     ///
596     /// 返回一个新的pcb
597     pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
598         return Self::do_create_pcb(name, kstack, false);
599     }
600 
601     /// 创建一个新的idle进程
602     ///
603     /// 请注意,这个函数只能在进程管理初始化的时候调用。
604     pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
605         let name = format!("idle-{}", cpu_id);
606         return Self::do_create_pcb(name, kstack, true);
607     }
608 
609     #[inline(never)]
610     fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
611         let (pid, ppid, cwd) = if is_idle {
612             (Pid(0), Pid(0), "/".to_string())
613         } else {
614             let ppid = ProcessManager::current_pcb().pid();
615             let cwd = ProcessManager::current_pcb().basic().cwd();
616             (Self::generate_pid(), ppid, cwd)
617         };
618 
619         let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None);
620         let preempt_count = AtomicUsize::new(0);
621         let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
622 
623         let sched_info = ProcessSchedulerInfo::new(None);
624         let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
625 
626         let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
627             .map(|p| Arc::downgrade(&p))
628             .unwrap_or_else(|| Weak::new());
629 
630         let pcb = Self {
631             pid,
632             tgid: pid,
633             basic: basic_info,
634             preempt_count,
635             flags,
636             kernel_stack: RwLock::new(kstack),
637             syscall_stack: RwLock::new(KernelStack::new().unwrap()),
638             worker_private: SpinLock::new(None),
639             sched_info,
640             arch_info,
641             sig_info: RwLock::new(ProcessSignalInfo::default()),
642             sig_struct: SpinLock::new(SignalStruct::new()),
643             exit_signal: AtomicSignal::new(Signal::SIGCHLD),
644             parent_pcb: RwLock::new(ppcb.clone()),
645             real_parent_pcb: RwLock::new(ppcb),
646             children: RwLock::new(Vec::new()),
647             wait_queue: WaitQueue::INIT,
648             thread: RwLock::new(ThreadInfo::new()),
649         };
650 
651         // 初始化系统调用栈
652         #[cfg(target_arch = "x86_64")]
653         pcb.arch_info
654             .lock()
655             .init_syscall_stack(&pcb.syscall_stack.read());
656 
657         let pcb = Arc::new(pcb);
658 
659         // 设置进程的arc指针到内核栈和系统调用栈的最低地址处
660         unsafe {
661             pcb.kernel_stack
662                 .write()
663                 .set_pcb(Arc::downgrade(&pcb))
664                 .unwrap();
665 
666             pcb.syscall_stack
667                 .write()
668                 .set_pcb(Arc::downgrade(&pcb))
669                 .unwrap()
670         };
671 
672         // 将当前pcb加入父进程的子进程哈希表中
673         if pcb.pid() > Pid(1) {
674             if let Some(ppcb_arc) = pcb.parent_pcb.read().upgrade() {
675                 let mut children = ppcb_arc.children.write_irqsave();
676                 children.push(pcb.pid());
677             } else {
678                 panic!("parent pcb is None");
679             }
680         }
681 
682         return pcb;
683     }
684 
685     /// 生成一个新的pid
686     #[inline(always)]
687     fn generate_pid() -> Pid {
688         static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
689         return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
690     }
691 
692     /// 返回当前进程的锁持有计数
693     #[inline(always)]
694     pub fn preempt_count(&self) -> usize {
695         return self.preempt_count.load(Ordering::SeqCst);
696     }
697 
698     /// 增加当前进程的锁持有计数
699     #[inline(always)]
700     pub fn preempt_disable(&self) {
701         self.preempt_count.fetch_add(1, Ordering::SeqCst);
702     }
703 
704     /// 减少当前进程的锁持有计数
705     #[inline(always)]
706     pub fn preempt_enable(&self) {
707         self.preempt_count.fetch_sub(1, Ordering::SeqCst);
708     }
709 
710     #[inline(always)]
711     pub unsafe fn set_preempt_count(&self, count: usize) {
712         self.preempt_count.store(count, Ordering::SeqCst);
713     }
714 
715     #[inline(always)]
716     pub fn flags(&self) -> &mut ProcessFlags {
717         return self.flags.get_mut();
718     }
719 
720     /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改
721     /// 否则会导致死锁
722     #[inline(always)]
723     pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
724         return self.basic.read();
725     }
726 
727     #[inline(always)]
728     pub fn set_name(&self, name: String) {
729         self.basic.write().set_name(name);
730     }
731 
732     #[inline(always)]
733     pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
734         return self.basic.write_irqsave();
735     }
736 
737     /// # 获取arch info的锁,同时关闭中断
738     #[inline(always)]
739     pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
740         return self.arch_info.lock_irqsave();
741     }
742 
743     /// # 获取arch info的锁,但是不关闭中断
744     ///
745     /// 由于arch info在进程切换的时候会使用到,
746     /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的.
747     ///
748     /// 只能在以下情况下使用这个函数:
749     /// - 在中断上下文中(中断已经禁用),获取arch info的锁。
750     /// - 刚刚创建新的pcb
751     #[inline(always)]
752     pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
753         return self.arch_info.lock();
754     }
755 
756     #[inline(always)]
757     pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
758         return self.kernel_stack.read();
759     }
760 
761     #[inline(always)]
762     #[allow(dead_code)]
763     pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
764         return self.kernel_stack.write();
765     }
766 
767     #[inline(always)]
768     pub fn sched_info(&self) -> &ProcessSchedulerInfo {
769         return &self.sched_info;
770     }
771 
772     #[inline(always)]
773     pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
774         return self.worker_private.lock();
775     }
776 
777     #[inline(always)]
778     pub fn pid(&self) -> Pid {
779         return self.pid;
780     }
781 
782     #[inline(always)]
783     pub fn tgid(&self) -> Pid {
784         return self.tgid;
785     }
786 
787     /// 获取文件描述符表的Arc指针
788     #[inline(always)]
789     pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
790         return self.basic.read().fd_table().unwrap();
791     }
792 
793     /// 根据文件描述符序号,获取socket对象的Arc指针
794     ///
795     /// ## 参数
796     ///
797     /// - `fd` 文件描述符序号
798     ///
799     /// ## 返回值
800     ///
801     /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
802     pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
803         let binding = ProcessManager::current_pcb().fd_table();
804         let fd_table_guard = binding.read();
805 
806         let f = fd_table_guard.get_file_by_fd(fd)?;
807         drop(fd_table_guard);
808 
809         let guard = f.lock();
810         if guard.file_type() != FileType::Socket {
811             return None;
812         }
813         let socket: Arc<SocketInode> = guard
814             .inode()
815             .downcast_arc::<SocketInode>()
816             .expect("Not a socket inode");
817         return Some(socket);
818     }
819 
820     /// 当前进程退出时,让初始进程收养所有子进程
821     unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
822         match ProcessManager::find(Pid(1)) {
823             Some(init_pcb) => {
824                 let childen_guard = self.children.write();
825                 let mut init_childen_guard = init_pcb.children.write();
826 
827                 childen_guard.iter().for_each(|pid| {
828                     init_childen_guard.push(*pid);
829                 });
830 
831                 return Ok(());
832             }
833             _ => Err(SystemError::ECHILD),
834         }
835     }
836 
837     /// 生成进程的名字
838     pub fn generate_name(program_path: &str, args: &Vec<String>) -> String {
839         let mut name = program_path.to_string();
840         for arg in args {
841             name.push(' ');
842             name.push_str(arg);
843         }
844         return name;
845     }
846 
847     pub fn sig_info(&self) -> RwLockReadGuard<ProcessSignalInfo> {
848         self.sig_info.read()
849     }
850 
851     pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
852         self.sig_info.read_irqsave()
853     }
854 
855     pub fn try_siginfo(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
856         for _ in 0..times {
857             if let Some(r) = self.sig_info.try_read() {
858                 return Some(r);
859             }
860         }
861 
862         return None;
863     }
864 
865     pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
866         self.sig_info.write_irqsave()
867     }
868 
869     pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
870         for _ in 0..times {
871             if let Some(r) = self.sig_info.try_write() {
872                 return Some(r);
873             }
874         }
875 
876         return None;
877     }
878 
879     pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
880         self.sig_struct.lock()
881     }
882 
883     pub fn try_sig_struct_irq(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
884         for _ in 0..times {
885             if let Ok(r) = self.sig_struct.try_lock_irqsave() {
886                 return Some(r);
887             }
888         }
889 
890         return None;
891     }
892 
893     pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> {
894         self.sig_struct.lock_irqsave()
895     }
896 }
897 
898 impl Drop for ProcessControlBlock {
899     fn drop(&mut self) {
900         // 在ProcFS中,解除进程的注册
901         procfs_unregister_pid(self.pid())
902             .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
903 
904         if let Some(ppcb) = self.parent_pcb.read().upgrade() {
905             ppcb.children.write().retain(|pid| *pid != self.pid());
906         }
907     }
908 }
909 
910 /// 线程信息
911 #[derive(Debug)]
912 pub struct ThreadInfo {
913     // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
914     clear_child_tid: Option<VirtAddr>,
915     set_child_tid: Option<VirtAddr>,
916 
917     vfork_done: Option<Arc<Completion>>,
918     /// 线程组的组长
919     group_leader: Weak<ProcessControlBlock>,
920 }
921 
922 impl ThreadInfo {
923     pub fn new() -> Self {
924         Self {
925             clear_child_tid: None,
926             set_child_tid: None,
927             vfork_done: None,
928             group_leader: Weak::default(),
929         }
930     }
931 
932     pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
933         return self.group_leader.upgrade();
934     }
935 }
936 
937 /// 进程的基本信息
938 ///
939 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
940 #[derive(Debug)]
941 pub struct ProcessBasicInfo {
942     /// 当前进程的进程组id
943     pgid: Pid,
944     /// 当前进程的父进程的pid
945     ppid: Pid,
946     /// 进程的名字
947     name: String,
948 
949     /// 当前进程的工作目录
950     cwd: String,
951 
952     /// 用户地址空间
953     user_vm: Option<Arc<AddressSpace>>,
954 
955     /// 文件描述符表
956     fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
957 }
958 
959 impl ProcessBasicInfo {
960     #[inline(never)]
961     pub fn new(
962         pgid: Pid,
963         ppid: Pid,
964         name: String,
965         cwd: String,
966         user_vm: Option<Arc<AddressSpace>>,
967     ) -> RwLock<Self> {
968         let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
969         return RwLock::new(Self {
970             pgid,
971             ppid,
972             name,
973             cwd,
974             user_vm,
975             fd_table: Some(fd_table),
976         });
977     }
978 
979     pub fn pgid(&self) -> Pid {
980         return self.pgid;
981     }
982 
983     pub fn ppid(&self) -> Pid {
984         return self.ppid;
985     }
986 
987     pub fn name(&self) -> &str {
988         return &self.name;
989     }
990 
991     pub fn set_name(&mut self, name: String) {
992         self.name = name;
993     }
994 
995     pub fn cwd(&self) -> String {
996         return self.cwd.clone();
997     }
998     pub fn set_cwd(&mut self, path: String) {
999         return self.cwd = path;
1000     }
1001 
1002     pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
1003         return self.user_vm.clone();
1004     }
1005 
1006     pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
1007         self.user_vm = user_vm;
1008     }
1009 
1010     pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
1011         return self.fd_table.clone();
1012     }
1013 
1014     pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
1015         self.fd_table = fd_table;
1016     }
1017 }
1018 
1019 #[derive(Debug)]
1020 pub struct ProcessSchedulerInfo {
1021     /// 当前进程所在的cpu
1022     on_cpu: AtomicI32,
1023     /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
1024     /// 该字段存储要被迁移到的目标处理器核心号
1025     migrate_to: AtomicI32,
1026     inner_locked: RwLock<InnerSchedInfo>,
1027     /// 进程的调度优先级
1028     priority: SchedPriority,
1029     /// 当前进程的虚拟运行时间
1030     virtual_runtime: AtomicIsize,
1031     /// 由实时调度器管理的时间片
1032     rt_time_slice: AtomicIsize,
1033 }
1034 
1035 #[derive(Debug)]
1036 pub struct InnerSchedInfo {
1037     /// 当前进程的状态
1038     state: ProcessState,
1039     /// 进程的调度策略
1040     sched_policy: SchedPolicy,
1041 }
1042 
1043 impl InnerSchedInfo {
1044     pub fn state(&self) -> ProcessState {
1045         return self.state;
1046     }
1047 
1048     pub fn set_state(&mut self, state: ProcessState) {
1049         self.state = state;
1050     }
1051 
1052     pub fn policy(&self) -> SchedPolicy {
1053         return self.sched_policy;
1054     }
1055 }
1056 
1057 impl ProcessSchedulerInfo {
1058     #[inline(never)]
1059     pub fn new(on_cpu: Option<u32>) -> Self {
1060         let cpu_id = match on_cpu {
1061             Some(cpu_id) => cpu_id as i32,
1062             None => -1,
1063         };
1064         return Self {
1065             on_cpu: AtomicI32::new(cpu_id),
1066             migrate_to: AtomicI32::new(-1),
1067             inner_locked: RwLock::new(InnerSchedInfo {
1068                 state: ProcessState::Blocked(false),
1069                 sched_policy: SchedPolicy::CFS,
1070             }),
1071             virtual_runtime: AtomicIsize::new(0),
1072             rt_time_slice: AtomicIsize::new(0),
1073             priority: SchedPriority::new(100).unwrap(),
1074         };
1075     }
1076 
1077     pub fn on_cpu(&self) -> Option<u32> {
1078         let on_cpu = self.on_cpu.load(Ordering::SeqCst);
1079         if on_cpu == -1 {
1080             return None;
1081         } else {
1082             return Some(on_cpu as u32);
1083         }
1084     }
1085 
1086     pub fn set_on_cpu(&self, on_cpu: Option<u32>) {
1087         if let Some(cpu_id) = on_cpu {
1088             self.on_cpu.store(cpu_id as i32, Ordering::SeqCst);
1089         } else {
1090             self.on_cpu.store(-1, Ordering::SeqCst);
1091         }
1092     }
1093 
1094     pub fn migrate_to(&self) -> Option<u32> {
1095         let migrate_to = self.migrate_to.load(Ordering::SeqCst);
1096         if migrate_to == -1 {
1097             return None;
1098         } else {
1099             return Some(migrate_to as u32);
1100         }
1101     }
1102 
1103     pub fn set_migrate_to(&self, migrate_to: Option<u32>) {
1104         if let Some(data) = migrate_to {
1105             self.migrate_to.store(data as i32, Ordering::SeqCst);
1106         } else {
1107             self.migrate_to.store(-1, Ordering::SeqCst)
1108         }
1109     }
1110 
1111     pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> {
1112         return self.inner_locked.write_irqsave();
1113     }
1114 
1115     pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> {
1116         return self.inner_locked.read_irqsave();
1117     }
1118 
1119     pub fn inner_lock_try_read_irqsave(
1120         &self,
1121         times: u8,
1122     ) -> Option<RwLockReadGuard<InnerSchedInfo>> {
1123         for _ in 0..times {
1124             if let Some(r) = self.inner_locked.try_read_irqsave() {
1125                 return Some(r);
1126             }
1127         }
1128 
1129         return None;
1130     }
1131 
1132     pub fn inner_lock_try_upgradable_read_irqsave(
1133         &self,
1134         times: u8,
1135     ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> {
1136         for _ in 0..times {
1137             if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() {
1138                 return Some(r);
1139             }
1140         }
1141 
1142         return None;
1143     }
1144 
1145     pub fn virtual_runtime(&self) -> isize {
1146         return self.virtual_runtime.load(Ordering::SeqCst);
1147     }
1148 
1149     pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
1150         self.virtual_runtime
1151             .store(virtual_runtime, Ordering::SeqCst);
1152     }
1153     pub fn increase_virtual_runtime(&self, delta: isize) {
1154         self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
1155     }
1156 
1157     pub fn rt_time_slice(&self) -> isize {
1158         return self.rt_time_slice.load(Ordering::SeqCst);
1159     }
1160 
1161     pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
1162         self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
1163     }
1164 
1165     pub fn increase_rt_time_slice(&self, delta: isize) {
1166         self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
1167     }
1168 
1169     pub fn priority(&self) -> SchedPriority {
1170         return self.priority;
1171     }
1172 }
1173 
1174 #[derive(Debug, Clone)]
1175 pub struct KernelStack {
1176     stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
1177     /// 标记该内核栈是否可以被释放
1178     can_be_freed: bool,
1179 }
1180 
1181 impl KernelStack {
1182     pub const SIZE: usize = 0x4000;
1183     pub const ALIGN: usize = 0x4000;
1184 
1185     pub fn new() -> Result<Self, SystemError> {
1186         return Ok(Self {
1187             stack: Some(
1188                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
1189             ),
1190             can_be_freed: true,
1191         });
1192     }
1193 
1194     /// 根据已有的空间,构造一个内核栈结构体
1195     ///
1196     /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
1197     pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
1198         if base.is_null() || base.check_aligned(Self::ALIGN) == false {
1199             return Err(SystemError::EFAULT);
1200         }
1201 
1202         return Ok(Self {
1203             stack: Some(
1204                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
1205                     base.data() as *mut [u8; KernelStack::SIZE],
1206                 ),
1207             ),
1208             can_be_freed: false,
1209         });
1210     }
1211 
1212     /// 返回内核栈的起始虚拟地址(低地址)
1213     pub fn start_address(&self) -> VirtAddr {
1214         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
1215     }
1216 
1217     /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
1218     pub fn stack_max_address(&self) -> VirtAddr {
1219         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
1220     }
1221 
1222     pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
1223         // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
1224         let p: *const ProcessControlBlock = Weak::into_raw(pcb);
1225         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1226 
1227         // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
1228         if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
1229             kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
1230             return Err(SystemError::EPERM);
1231         }
1232         // 将pcb的地址放到内核栈的最低地址处
1233         unsafe {
1234             *stack_bottom_ptr = p;
1235         }
1236 
1237         return Ok(());
1238     }
1239 
1240     /// 清除内核栈的pcb指针
1241     ///
1242     /// ## 参数
1243     ///
1244     /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
1245     pub unsafe fn clear_pcb(&mut self, force: bool) {
1246         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1247         if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
1248             return;
1249         }
1250 
1251         if !force {
1252             let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
1253             drop(pcb_ptr);
1254         }
1255 
1256         *stack_bottom_ptr = core::ptr::null();
1257     }
1258 
1259     /// 返回指向当前内核栈pcb的Arc指针
1260     #[allow(dead_code)]
1261     pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
1262         // 从内核栈的最低地址处取出pcb的地址
1263         let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1264         if unlikely(unsafe { (*p).is_null() }) {
1265             return None;
1266         }
1267 
1268         // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
1269         let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
1270             ManuallyDrop::new(Weak::from_raw(*p));
1271 
1272         let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
1273         return Some(new_arc);
1274     }
1275 }
1276 
1277 impl Drop for KernelStack {
1278     fn drop(&mut self) {
1279         if !self.stack.is_none() {
1280             let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1281             if unsafe { !(*ptr).is_null() } {
1282                 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) };
1283                 drop(pcb_ptr);
1284             }
1285         }
1286         // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
1287         if !self.can_be_freed {
1288             let bx = self.stack.take();
1289             core::mem::forget(bx);
1290         }
1291     }
1292 }
1293 
1294 pub fn process_init() {
1295     ProcessManager::init();
1296 }
1297 
1298 #[derive(Debug)]
1299 pub struct ProcessSignalInfo {
1300     // 当前进程
1301     sig_block: SigSet,
1302     // sig_pending 中存储当前线程要处理的信号
1303     sig_pending: SigPending,
1304     // sig_shared_pending 中存储当前线程所属进程要处理的信号
1305     sig_shared_pending: SigPending,
1306     // 当前进程对应的tty
1307     tty: Option<Arc<TtyCore>>,
1308 }
1309 
1310 impl ProcessSignalInfo {
1311     pub fn sig_block(&self) -> &SigSet {
1312         &self.sig_block
1313     }
1314 
1315     pub fn sig_pending(&self) -> &SigPending {
1316         &self.sig_pending
1317     }
1318 
1319     pub fn sig_pending_mut(&mut self) -> &mut SigPending {
1320         &mut self.sig_pending
1321     }
1322 
1323     pub fn sig_block_mut(&mut self) -> &mut SigSet {
1324         &mut self.sig_block
1325     }
1326 
1327     pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
1328         &mut self.sig_shared_pending
1329     }
1330 
1331     pub fn sig_shared_pending(&self) -> &SigPending {
1332         &self.sig_shared_pending
1333     }
1334 
1335     pub fn tty(&self) -> Option<Arc<TtyCore>> {
1336         self.tty.clone()
1337     }
1338 
1339     pub fn set_tty(&mut self, tty: Arc<TtyCore>) {
1340         self.tty = Some(tty);
1341     }
1342 
1343     /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
1344     ///
1345     /// ## 参数
1346     ///
1347     /// - `sig_mask` 被忽略掉的信号
1348     ///
1349     pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) {
1350         let res = self.sig_pending.dequeue_signal(sig_mask);
1351         if res.0 != Signal::INVALID {
1352             return res;
1353         } else {
1354             return self.sig_shared_pending.dequeue_signal(sig_mask);
1355         }
1356     }
1357 }
1358 
1359 impl Default for ProcessSignalInfo {
1360     fn default() -> Self {
1361         Self {
1362             sig_block: SigSet::empty(),
1363             sig_pending: SigPending::default(),
1364             sig_shared_pending: SigPending::default(),
1365             tty: None,
1366         }
1367     }
1368 }
1369