xref: /DragonOS/kernel/src/process/mod.rs (revision 23ef2b33d1e3cfd2506eb7449a33df4ec42f11d3)
1 use core::{
2     hash::Hash,
3     hint::spin_loop,
4     intrinsics::{likely, unlikely},
5     mem::ManuallyDrop,
6     sync::atomic::{compiler_fence, fence, AtomicBool, AtomicUsize, Ordering},
7 };
8 
9 use alloc::{
10     string::{String, ToString},
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 use hashbrown::HashMap;
15 use system_error::SystemError;
16 
17 use crate::{
18     arch::{
19         ipc::signal::{AtomicSignal, SigSet, Signal},
20         process::ArchPCBInfo,
21         CurrentIrqArch,
22     },
23     driver::tty::tty_core::TtyCore,
24     exception::InterruptArch,
25     filesystem::{
26         procfs::procfs_unregister_pid,
27         vfs::{file::FileDescriptorVec, FileType},
28     },
29     ipc::signal_types::{SigInfo, SigPending, SignalStruct},
30     kdebug, kinfo,
31     libs::{
32         align::AlignedBox,
33         casting::DowncastArc,
34         futex::{
35             constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
36             futex::Futex,
37         },
38         lock_free_flags::LockFreeFlags,
39         rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
40         spinlock::{SpinLock, SpinLockGuard},
41         wait_queue::WaitQueue,
42     },
43     mm::{
44         percpu::{PerCpu, PerCpuVar},
45         set_IDLE_PROCESS_ADDRESS_SPACE,
46         ucontext::AddressSpace,
47         VirtAddr,
48     },
49     net::socket::SocketInode,
50     sched::completion::Completion,
51     sched::{
52         cpu_rq, fair::FairSchedEntity, prio::MAX_PRIO, DequeueFlag, EnqueueFlag, OnRq, SchedMode,
53         WakeupFlags, __schedule,
54     },
55     smp::{
56         core::smp_get_processor_id,
57         cpu::{AtomicProcessorId, ProcessorId},
58         kick_cpu,
59     },
60     syscall::{user_access::clear_user, Syscall},
61 };
62 
63 use self::kthread::WorkerPrivate;
64 
65 pub mod abi;
66 pub mod c_adapter;
67 pub mod exec;
68 pub mod exit;
69 pub mod fork;
70 pub mod idle;
71 pub mod kthread;
72 pub mod pid;
73 pub mod resource;
74 pub mod stdio;
75 pub mod syscall;
76 pub mod utils;
77 
78 /// 系统中所有进程的pcb
79 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
80 
81 pub static mut PROCESS_SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
82 
83 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
84 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
85 
86 #[derive(Debug)]
87 pub struct SwitchResult {
88     pub prev_pcb: Option<Arc<ProcessControlBlock>>,
89     pub next_pcb: Option<Arc<ProcessControlBlock>>,
90 }
91 
92 impl SwitchResult {
93     pub fn new() -> Self {
94         Self {
95             prev_pcb: None,
96             next_pcb: None,
97         }
98     }
99 }
100 
101 #[derive(Debug)]
102 pub struct ProcessManager;
103 impl ProcessManager {
104     #[inline(never)]
105     fn init() {
106         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
107         if INIT_FLAG
108             .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
109             .is_err()
110         {
111             panic!("ProcessManager has been initialized!");
112         }
113 
114         unsafe {
115             compiler_fence(Ordering::SeqCst);
116             kdebug!("To create address space for INIT process.");
117             // test_buddy();
118             set_IDLE_PROCESS_ADDRESS_SPACE(
119                 AddressSpace::new(true).expect("Failed to create address space for INIT process."),
120             );
121             kdebug!("INIT process address space created.");
122             compiler_fence(Ordering::SeqCst);
123         };
124 
125         ALL_PROCESS.lock_irqsave().replace(HashMap::new());
126         Self::init_switch_result();
127         Self::arch_init();
128         kdebug!("process arch init done.");
129         Self::init_idle();
130         kdebug!("process idle init done.");
131 
132         unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true };
133         kinfo!("Process Manager initialized.");
134     }
135 
136     fn init_switch_result() {
137         let mut switch_res_vec: Vec<SwitchResult> = Vec::new();
138         for _ in 0..PerCpu::MAX_CPU_NUM {
139             switch_res_vec.push(SwitchResult::new());
140         }
141         unsafe {
142             PROCESS_SWITCH_RESULT = Some(PerCpuVar::new(switch_res_vec).unwrap());
143         }
144     }
145 
146     /// 判断进程管理器是否已经初始化完成
147     pub fn initialized() -> bool {
148         unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
149     }
150 
151     /// 获取当前进程的pcb
152     pub fn current_pcb() -> Arc<ProcessControlBlock> {
153         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
154             kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
155             loop {
156                 spin_loop();
157             }
158         }
159         return ProcessControlBlock::arch_current_pcb();
160     }
161 
162     /// 获取当前进程的pid
163     ///
164     /// 如果进程管理器未初始化完成,那么返回0
165     pub fn current_pid() -> Pid {
166         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
167             return Pid(0);
168         }
169 
170         return ProcessManager::current_pcb().pid();
171     }
172 
173     /// 增加当前进程的锁持有计数
174     #[inline(always)]
175     pub fn preempt_disable() {
176         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
177             ProcessManager::current_pcb().preempt_disable();
178         }
179     }
180 
181     /// 减少当前进程的锁持有计数
182     #[inline(always)]
183     pub fn preempt_enable() {
184         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
185             ProcessManager::current_pcb().preempt_enable();
186         }
187     }
188 
189     /// 根据pid获取进程的pcb
190     ///
191     /// ## 参数
192     ///
193     /// - `pid` : 进程的pid
194     ///
195     /// ## 返回值
196     ///
197     /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
198     pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
199         return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned();
200     }
201 
202     /// 向系统中添加一个进程的pcb
203     ///
204     /// ## 参数
205     ///
206     /// - `pcb` : 进程的pcb
207     ///
208     /// ## 返回值
209     ///
210     /// 无
211     pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
212         ALL_PROCESS
213             .lock_irqsave()
214             .as_mut()
215             .unwrap()
216             .insert(pcb.pid(), pcb.clone());
217     }
218 
219     /// 唤醒一个进程
220     pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
221         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
222         let state = pcb.sched_info().inner_lock_read_irqsave().state();
223         if state.is_blocked() {
224             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
225             let state = writer.state();
226             if state.is_blocked() {
227                 writer.set_state(ProcessState::Runnable);
228                 writer.set_wakeup();
229 
230                 // avoid deadlock
231                 drop(writer);
232 
233                 let rq = cpu_rq(pcb.sched_info().on_cpu().unwrap().data() as usize);
234 
235                 let (rq, _guard) = rq.self_lock();
236                 rq.update_rq_clock();
237                 rq.activate_task(
238                     pcb,
239                     EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK,
240                 );
241 
242                 rq.check_preempt_currnet(pcb, WakeupFlags::empty());
243 
244                 // sched_enqueue(pcb.clone(), true);
245                 return Ok(());
246             } else if state.is_exited() {
247                 return Err(SystemError::EINVAL);
248             } else {
249                 return Ok(());
250             }
251         } else if state.is_exited() {
252             return Err(SystemError::EINVAL);
253         } else {
254             return Ok(());
255         }
256     }
257 
258     /// 唤醒暂停的进程
259     pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
260         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
261         let state = pcb.sched_info().inner_lock_read_irqsave().state();
262         if let ProcessState::Stopped = state {
263             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
264             let state = writer.state();
265             if let ProcessState::Stopped = state {
266                 writer.set_state(ProcessState::Runnable);
267                 // avoid deadlock
268                 drop(writer);
269 
270                 let rq = cpu_rq(pcb.sched_info().on_cpu().unwrap().data() as usize);
271 
272                 let (rq, _guard) = rq.self_lock();
273                 rq.update_rq_clock();
274                 rq.activate_task(
275                     pcb,
276                     EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK,
277                 );
278 
279                 rq.check_preempt_currnet(pcb, WakeupFlags::empty());
280 
281                 // sched_enqueue(pcb.clone(), true);
282                 return Ok(());
283             } else if state.is_runnable() {
284                 return Ok(());
285             } else {
286                 return Err(SystemError::EINVAL);
287             }
288         } else if state.is_runnable() {
289             return Ok(());
290         } else {
291             return Err(SystemError::EINVAL);
292         }
293     }
294 
295     /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
296     ///
297     /// ## 注意
298     ///
299     /// - 进入当前函数之前,不能持有sched_info的锁
300     /// - 进入当前函数之前,必须关闭中断
301     /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
302     pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
303         assert!(
304             !CurrentIrqArch::is_irq_enabled(),
305             "interrupt must be disabled before enter ProcessManager::mark_sleep()"
306         );
307         let pcb = ProcessManager::current_pcb();
308         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
309         if !matches!(writer.state(), ProcessState::Exited(_)) {
310             writer.set_state(ProcessState::Blocked(interruptable));
311             writer.set_sleep();
312             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
313             fence(Ordering::SeqCst);
314             drop(writer);
315             return Ok(());
316         }
317         return Err(SystemError::EINTR);
318     }
319 
320     /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
321     ///
322     /// ## 注意
323     ///
324     /// - 进入当前函数之前,不能持有sched_info的锁
325     /// - 进入当前函数之前,必须关闭中断
326     pub fn mark_stop() -> Result<(), SystemError> {
327         assert!(
328             !CurrentIrqArch::is_irq_enabled(),
329             "interrupt must be disabled before enter ProcessManager::mark_stop()"
330         );
331 
332         let pcb = ProcessManager::current_pcb();
333         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
334         if !matches!(writer.state(), ProcessState::Exited(_)) {
335             writer.set_state(ProcessState::Stopped);
336             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
337             drop(writer);
338 
339             return Ok(());
340         }
341         return Err(SystemError::EINTR);
342     }
343     /// 当子进程退出后向父进程发送通知
344     fn exit_notify() {
345         let current = ProcessManager::current_pcb();
346         // 让INIT进程收养所有子进程
347         if current.pid() != Pid(1) {
348             unsafe {
349                 current
350                     .adopt_childen()
351                     .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
352             };
353             let r = current.parent_pcb.read_irqsave().upgrade();
354             if r.is_none() {
355                 return;
356             }
357             let parent_pcb = r.unwrap();
358             let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32);
359             if r.is_err() {
360                 kwarn!(
361                     "failed to send kill signal to {:?}'s parent pcb {:?}",
362                     current.pid(),
363                     parent_pcb.pid()
364                 );
365             }
366             // todo: 这里需要向父进程发送SIGCHLD信号
367             // todo: 这里还需要根据线程组的信息,决定信号的发送
368         }
369     }
370 
371     /// 退出当前进程
372     ///
373     /// ## 参数
374     ///
375     /// - `exit_code` : 进程的退出码
376     pub fn exit(exit_code: usize) -> ! {
377         // 关中断
378         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
379         let pcb = ProcessManager::current_pcb();
380         let pid = pcb.pid();
381         pcb.sched_info
382             .inner_lock_write_irqsave()
383             .set_state(ProcessState::Exited(exit_code));
384         pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true)));
385 
386         let rq = cpu_rq(smp_get_processor_id().data() as usize);
387         let (rq, guard) = rq.self_lock();
388         rq.deactivate_task(
389             pcb.clone(),
390             DequeueFlag::DEQUEUE_SLEEP | DequeueFlag::DEQUEUE_NOCLOCK,
391         );
392         drop(guard);
393 
394         // 进行进程退出后的工作
395         let thread = pcb.thread.write_irqsave();
396         if let Some(addr) = thread.set_child_tid {
397             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
398         }
399 
400         if let Some(addr) = thread.clear_child_tid {
401             if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
402                 let _ =
403                     Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY);
404             }
405             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
406         }
407 
408         // 如果是vfork出来的进程,则需要处理completion
409         if thread.vfork_done.is_some() {
410             thread.vfork_done.as_ref().unwrap().complete_all();
411         }
412         drop(thread);
413         unsafe { pcb.basic_mut().set_user_vm(None) };
414         drop(pcb);
415         ProcessManager::exit_notify();
416         // unsafe { CurrentIrqArch::interrupt_enable() };
417         __schedule(SchedMode::SM_NONE);
418         kerror!("pid {pid:?} exited but sched again!");
419         #[allow(clippy::empty_loop)]
420         loop {
421             spin_loop();
422         }
423     }
424 
425     pub unsafe fn release(pid: Pid) {
426         let pcb = ProcessManager::find(pid);
427         if pcb.is_some() {
428             // let pcb = pcb.unwrap();
429             // 判断该pcb是否在全局没有任何引用
430             // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
431             //          因此目前暂时注释掉,使得能跑
432             // if Arc::strong_count(&pcb) <= 2 {
433             //     drop(pcb);
434             //     ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
435             // } else {
436             //     // 如果不为1就panic
437             //     let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(),  Arc::strong_count(&pcb));
438             //     kerror!("{}", msg);
439             //     panic!()
440             // }
441 
442             ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid);
443         }
444     }
445 
446     /// 上下文切换完成后的钩子函数
447     unsafe fn switch_finish_hook() {
448         // kdebug!("switch_finish_hook");
449         let prev_pcb = PROCESS_SWITCH_RESULT
450             .as_mut()
451             .unwrap()
452             .get_mut()
453             .prev_pcb
454             .take()
455             .expect("prev_pcb is None");
456         let next_pcb = PROCESS_SWITCH_RESULT
457             .as_mut()
458             .unwrap()
459             .get_mut()
460             .next_pcb
461             .take()
462             .expect("next_pcb is None");
463 
464         // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
465         prev_pcb.arch_info.force_unlock();
466         next_pcb.arch_info.force_unlock();
467     }
468 
469     /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
470     ///
471     /// ## 参数
472     ///
473     /// - `pcb` : 进程的pcb
474     #[allow(dead_code)]
475     pub fn kick(pcb: &Arc<ProcessControlBlock>) {
476         ProcessManager::current_pcb().preempt_disable();
477         let cpu_id = pcb.sched_info().on_cpu();
478 
479         if let Some(cpu_id) = cpu_id {
480             if pcb.pid() == cpu_rq(cpu_id.data() as usize).current().pid() {
481                 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
482             }
483         }
484 
485         ProcessManager::current_pcb().preempt_enable();
486     }
487 }
488 
489 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
490 #[cfg(target_arch = "x86_64")]
491 #[inline(never)]
492 pub unsafe extern "sysv64" fn switch_finish_hook() {
493     ProcessManager::switch_finish_hook();
494 }
495 #[cfg(target_arch = "riscv64")]
496 #[inline(always)]
497 pub unsafe fn switch_finish_hook() {
498     ProcessManager::switch_finish_hook();
499 }
500 
501 int_like!(Pid, AtomicPid, usize, AtomicUsize);
502 
503 impl ToString for Pid {
504     fn to_string(&self) -> String {
505         self.0.to_string()
506     }
507 }
508 
509 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
510 pub enum ProcessState {
511     /// The process is running on a CPU or in a run queue.
512     Runnable,
513     /// The process is waiting for an event to occur.
514     /// 其中的bool表示该等待过程是否可以被打断。
515     /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
516     /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
517     Blocked(bool),
518     /// 进程被信号终止
519     Stopped,
520     /// 进程已经退出,usize表示进程的退出码
521     Exited(usize),
522 }
523 
524 #[allow(dead_code)]
525 impl ProcessState {
526     #[inline(always)]
527     pub fn is_runnable(&self) -> bool {
528         return matches!(self, ProcessState::Runnable);
529     }
530 
531     #[inline(always)]
532     pub fn is_blocked(&self) -> bool {
533         return matches!(self, ProcessState::Blocked(_));
534     }
535 
536     #[inline(always)]
537     pub fn is_blocked_interruptable(&self) -> bool {
538         return matches!(self, ProcessState::Blocked(true));
539     }
540 
541     /// Returns `true` if the process state is [`Exited`].
542     #[inline(always)]
543     pub fn is_exited(&self) -> bool {
544         return matches!(self, ProcessState::Exited(_));
545     }
546 
547     /// Returns `true` if the process state is [`Stopped`].
548     ///
549     /// [`Stopped`]: ProcessState::Stopped
550     #[inline(always)]
551     pub fn is_stopped(&self) -> bool {
552         matches!(self, ProcessState::Stopped)
553     }
554 
555     /// Returns exit code if the process state is [`Exited`].
556     #[inline(always)]
557     pub fn exit_code(&self) -> Option<usize> {
558         match self {
559             ProcessState::Exited(code) => Some(*code),
560             _ => None,
561         }
562     }
563 }
564 
565 bitflags! {
566     /// pcb的标志位
567     pub struct ProcessFlags: usize {
568         /// 当前pcb表示一个内核线程
569         const KTHREAD = 1 << 0;
570         /// 当前进程需要被调度
571         const NEED_SCHEDULE = 1 << 1;
572         /// 进程由于vfork而与父进程存在资源共享
573         const VFORK = 1 << 2;
574         /// 进程不可被冻结
575         const NOFREEZE = 1 << 3;
576         /// 进程正在退出
577         const EXITING = 1 << 4;
578         /// 进程由于接收到终止信号唤醒
579         const WAKEKILL = 1 << 5;
580         /// 进程由于接收到信号而退出.(Killed by a signal)
581         const SIGNALED = 1 << 6;
582         /// 进程需要迁移到其他cpu上
583         const NEED_MIGRATE = 1 << 7;
584         /// 随机化的虚拟地址空间,主要用于动态链接器的加载
585         const RANDOMIZE = 1 << 8;
586     }
587 }
588 
589 #[derive(Debug)]
590 pub struct ProcessControlBlock {
591     /// 当前进程的pid
592     pid: Pid,
593     /// 当前进程的线程组id(这个值在同一个线程组内永远不变)
594     tgid: Pid,
595 
596     basic: RwLock<ProcessBasicInfo>,
597     /// 当前进程的自旋锁持有计数
598     preempt_count: AtomicUsize,
599 
600     flags: LockFreeFlags<ProcessFlags>,
601     worker_private: SpinLock<Option<WorkerPrivate>>,
602     /// 进程的内核栈
603     kernel_stack: RwLock<KernelStack>,
604 
605     /// 系统调用栈
606     syscall_stack: RwLock<KernelStack>,
607 
608     /// 与调度相关的信息
609     sched_info: ProcessSchedulerInfo,
610     /// 与处理器架构相关的信息
611     arch_info: SpinLock<ArchPCBInfo>,
612     /// 与信号处理相关的信息(似乎可以是无锁的)
613     sig_info: RwLock<ProcessSignalInfo>,
614     /// 信号处理结构体
615     sig_struct: SpinLock<SignalStruct>,
616     /// 退出信号S
617     exit_signal: AtomicSignal,
618 
619     /// 父进程指针
620     parent_pcb: RwLock<Weak<ProcessControlBlock>>,
621     /// 真实父进程指针
622     real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
623 
624     /// 子进程链表
625     children: RwLock<Vec<Pid>>,
626 
627     /// 等待队列
628     wait_queue: WaitQueue,
629 
630     /// 线程信息
631     thread: RwLock<ThreadInfo>,
632 }
633 
634 impl ProcessControlBlock {
635     /// Generate a new pcb.
636     ///
637     /// ## 参数
638     ///
639     /// - `name` : 进程的名字
640     /// - `kstack` : 进程的内核栈
641     ///
642     /// ## 返回值
643     ///
644     /// 返回一个新的pcb
645     pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
646         return Self::do_create_pcb(name, kstack, false);
647     }
648 
649     /// 创建一个新的idle进程
650     ///
651     /// 请注意,这个函数只能在进程管理初始化的时候调用。
652     pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
653         let name = format!("idle-{}", cpu_id);
654         return Self::do_create_pcb(name, kstack, true);
655     }
656 
657     #[inline(never)]
658     fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
659         let (pid, ppid, cwd) = if is_idle {
660             (Pid(0), Pid(0), "/".to_string())
661         } else {
662             let ppid = ProcessManager::current_pcb().pid();
663             let cwd = ProcessManager::current_pcb().basic().cwd();
664             (Self::generate_pid(), ppid, cwd)
665         };
666 
667         let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None);
668         let preempt_count = AtomicUsize::new(0);
669         let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
670 
671         let sched_info = ProcessSchedulerInfo::new(None);
672         let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
673 
674         let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
675             .map(|p| Arc::downgrade(&p))
676             .unwrap_or_default();
677 
678         let pcb = Self {
679             pid,
680             tgid: pid,
681             basic: basic_info,
682             preempt_count,
683             flags,
684             kernel_stack: RwLock::new(kstack),
685             syscall_stack: RwLock::new(KernelStack::new().unwrap()),
686             worker_private: SpinLock::new(None),
687             sched_info,
688             arch_info,
689             sig_info: RwLock::new(ProcessSignalInfo::default()),
690             sig_struct: SpinLock::new(SignalStruct::new()),
691             exit_signal: AtomicSignal::new(Signal::SIGCHLD),
692             parent_pcb: RwLock::new(ppcb.clone()),
693             real_parent_pcb: RwLock::new(ppcb),
694             children: RwLock::new(Vec::new()),
695             wait_queue: WaitQueue::default(),
696             thread: RwLock::new(ThreadInfo::new()),
697         };
698 
699         // 初始化系统调用栈
700         #[cfg(target_arch = "x86_64")]
701         pcb.arch_info
702             .lock()
703             .init_syscall_stack(&pcb.syscall_stack.read());
704 
705         let pcb = Arc::new(pcb);
706 
707         pcb.sched_info()
708             .sched_entity()
709             .force_mut()
710             .set_pcb(Arc::downgrade(&pcb));
711         // 设置进程的arc指针到内核栈和系统调用栈的最低地址处
712         unsafe {
713             pcb.kernel_stack
714                 .write()
715                 .set_pcb(Arc::downgrade(&pcb))
716                 .unwrap();
717 
718             pcb.syscall_stack
719                 .write()
720                 .set_pcb(Arc::downgrade(&pcb))
721                 .unwrap()
722         };
723 
724         // 将当前pcb加入父进程的子进程哈希表中
725         if pcb.pid() > Pid(1) {
726             if let Some(ppcb_arc) = pcb.parent_pcb.read_irqsave().upgrade() {
727                 let mut children = ppcb_arc.children.write_irqsave();
728                 children.push(pcb.pid());
729             } else {
730                 panic!("parent pcb is None");
731             }
732         }
733 
734         return pcb;
735     }
736 
737     /// 生成一个新的pid
738     #[inline(always)]
739     fn generate_pid() -> Pid {
740         static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
741         return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
742     }
743 
744     /// 返回当前进程的锁持有计数
745     #[inline(always)]
746     pub fn preempt_count(&self) -> usize {
747         return self.preempt_count.load(Ordering::SeqCst);
748     }
749 
750     /// 增加当前进程的锁持有计数
751     #[inline(always)]
752     pub fn preempt_disable(&self) {
753         self.preempt_count.fetch_add(1, Ordering::SeqCst);
754     }
755 
756     /// 减少当前进程的锁持有计数
757     #[inline(always)]
758     pub fn preempt_enable(&self) {
759         self.preempt_count.fetch_sub(1, Ordering::SeqCst);
760     }
761 
762     #[inline(always)]
763     pub unsafe fn set_preempt_count(&self, count: usize) {
764         self.preempt_count.store(count, Ordering::SeqCst);
765     }
766 
767     #[inline(always)]
768     pub fn flags(&self) -> &mut ProcessFlags {
769         return self.flags.get_mut();
770     }
771 
772     /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改
773     /// 否则会导致死锁
774     #[inline(always)]
775     pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
776         return self.basic.read_irqsave();
777     }
778 
779     #[inline(always)]
780     pub fn set_name(&self, name: String) {
781         self.basic.write().set_name(name);
782     }
783 
784     #[inline(always)]
785     pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
786         return self.basic.write_irqsave();
787     }
788 
789     /// # 获取arch info的锁,同时关闭中断
790     #[inline(always)]
791     pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
792         return self.arch_info.lock_irqsave();
793     }
794 
795     /// # 获取arch info的锁,但是不关闭中断
796     ///
797     /// 由于arch info在进程切换的时候会使用到,
798     /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的.
799     ///
800     /// 只能在以下情况下使用这个函数:
801     /// - 在中断上下文中(中断已经禁用),获取arch info的锁。
802     /// - 刚刚创建新的pcb
803     #[inline(always)]
804     pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
805         return self.arch_info.lock();
806     }
807 
808     #[inline(always)]
809     pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
810         return self.kernel_stack.read();
811     }
812 
813     #[inline(always)]
814     #[allow(dead_code)]
815     pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
816         return self.kernel_stack.write();
817     }
818 
819     #[inline(always)]
820     pub fn sched_info(&self) -> &ProcessSchedulerInfo {
821         return &self.sched_info;
822     }
823 
824     #[inline(always)]
825     pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
826         return self.worker_private.lock();
827     }
828 
829     #[inline(always)]
830     pub fn pid(&self) -> Pid {
831         return self.pid;
832     }
833 
834     #[inline(always)]
835     pub fn tgid(&self) -> Pid {
836         return self.tgid;
837     }
838 
839     /// 获取文件描述符表的Arc指针
840     #[inline(always)]
841     pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
842         return self.basic.read().fd_table().unwrap();
843     }
844 
845     /// 根据文件描述符序号,获取socket对象的Arc指针
846     ///
847     /// ## 参数
848     ///
849     /// - `fd` 文件描述符序号
850     ///
851     /// ## 返回值
852     ///
853     /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
854     pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
855         let binding = ProcessManager::current_pcb().fd_table();
856         let fd_table_guard = binding.read();
857 
858         let f = fd_table_guard.get_file_by_fd(fd)?;
859         drop(fd_table_guard);
860 
861         if f.file_type() != FileType::Socket {
862             return None;
863         }
864         let socket: Arc<SocketInode> = f
865             .inode()
866             .downcast_arc::<SocketInode>()
867             .expect("Not a socket inode");
868         return Some(socket);
869     }
870 
871     /// 当前进程退出时,让初始进程收养所有子进程
872     unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
873         match ProcessManager::find(Pid(1)) {
874             Some(init_pcb) => {
875                 let childen_guard = self.children.write();
876                 let mut init_childen_guard = init_pcb.children.write();
877 
878                 childen_guard.iter().for_each(|pid| {
879                     init_childen_guard.push(*pid);
880                 });
881 
882                 return Ok(());
883             }
884             _ => Err(SystemError::ECHILD),
885         }
886     }
887 
888     /// 生成进程的名字
889     pub fn generate_name(program_path: &str, args: &Vec<String>) -> String {
890         let mut name = program_path.to_string();
891         for arg in args {
892             name.push(' ');
893             name.push_str(arg);
894         }
895         return name;
896     }
897 
898     pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
899         self.sig_info.read_irqsave()
900     }
901 
902     pub fn try_siginfo_irqsave(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
903         for _ in 0..times {
904             if let Some(r) = self.sig_info.try_read_irqsave() {
905                 return Some(r);
906             }
907         }
908 
909         return None;
910     }
911 
912     pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
913         self.sig_info.write_irqsave()
914     }
915 
916     pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
917         for _ in 0..times {
918             if let Some(r) = self.sig_info.try_write_irqsave() {
919                 return Some(r);
920             }
921         }
922 
923         return None;
924     }
925 
926     pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
927         self.sig_struct.lock_irqsave()
928     }
929 
930     pub fn try_sig_struct_irqsave(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
931         for _ in 0..times {
932             if let Ok(r) = self.sig_struct.try_lock_irqsave() {
933                 return Some(r);
934             }
935         }
936 
937         return None;
938     }
939 
940     pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> {
941         self.sig_struct.lock_irqsave()
942     }
943 }
944 
945 impl Drop for ProcessControlBlock {
946     fn drop(&mut self) {
947         let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
948         // 在ProcFS中,解除进程的注册
949         procfs_unregister_pid(self.pid())
950             .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
951 
952         if let Some(ppcb) = self.parent_pcb.read_irqsave().upgrade() {
953             ppcb.children
954                 .write_irqsave()
955                 .retain(|pid| *pid != self.pid());
956         }
957 
958         drop(irq_guard);
959     }
960 }
961 
962 /// 线程信息
963 #[derive(Debug)]
964 pub struct ThreadInfo {
965     // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
966     clear_child_tid: Option<VirtAddr>,
967     set_child_tid: Option<VirtAddr>,
968 
969     vfork_done: Option<Arc<Completion>>,
970     /// 线程组的组长
971     group_leader: Weak<ProcessControlBlock>,
972 }
973 
974 impl ThreadInfo {
975     pub fn new() -> Self {
976         Self {
977             clear_child_tid: None,
978             set_child_tid: None,
979             vfork_done: None,
980             group_leader: Weak::default(),
981         }
982     }
983 
984     pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
985         return self.group_leader.upgrade();
986     }
987 }
988 
989 /// 进程的基本信息
990 ///
991 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
992 #[derive(Debug)]
993 pub struct ProcessBasicInfo {
994     /// 当前进程的进程组id
995     pgid: Pid,
996     /// 当前进程的父进程的pid
997     ppid: Pid,
998     /// 进程的名字
999     name: String,
1000 
1001     /// 当前进程的工作目录
1002     cwd: String,
1003 
1004     /// 用户地址空间
1005     user_vm: Option<Arc<AddressSpace>>,
1006 
1007     /// 文件描述符表
1008     fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
1009 }
1010 
1011 impl ProcessBasicInfo {
1012     #[inline(never)]
1013     pub fn new(
1014         pgid: Pid,
1015         ppid: Pid,
1016         name: String,
1017         cwd: String,
1018         user_vm: Option<Arc<AddressSpace>>,
1019     ) -> RwLock<Self> {
1020         let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
1021         return RwLock::new(Self {
1022             pgid,
1023             ppid,
1024             name,
1025             cwd,
1026             user_vm,
1027             fd_table: Some(fd_table),
1028         });
1029     }
1030 
1031     pub fn pgid(&self) -> Pid {
1032         return self.pgid;
1033     }
1034 
1035     pub fn ppid(&self) -> Pid {
1036         return self.ppid;
1037     }
1038 
1039     pub fn name(&self) -> &str {
1040         return &self.name;
1041     }
1042 
1043     pub fn set_name(&mut self, name: String) {
1044         self.name = name;
1045     }
1046 
1047     pub fn cwd(&self) -> String {
1048         return self.cwd.clone();
1049     }
1050     pub fn set_cwd(&mut self, path: String) {
1051         return self.cwd = path;
1052     }
1053 
1054     pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
1055         return self.user_vm.clone();
1056     }
1057 
1058     pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
1059         self.user_vm = user_vm;
1060     }
1061 
1062     pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
1063         return self.fd_table.clone();
1064     }
1065 
1066     pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
1067         self.fd_table = fd_table;
1068     }
1069 }
1070 
1071 #[derive(Debug)]
1072 pub struct ProcessSchedulerInfo {
1073     /// 当前进程所在的cpu
1074     on_cpu: AtomicProcessorId,
1075     /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
1076     /// 该字段存储要被迁移到的目标处理器核心号
1077     // migrate_to: AtomicProcessorId,
1078     inner_locked: RwLock<InnerSchedInfo>,
1079     /// 进程的调度优先级
1080     // priority: SchedPriority,
1081     /// 当前进程的虚拟运行时间
1082     // virtual_runtime: AtomicIsize,
1083     /// 由实时调度器管理的时间片
1084     // rt_time_slice: AtomicIsize,
1085     pub sched_stat: RwLock<SchedInfo>,
1086     /// 调度策略
1087     pub sched_policy: RwLock<crate::sched::SchedPolicy>,
1088     /// cfs调度实体
1089     pub sched_entity: Arc<FairSchedEntity>,
1090     pub on_rq: SpinLock<OnRq>,
1091 
1092     pub prio_data: RwLock<PrioData>,
1093 }
1094 
1095 #[derive(Debug, Default)]
1096 pub struct SchedInfo {
1097     /// 记录任务在特定 CPU 上运行的次数
1098     pub pcount: usize,
1099     /// 记录任务等待在运行队列上的时间
1100     pub run_delay: usize,
1101     /// 记录任务上次在 CPU 上运行的时间戳
1102     pub last_arrival: u64,
1103     /// 记录任务上次被加入到运行队列中的时间戳
1104     pub last_queued: u64,
1105 }
1106 
1107 #[derive(Debug)]
1108 pub struct PrioData {
1109     pub prio: i32,
1110     pub static_prio: i32,
1111     pub normal_prio: i32,
1112 }
1113 
1114 impl Default for PrioData {
1115     fn default() -> Self {
1116         Self {
1117             prio: MAX_PRIO - 20,
1118             static_prio: MAX_PRIO - 20,
1119             normal_prio: MAX_PRIO - 20,
1120         }
1121     }
1122 }
1123 
1124 #[derive(Debug)]
1125 pub struct InnerSchedInfo {
1126     /// 当前进程的状态
1127     state: ProcessState,
1128     /// 进程的调度策略
1129     sleep: bool,
1130 }
1131 
1132 impl InnerSchedInfo {
1133     pub fn state(&self) -> ProcessState {
1134         return self.state;
1135     }
1136 
1137     pub fn set_state(&mut self, state: ProcessState) {
1138         self.state = state;
1139     }
1140 
1141     pub fn set_sleep(&mut self) {
1142         self.sleep = true;
1143     }
1144 
1145     pub fn set_wakeup(&mut self) {
1146         self.sleep = false;
1147     }
1148 
1149     pub fn is_mark_sleep(&self) -> bool {
1150         self.sleep
1151     }
1152 }
1153 
1154 impl ProcessSchedulerInfo {
1155     #[inline(never)]
1156     pub fn new(on_cpu: Option<ProcessorId>) -> Self {
1157         let cpu_id = on_cpu.unwrap_or(ProcessorId::INVALID);
1158         return Self {
1159             on_cpu: AtomicProcessorId::new(cpu_id),
1160             // migrate_to: AtomicProcessorId::new(ProcessorId::INVALID),
1161             inner_locked: RwLock::new(InnerSchedInfo {
1162                 state: ProcessState::Blocked(false),
1163                 sleep: false,
1164             }),
1165             // virtual_runtime: AtomicIsize::new(0),
1166             // rt_time_slice: AtomicIsize::new(0),
1167             // priority: SchedPriority::new(100).unwrap(),
1168             sched_stat: RwLock::new(SchedInfo::default()),
1169             sched_policy: RwLock::new(crate::sched::SchedPolicy::CFS),
1170             sched_entity: FairSchedEntity::new(),
1171             on_rq: SpinLock::new(OnRq::None),
1172             prio_data: RwLock::new(PrioData::default()),
1173         };
1174     }
1175 
1176     pub fn sched_entity(&self) -> Arc<FairSchedEntity> {
1177         return self.sched_entity.clone();
1178     }
1179 
1180     pub fn on_cpu(&self) -> Option<ProcessorId> {
1181         let on_cpu = self.on_cpu.load(Ordering::SeqCst);
1182         if on_cpu == ProcessorId::INVALID {
1183             return None;
1184         } else {
1185             return Some(on_cpu);
1186         }
1187     }
1188 
1189     pub fn set_on_cpu(&self, on_cpu: Option<ProcessorId>) {
1190         if let Some(cpu_id) = on_cpu {
1191             self.on_cpu.store(cpu_id, Ordering::SeqCst);
1192         } else {
1193             self.on_cpu.store(ProcessorId::INVALID, Ordering::SeqCst);
1194         }
1195     }
1196 
1197     // pub fn migrate_to(&self) -> Option<ProcessorId> {
1198     //     let migrate_to = self.migrate_to.load(Ordering::SeqCst);
1199     //     if migrate_to == ProcessorId::INVALID {
1200     //         return None;
1201     //     } else {
1202     //         return Some(migrate_to);
1203     //     }
1204     // }
1205 
1206     // pub fn set_migrate_to(&self, migrate_to: Option<ProcessorId>) {
1207     //     if let Some(data) = migrate_to {
1208     //         self.migrate_to.store(data, Ordering::SeqCst);
1209     //     } else {
1210     //         self.migrate_to
1211     //             .store(ProcessorId::INVALID, Ordering::SeqCst)
1212     //     }
1213     // }
1214 
1215     pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> {
1216         return self.inner_locked.write_irqsave();
1217     }
1218 
1219     pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> {
1220         return self.inner_locked.read_irqsave();
1221     }
1222 
1223     // pub fn inner_lock_try_read_irqsave(
1224     //     &self,
1225     //     times: u8,
1226     // ) -> Option<RwLockReadGuard<InnerSchedInfo>> {
1227     //     for _ in 0..times {
1228     //         if let Some(r) = self.inner_locked.try_read_irqsave() {
1229     //             return Some(r);
1230     //         }
1231     //     }
1232 
1233     //     return None;
1234     // }
1235 
1236     // pub fn inner_lock_try_upgradable_read_irqsave(
1237     //     &self,
1238     //     times: u8,
1239     // ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> {
1240     //     for _ in 0..times {
1241     //         if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() {
1242     //             return Some(r);
1243     //         }
1244     //     }
1245 
1246     //     return None;
1247     // }
1248 
1249     // pub fn virtual_runtime(&self) -> isize {
1250     //     return self.virtual_runtime.load(Ordering::SeqCst);
1251     // }
1252 
1253     // pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
1254     //     self.virtual_runtime
1255     //         .store(virtual_runtime, Ordering::SeqCst);
1256     // }
1257     // pub fn increase_virtual_runtime(&self, delta: isize) {
1258     //     self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
1259     // }
1260 
1261     // pub fn rt_time_slice(&self) -> isize {
1262     //     return self.rt_time_slice.load(Ordering::SeqCst);
1263     // }
1264 
1265     // pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
1266     //     self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
1267     // }
1268 
1269     // pub fn increase_rt_time_slice(&self, delta: isize) {
1270     //     self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
1271     // }
1272 
1273     pub fn policy(&self) -> crate::sched::SchedPolicy {
1274         return *self.sched_policy.read_irqsave();
1275     }
1276 }
1277 
1278 #[derive(Debug, Clone)]
1279 pub struct KernelStack {
1280     stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
1281     /// 标记该内核栈是否可以被释放
1282     can_be_freed: bool,
1283 }
1284 
1285 impl KernelStack {
1286     pub const SIZE: usize = 0x4000;
1287     pub const ALIGN: usize = 0x4000;
1288 
1289     pub fn new() -> Result<Self, SystemError> {
1290         return Ok(Self {
1291             stack: Some(
1292                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
1293             ),
1294             can_be_freed: true,
1295         });
1296     }
1297 
1298     /// 根据已有的空间,构造一个内核栈结构体
1299     ///
1300     /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
1301     pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
1302         if base.is_null() || !base.check_aligned(Self::ALIGN) {
1303             return Err(SystemError::EFAULT);
1304         }
1305 
1306         return Ok(Self {
1307             stack: Some(
1308                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
1309                     base.data() as *mut [u8; KernelStack::SIZE],
1310                 ),
1311             ),
1312             can_be_freed: false,
1313         });
1314     }
1315 
1316     /// 返回内核栈的起始虚拟地址(低地址)
1317     pub fn start_address(&self) -> VirtAddr {
1318         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
1319     }
1320 
1321     /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
1322     pub fn stack_max_address(&self) -> VirtAddr {
1323         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
1324     }
1325 
1326     pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
1327         // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
1328         let p: *const ProcessControlBlock = Weak::into_raw(pcb);
1329         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1330 
1331         // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
1332         if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
1333             kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
1334             return Err(SystemError::EPERM);
1335         }
1336         // 将pcb的地址放到内核栈的最低地址处
1337         unsafe {
1338             *stack_bottom_ptr = p;
1339         }
1340 
1341         return Ok(());
1342     }
1343 
1344     /// 清除内核栈的pcb指针
1345     ///
1346     /// ## 参数
1347     ///
1348     /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
1349     pub unsafe fn clear_pcb(&mut self, force: bool) {
1350         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1351         if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
1352             return;
1353         }
1354 
1355         if !force {
1356             let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
1357             drop(pcb_ptr);
1358         }
1359 
1360         *stack_bottom_ptr = core::ptr::null();
1361     }
1362 
1363     /// 返回指向当前内核栈pcb的Arc指针
1364     #[allow(dead_code)]
1365     pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
1366         // 从内核栈的最低地址处取出pcb的地址
1367         let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1368         if unlikely(unsafe { (*p).is_null() }) {
1369             return None;
1370         }
1371 
1372         // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
1373         let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
1374             ManuallyDrop::new(Weak::from_raw(*p));
1375 
1376         let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
1377         return Some(new_arc);
1378     }
1379 }
1380 
1381 impl Drop for KernelStack {
1382     fn drop(&mut self) {
1383         if self.stack.is_some() {
1384             let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1385             if unsafe { !(*ptr).is_null() } {
1386                 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) };
1387                 drop(pcb_ptr);
1388             }
1389         }
1390         // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
1391         if !self.can_be_freed {
1392             let bx = self.stack.take();
1393             core::mem::forget(bx);
1394         }
1395     }
1396 }
1397 
1398 pub fn process_init() {
1399     ProcessManager::init();
1400 }
1401 
1402 #[derive(Debug)]
1403 pub struct ProcessSignalInfo {
1404     // 当前进程
1405     sig_block: SigSet,
1406     // sig_pending 中存储当前线程要处理的信号
1407     sig_pending: SigPending,
1408     // sig_shared_pending 中存储当前线程所属进程要处理的信号
1409     sig_shared_pending: SigPending,
1410     // 当前进程对应的tty
1411     tty: Option<Arc<TtyCore>>,
1412 }
1413 
1414 impl ProcessSignalInfo {
1415     pub fn sig_block(&self) -> &SigSet {
1416         &self.sig_block
1417     }
1418 
1419     pub fn sig_pending(&self) -> &SigPending {
1420         &self.sig_pending
1421     }
1422 
1423     pub fn sig_pending_mut(&mut self) -> &mut SigPending {
1424         &mut self.sig_pending
1425     }
1426 
1427     pub fn sig_block_mut(&mut self) -> &mut SigSet {
1428         &mut self.sig_block
1429     }
1430 
1431     pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
1432         &mut self.sig_shared_pending
1433     }
1434 
1435     pub fn sig_shared_pending(&self) -> &SigPending {
1436         &self.sig_shared_pending
1437     }
1438 
1439     pub fn tty(&self) -> Option<Arc<TtyCore>> {
1440         self.tty.clone()
1441     }
1442 
1443     pub fn set_tty(&mut self, tty: Arc<TtyCore>) {
1444         self.tty = Some(tty);
1445     }
1446 
1447     /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
1448     ///
1449     /// ## 参数
1450     ///
1451     /// - `sig_mask` 被忽略掉的信号
1452     ///
1453     pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) {
1454         let res = self.sig_pending.dequeue_signal(sig_mask);
1455         if res.0 != Signal::INVALID {
1456             return res;
1457         } else {
1458             return self.sig_shared_pending.dequeue_signal(sig_mask);
1459         }
1460     }
1461 }
1462 
1463 impl Default for ProcessSignalInfo {
1464     fn default() -> Self {
1465         Self {
1466             sig_block: SigSet::empty(),
1467             sig_pending: SigPending::default(),
1468             sig_shared_pending: SigPending::default(),
1469             tty: None,
1470         }
1471     }
1472 }
1473