1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize}; 2 3 use alloc::{ 4 boxed::Box, 5 collections::LinkedList, 6 string::String, 7 sync::{Arc, Weak}, 8 vec::Vec, 9 }; 10 use hashbrown::HashMap; 11 use log::warn; 12 use smoltcp::{ 13 iface::SocketSet, 14 socket::{self, raw, tcp, udp}, 15 }; 16 use system_error::SystemError; 17 18 use crate::{ 19 arch::rand::rand, 20 filesystem::vfs::{ 21 file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode, 22 Metadata, 23 }, 24 libs::{ 25 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 26 spinlock::{SpinLock, SpinLockGuard}, 27 wait_queue::EventWaitQueue, 28 }, 29 process::{Pid, ProcessManager}, 30 sched::{schedule, SchedMode}, 31 }; 32 33 use self::{ 34 handle::GlobalSocketHandle, 35 inet::{RawSocket, TcpSocket, UdpSocket}, 36 unix::{SeqpacketSocket, StreamSocket}, 37 }; 38 39 use super::{ 40 event_poll::{EPollEventType, EPollItem, EventPoll}, 41 Endpoint, Protocol, ShutdownType, 42 }; 43 44 pub mod handle; 45 pub mod inet; 46 pub mod unix; 47 48 lazy_static! { 49 /// 所有socket的集合 50 /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket 51 pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![])); 52 /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem, 53 /// 注意!:在网卡中断中需要拿到这张表的,在获取读锁时应该确保关中断避免死锁 54 pub static ref HANDLE_MAP: RwLock<HashMap<GlobalSocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new()); 55 /// 端口管理器 56 pub static ref PORT_MANAGER: PortManager = PortManager::new(); 57 } 58 59 /* For setsockopt(2) */ 60 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9 61 pub const SOL_SOCKET: u8 = 1; 62 63 /// 根据地址族、socket类型和协议创建socket 64 pub(super) fn new_socket( 65 address_family: AddressFamily, 66 socket_type: PosixSocketType, 67 protocol: Protocol, 68 ) -> Result<Box<dyn Socket>, SystemError> { 69 let socket: Box<dyn Socket> = match address_family { 70 AddressFamily::Unix => match socket_type { 71 PosixSocketType::Stream => Box::new(StreamSocket::new(SocketOptions::default())), 72 PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())), 73 _ => { 74 return Err(SystemError::EINVAL); 75 } 76 }, 77 AddressFamily::INet => match socket_type { 78 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())), 79 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())), 80 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())), 81 _ => { 82 return Err(SystemError::EINVAL); 83 } 84 }, 85 _ => { 86 return Err(SystemError::EAFNOSUPPORT); 87 } 88 }; 89 90 let handle_item = SocketHandleItem::new(None); 91 HANDLE_MAP 92 .write_irqsave() 93 .insert(socket.socket_handle(), handle_item); 94 Ok(socket) 95 } 96 97 pub trait Socket: Sync + Send + Debug + Any { 98 /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回 99 /// 100 /// @param buf 读取到的数据存放的缓冲区 101 /// 102 /// @return - 成功:(返回读取的数据的长度,读取数据的端点). 103 /// - 失败:错误码 104 fn read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint); 105 106 /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回 107 /// 108 /// @param buf 要写入的数据 109 /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃 110 /// 111 /// @return 返回写入的数据的长度 112 fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>; 113 114 /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点 115 /// 116 /// It is used to establish a connection to a remote server. 117 /// When a socket is connected to a remote server, 118 /// the operating system will establish a network connection with the server 119 /// and allow data to be sent and received between the local socket and the remote server. 120 /// 121 /// @param endpoint 要连接的端点 122 /// 123 /// @return 返回连接是否成功 124 fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>; 125 126 /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点 127 /// 128 /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine. 129 /// 130 /// @param endpoint 要绑定的端点 131 /// 132 /// @return 返回绑定是否成功 133 fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> { 134 Err(SystemError::ENOSYS) 135 } 136 137 /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。 138 /// 139 /// shutdown() 函数用于启动网络连接的正常关闭。 140 /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。 141 /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。 142 /// 143 /// @return 返回是否成功关闭 144 fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> { 145 Err(SystemError::ENOSYS) 146 } 147 148 /// @brief 对应于POSIX的listen函数,用于监听端点 149 /// 150 /// @param backlog 最大的等待连接数 151 /// 152 /// @return 返回监听是否成功 153 fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> { 154 Err(SystemError::ENOSYS) 155 } 156 157 /// @brief 对应于POSIX的accept函数,用于接受连接 158 /// 159 /// @param endpoint 对端的端点 160 /// 161 /// @return 返回接受连接是否成功 162 fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> { 163 Err(SystemError::ENOSYS) 164 } 165 166 /// @brief 获取socket的端点 167 /// 168 /// @return 返回socket的端点 169 fn endpoint(&self) -> Option<Endpoint> { 170 None 171 } 172 173 /// @brief 获取socket的对端端点 174 /// 175 /// @return 返回socket的对端端点 176 fn peer_endpoint(&self) -> Option<Endpoint> { 177 None 178 } 179 180 /// @brief 181 /// The purpose of the poll function is to provide 182 /// a non-blocking way to check if a socket is ready for reading or writing, 183 /// so that you can efficiently handle multiple sockets in a single thread or event loop. 184 /// 185 /// @return (in, out, err) 186 /// 187 /// The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking. 188 /// The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking. 189 /// The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset 190 /// 191 fn poll(&self) -> EPollEventType { 192 EPollEventType::empty() 193 } 194 195 /// @brief socket的ioctl函数 196 /// 197 /// @param cmd ioctl命令 198 /// @param arg0 ioctl命令的第一个参数 199 /// @param arg1 ioctl命令的第二个参数 200 /// @param arg2 ioctl命令的第三个参数 201 /// 202 /// @return 返回ioctl命令的返回值 203 fn ioctl( 204 &self, 205 _cmd: usize, 206 _arg0: usize, 207 _arg1: usize, 208 _arg2: usize, 209 ) -> Result<usize, SystemError> { 210 Ok(0) 211 } 212 213 /// @brief 获取socket的元数据 214 fn metadata(&self) -> SocketMetadata; 215 216 fn box_clone(&self) -> Box<dyn Socket>; 217 218 /// @brief 设置socket的选项 219 /// 220 /// @param level 选项的层次 221 /// @param optname 选项的名称 222 /// @param optval 选项的值 223 /// 224 /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS 225 fn setsockopt( 226 &self, 227 _level: usize, 228 _optname: usize, 229 _optval: &[u8], 230 ) -> Result<(), SystemError> { 231 warn!("setsockopt is not implemented"); 232 Ok(()) 233 } 234 235 fn socket_handle(&self) -> GlobalSocketHandle; 236 237 fn write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError> { 238 todo!() 239 } 240 241 fn as_any_ref(&self) -> &dyn Any; 242 243 fn as_any_mut(&mut self) -> &mut dyn Any; 244 245 fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> { 246 HANDLE_MAP 247 .write_irqsave() 248 .get_mut(&self.socket_handle()) 249 .unwrap() 250 .add_epoll(epitem); 251 Ok(()) 252 } 253 254 fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 255 HANDLE_MAP 256 .write_irqsave() 257 .get_mut(&self.socket_handle()) 258 .unwrap() 259 .remove_epoll(epoll)?; 260 261 Ok(()) 262 } 263 264 fn clear_epoll(&mut self) -> Result<(), SystemError> { 265 let mut handle_map_guard = HANDLE_MAP.write_irqsave(); 266 let handle_item = handle_map_guard.get_mut(&self.socket_handle()).unwrap(); 267 268 for epitem in handle_item.epitems.lock_irqsave().iter() { 269 let epoll = epitem.epoll(); 270 if epoll.upgrade().is_some() { 271 EventPoll::ep_remove( 272 &mut epoll.upgrade().unwrap().lock_irqsave(), 273 epitem.fd(), 274 None, 275 )?; 276 } 277 } 278 279 Ok(()) 280 } 281 282 fn close(&mut self); 283 } 284 285 impl Clone for Box<dyn Socket> { 286 fn clone(&self) -> Box<dyn Socket> { 287 self.box_clone() 288 } 289 } 290 291 /// # Socket在文件系统中的inode封装 292 #[derive(Debug)] 293 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize); 294 295 impl SocketInode { 296 pub fn new(socket: Box<dyn Socket>) -> Arc<Self> { 297 Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0))) 298 } 299 300 #[inline] 301 pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> { 302 self.0.lock() 303 } 304 305 pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> { 306 self.0.lock_no_preempt() 307 } 308 309 fn do_close(&self) -> Result<(), SystemError> { 310 let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst); 311 if prev_ref_count == 1 { 312 // 最后一次关闭,需要释放 313 let mut socket = self.0.lock_irqsave(); 314 315 if socket.metadata().socket_type == SocketType::Unix { 316 return Ok(()); 317 } 318 319 if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() { 320 PORT_MANAGER.unbind_port(socket.metadata().socket_type, ip.port); 321 } 322 323 socket.clear_epoll()?; 324 325 HANDLE_MAP 326 .write_irqsave() 327 .remove(&socket.socket_handle()) 328 .unwrap(); 329 socket.close(); 330 } 331 332 Ok(()) 333 } 334 } 335 336 impl Drop for SocketInode { 337 fn drop(&mut self) { 338 for _ in 0..self.1.load(core::sync::atomic::Ordering::SeqCst) { 339 let _ = self.do_close(); 340 } 341 } 342 } 343 344 impl IndexNode for SocketInode { 345 fn open( 346 &self, 347 _data: SpinLockGuard<FilePrivateData>, 348 _mode: &FileMode, 349 ) -> Result<(), SystemError> { 350 self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst); 351 Ok(()) 352 } 353 354 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> { 355 self.do_close() 356 } 357 358 fn read_at( 359 &self, 360 _offset: usize, 361 len: usize, 362 buf: &mut [u8], 363 data: SpinLockGuard<FilePrivateData>, 364 ) -> Result<usize, SystemError> { 365 drop(data); 366 self.0.lock_no_preempt().read(&mut buf[0..len]).0 367 } 368 369 fn write_at( 370 &self, 371 _offset: usize, 372 len: usize, 373 buf: &[u8], 374 data: SpinLockGuard<FilePrivateData>, 375 ) -> Result<usize, SystemError> { 376 drop(data); 377 self.0.lock_no_preempt().write(&buf[0..len], None) 378 } 379 380 fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> { 381 let events = self.0.lock_irqsave().poll(); 382 return Ok(events.bits() as usize); 383 } 384 385 fn fs(&self) -> Arc<dyn FileSystem> { 386 todo!() 387 } 388 389 fn as_any_ref(&self) -> &dyn Any { 390 self 391 } 392 393 fn list(&self) -> Result<Vec<String>, SystemError> { 394 return Err(SystemError::ENOTDIR); 395 } 396 397 fn metadata(&self) -> Result<Metadata, SystemError> { 398 let meta = Metadata { 399 mode: ModeType::from_bits_truncate(0o755), 400 file_type: FileType::Socket, 401 ..Default::default() 402 }; 403 404 return Ok(meta); 405 } 406 407 fn resize(&self, _len: usize) -> Result<(), SystemError> { 408 return Ok(()); 409 } 410 } 411 412 #[derive(Debug)] 413 pub struct SocketHandleItem { 414 /// shutdown状态 415 pub shutdown_type: RwLock<ShutdownType>, 416 /// socket的waitqueue 417 pub wait_queue: Arc<EventWaitQueue>, 418 /// epitems,考虑写在这是否是最优解? 419 pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>, 420 } 421 422 impl SocketHandleItem { 423 pub fn new(wait_queue: Option<Arc<EventWaitQueue>>) -> Self { 424 Self { 425 shutdown_type: RwLock::new(ShutdownType::empty()), 426 wait_queue: wait_queue.unwrap_or(Arc::new(EventWaitQueue::new())), 427 epitems: SpinLock::new(LinkedList::new()), 428 } 429 } 430 431 /// ## 在socket的等待队列上睡眠 432 pub fn sleep( 433 socket_handle: GlobalSocketHandle, 434 events: u64, 435 handle_map_guard: RwLockReadGuard<'_, HashMap<GlobalSocketHandle, SocketHandleItem>>, 436 ) { 437 unsafe { 438 handle_map_guard 439 .get(&socket_handle) 440 .unwrap() 441 .wait_queue 442 .sleep_without_schedule(events) 443 }; 444 drop(handle_map_guard); 445 schedule(SchedMode::SM_NONE); 446 } 447 448 pub fn shutdown_type(&self) -> ShutdownType { 449 *self.shutdown_type.read() 450 } 451 452 pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> { 453 self.shutdown_type.write_irqsave() 454 } 455 456 pub fn add_epoll(&mut self, epitem: Arc<EPollItem>) { 457 self.epitems.lock_irqsave().push_back(epitem) 458 } 459 460 pub fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 461 let is_remove = !self 462 .epitems 463 .lock_irqsave() 464 .extract_if(|x| x.epoll().ptr_eq(epoll)) 465 .collect::<Vec<_>>() 466 .is_empty(); 467 468 if is_remove { 469 return Ok(()); 470 } 471 472 Err(SystemError::ENOENT) 473 } 474 } 475 476 /// # TCP 和 UDP 的端口管理器。 477 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。 478 pub struct PortManager { 479 // TCP 端口记录表 480 tcp_port_table: SpinLock<HashMap<u16, Pid>>, 481 // UDP 端口记录表 482 udp_port_table: SpinLock<HashMap<u16, Pid>>, 483 } 484 485 impl PortManager { 486 pub fn new() -> Self { 487 return Self { 488 tcp_port_table: SpinLock::new(HashMap::new()), 489 udp_port_table: SpinLock::new(HashMap::new()), 490 }; 491 } 492 493 /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE 494 pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> { 495 // TODO: selects non-conflict high port 496 497 static mut EPHEMERAL_PORT: u16 = 0; 498 unsafe { 499 if EPHEMERAL_PORT == 0 { 500 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16; 501 } 502 } 503 504 let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数 505 let mut port: u16; 506 while remaining > 0 { 507 unsafe { 508 if EPHEMERAL_PORT == 65535 { 509 EPHEMERAL_PORT = 49152; 510 } else { 511 EPHEMERAL_PORT += 1; 512 } 513 port = EPHEMERAL_PORT; 514 } 515 516 // 使用 ListenTable 检查端口是否被占用 517 let listen_table_guard = match socket_type { 518 SocketType::Udp => self.udp_port_table.lock(), 519 SocketType::Tcp => self.tcp_port_table.lock(), 520 _ => panic!("{:?} cann't get a port", socket_type), 521 }; 522 if listen_table_guard.get(&port).is_none() { 523 drop(listen_table_guard); 524 return Ok(port); 525 } 526 remaining -= 1; 527 } 528 return Err(SystemError::EADDRINUSE); 529 } 530 531 /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录 532 /// 533 /// TODO: 增加支持端口复用的逻辑 534 pub fn bind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> { 535 if port > 0 { 536 let mut listen_table_guard = match socket_type { 537 SocketType::Udp => self.udp_port_table.lock(), 538 SocketType::Tcp => self.tcp_port_table.lock(), 539 _ => panic!("{:?} cann't bind a port", socket_type), 540 }; 541 match listen_table_guard.get(&port) { 542 Some(_) => return Err(SystemError::EADDRINUSE), 543 None => listen_table_guard.insert(port, ProcessManager::current_pid()), 544 }; 545 drop(listen_table_guard); 546 } 547 return Ok(()); 548 } 549 550 /// @brief 在对应的端口记录表中将端口和 socket 解绑 551 /// should call this function when socket is closed or aborted 552 pub fn unbind_port(&self, socket_type: SocketType, port: u16) { 553 let mut listen_table_guard = match socket_type { 554 SocketType::Udp => self.udp_port_table.lock(), 555 SocketType::Tcp => self.tcp_port_table.lock(), 556 _ => { 557 return; 558 } 559 }; 560 listen_table_guard.remove(&port); 561 drop(listen_table_guard); 562 } 563 } 564 565 /// @brief socket的类型 566 #[derive(Debug, Clone, Copy, PartialEq)] 567 pub enum SocketType { 568 /// 原始的socket 569 Raw, 570 /// 用于Tcp通信的 Socket 571 Tcp, 572 /// 用于Udp通信的 Socket 573 Udp, 574 /// unix域的 Socket 575 Unix, 576 } 577 578 bitflags! { 579 /// @brief socket的选项 580 #[derive(Default)] 581 pub struct SocketOptions: u32 { 582 /// 是否阻塞 583 const BLOCK = 1 << 0; 584 /// 是否允许广播 585 const BROADCAST = 1 << 1; 586 /// 是否允许多播 587 const MULTICAST = 1 << 2; 588 /// 是否允许重用地址 589 const REUSEADDR = 1 << 3; 590 /// 是否允许重用端口 591 const REUSEPORT = 1 << 4; 592 } 593 } 594 595 #[derive(Debug, Clone)] 596 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用 597 pub struct SocketMetadata { 598 /// socket的类型 599 pub socket_type: SocketType, 600 /// 接收缓冲区的大小 601 pub rx_buf_size: usize, 602 /// 发送缓冲区的大小 603 pub tx_buf_size: usize, 604 /// 元数据的缓冲区的大小 605 pub metadata_buf_size: usize, 606 /// socket的选项 607 pub options: SocketOptions, 608 } 609 610 impl SocketMetadata { 611 fn new( 612 socket_type: SocketType, 613 rx_buf_size: usize, 614 tx_buf_size: usize, 615 metadata_buf_size: usize, 616 options: SocketOptions, 617 ) -> Self { 618 Self { 619 socket_type, 620 rx_buf_size, 621 tx_buf_size, 622 metadata_buf_size, 623 options, 624 } 625 } 626 } 627 628 /// @brief 地址族的枚举 629 /// 630 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180 631 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 632 pub enum AddressFamily { 633 /// AF_UNSPEC 表示地址族未指定 634 Unspecified = 0, 635 /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同) 636 Unix = 1, 637 /// AF_INET 表示IPv4的socket 638 INet = 2, 639 /// AF_AX25 表示AMPR AX.25的socket 640 AX25 = 3, 641 /// AF_IPX 表示IPX的socket 642 IPX = 4, 643 /// AF_APPLETALK 表示Appletalk的socket 644 Appletalk = 5, 645 /// AF_NETROM 表示AMPR NET/ROM的socket 646 Netrom = 6, 647 /// AF_BRIDGE 表示多协议桥接的socket 648 Bridge = 7, 649 /// AF_ATMPVC 表示ATM PVCs的socket 650 Atmpvc = 8, 651 /// AF_X25 表示X.25的socket 652 X25 = 9, 653 /// AF_INET6 表示IPv6的socket 654 INet6 = 10, 655 /// AF_ROSE 表示AMPR ROSE的socket 656 Rose = 11, 657 /// AF_DECnet Reserved for DECnet project 658 Decnet = 12, 659 /// AF_NETBEUI Reserved for 802.2LLC project 660 Netbeui = 13, 661 /// AF_SECURITY 表示Security callback的伪AF 662 Security = 14, 663 /// AF_KEY 表示Key management API 664 Key = 15, 665 /// AF_NETLINK 表示Netlink的socket 666 Netlink = 16, 667 /// AF_PACKET 表示Low level packet interface 668 Packet = 17, 669 /// AF_ASH 表示Ash 670 Ash = 18, 671 /// AF_ECONET 表示Acorn Econet 672 Econet = 19, 673 /// AF_ATMSVC 表示ATM SVCs 674 Atmsvc = 20, 675 /// AF_RDS 表示Reliable Datagram Sockets 676 Rds = 21, 677 /// AF_SNA 表示Linux SNA Project 678 Sna = 22, 679 /// AF_IRDA 表示IRDA sockets 680 Irda = 23, 681 /// AF_PPPOX 表示PPPoX sockets 682 Pppox = 24, 683 /// AF_WANPIPE 表示WANPIPE API sockets 684 WanPipe = 25, 685 /// AF_LLC 表示Linux LLC 686 Llc = 26, 687 /// AF_IB 表示Native InfiniBand address 688 /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks 689 Ib = 27, 690 /// AF_MPLS 表示MPLS 691 Mpls = 28, 692 /// AF_CAN 表示Controller Area Network 693 Can = 29, 694 /// AF_TIPC 表示TIPC sockets 695 Tipc = 30, 696 /// AF_BLUETOOTH 表示Bluetooth sockets 697 Bluetooth = 31, 698 /// AF_IUCV 表示IUCV sockets 699 Iucv = 32, 700 /// AF_RXRPC 表示RxRPC sockets 701 Rxrpc = 33, 702 /// AF_ISDN 表示mISDN sockets 703 Isdn = 34, 704 /// AF_PHONET 表示Phonet sockets 705 Phonet = 35, 706 /// AF_IEEE802154 表示IEEE 802.15.4 sockets 707 Ieee802154 = 36, 708 /// AF_CAIF 表示CAIF sockets 709 Caif = 37, 710 /// AF_ALG 表示Algorithm sockets 711 Alg = 38, 712 /// AF_NFC 表示NFC sockets 713 Nfc = 39, 714 /// AF_VSOCK 表示vSockets 715 Vsock = 40, 716 /// AF_KCM 表示Kernel Connection Multiplexor 717 Kcm = 41, 718 /// AF_QIPCRTR 表示Qualcomm IPC Router 719 Qipcrtr = 42, 720 /// AF_SMC 表示SMC-R sockets. 721 /// reserve number for PF_SMC protocol family that reuses AF_INET address family 722 Smc = 43, 723 /// AF_XDP 表示XDP sockets 724 Xdp = 44, 725 /// AF_MCTP 表示Management Component Transport Protocol 726 Mctp = 45, 727 /// AF_MAX 表示最大的地址族 728 Max = 46, 729 } 730 731 impl TryFrom<u16> for AddressFamily { 732 type Error = SystemError; 733 fn try_from(x: u16) -> Result<Self, Self::Error> { 734 use num_traits::FromPrimitive; 735 return <Self as FromPrimitive>::from_u16(x).ok_or(SystemError::EINVAL); 736 } 737 } 738 739 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致) 740 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 741 pub enum PosixSocketType { 742 Stream = 1, 743 Datagram = 2, 744 Raw = 3, 745 Rdm = 4, 746 SeqPacket = 5, 747 Dccp = 6, 748 Packet = 10, 749 } 750 751 impl TryFrom<u8> for PosixSocketType { 752 type Error = SystemError; 753 fn try_from(x: u8) -> Result<Self, Self::Error> { 754 use num_traits::FromPrimitive; 755 return <Self as FromPrimitive>::from_u8(x).ok_or(SystemError::EINVAL); 756 } 757 } 758 759 /// ### 为socket提供无锁的poll方法 760 /// 761 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll 762 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无的poll 763 pub struct SocketPollMethod; 764 765 impl SocketPollMethod { 766 pub fn poll(socket: &socket::Socket, shutdown: ShutdownType) -> EPollEventType { 767 match socket { 768 socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown), 769 socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown), 770 socket::Socket::Raw(raw) => Self::raw_poll(raw, shutdown), 771 _ => todo!(), 772 } 773 } 774 775 pub fn tcp_poll(socket: &tcp::Socket, shutdown: ShutdownType) -> EPollEventType { 776 let mut events = EPollEventType::empty(); 777 if socket.is_listening() && socket.is_active() { 778 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 779 return events; 780 } 781 782 // socket已经关闭 783 if !socket.is_open() { 784 events.insert(EPollEventType::EPOLLHUP) 785 } 786 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 787 events.insert( 788 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP, 789 ); 790 } 791 792 let state = socket.state(); 793 if state != tcp::State::SynSent && state != tcp::State::SynReceived { 794 // socket有可读数据 795 if socket.can_recv() { 796 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 797 } 798 799 if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) { 800 // 缓冲区可写 801 if socket.send_queue() < socket.send_capacity() { 802 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 803 } else { 804 // TODO:触发缓冲区已满的信号 805 todo!("A signal that the buffer is full needs to be sent"); 806 } 807 } else { 808 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT 809 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 810 } 811 } else if state == tcp::State::SynSent { 812 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 813 } 814 815 // socket发生错误 816 if !socket.is_active() { 817 events.insert(EPollEventType::EPOLLERR); 818 } 819 820 events 821 } 822 823 pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType { 824 let mut event = EPollEventType::empty(); 825 826 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 827 event.insert( 828 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 829 ); 830 } 831 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 832 event.insert(EPollEventType::EPOLLHUP); 833 } 834 835 if socket.can_recv() { 836 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 837 } 838 839 if socket.can_send() { 840 event.insert( 841 EPollEventType::EPOLLOUT 842 | EPollEventType::EPOLLWRNORM 843 | EPollEventType::EPOLLWRBAND, 844 ); 845 } else { 846 // TODO: 缓冲区空间不够,需要使用信号处理 847 todo!() 848 } 849 850 return event; 851 } 852 853 pub fn raw_poll(socket: &raw::Socket, shutdown: ShutdownType) -> EPollEventType { 854 //debug!("enter raw_poll!"); 855 let mut event = EPollEventType::empty(); 856 857 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 858 event.insert( 859 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 860 ); 861 } 862 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 863 event.insert(EPollEventType::EPOLLHUP); 864 } 865 866 if socket.can_recv() { 867 //debug!("poll can recv!"); 868 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 869 } else { 870 //debug!("poll can not recv!"); 871 } 872 873 if socket.can_send() { 874 //debug!("poll can send!"); 875 event.insert( 876 EPollEventType::EPOLLOUT 877 | EPollEventType::EPOLLWRNORM 878 | EPollEventType::EPOLLWRBAND, 879 ); 880 } else { 881 //debug!("poll can not send!"); 882 // TODO: 缓冲区空间不够,需要使用信号处理 883 todo!() 884 } 885 return event; 886 } 887 } 888