1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize}; 2 3 use alloc::{ 4 boxed::Box, 5 collections::LinkedList, 6 string::String, 7 sync::{Arc, Weak}, 8 vec::Vec, 9 }; 10 use hashbrown::HashMap; 11 use smoltcp::{ 12 iface::{SocketHandle, SocketSet}, 13 socket::{self, tcp, udp}, 14 }; 15 use system_error::SystemError; 16 17 use crate::{ 18 arch::rand::rand, 19 filesystem::vfs::{ 20 file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode, 21 Metadata, 22 }, 23 libs::{ 24 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 25 spinlock::{SpinLock, SpinLockGuard}, 26 wait_queue::EventWaitQueue, 27 }, 28 sched::{schedule, SchedMode}, 29 }; 30 31 use self::{ 32 inet::{RawSocket, TcpSocket, UdpSocket}, 33 unix::{SeqpacketSocket, StreamSocket}, 34 }; 35 36 use super::{ 37 event_poll::{EPollEventType, EPollItem, EventPoll}, 38 net_core::poll_ifaces, 39 Endpoint, Protocol, ShutdownType, 40 }; 41 42 pub mod inet; 43 pub mod unix; 44 45 lazy_static! { 46 /// 所有socket的集合 47 /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket 48 pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![])); 49 /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem, 50 /// 注意!:在网卡中断中需要拿到这张表的,在获取读锁时应该确保关中断避免死锁 51 pub static ref HANDLE_MAP: RwLock<HashMap<SocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new()); 52 /// 端口管理器 53 pub static ref PORT_MANAGER: PortManager = PortManager::new(); 54 } 55 56 /* For setsockopt(2) */ 57 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9 58 pub const SOL_SOCKET: u8 = 1; 59 60 /// 根据地址族、socket类型和协议创建socket 61 pub(super) fn new_socket( 62 address_family: AddressFamily, 63 socket_type: PosixSocketType, 64 protocol: Protocol, 65 ) -> Result<Box<dyn Socket>, SystemError> { 66 let socket: Box<dyn Socket> = match address_family { 67 AddressFamily::Unix => match socket_type { 68 PosixSocketType::Stream => Box::new(StreamSocket::new(SocketOptions::default())), 69 PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())), 70 _ => { 71 return Err(SystemError::EINVAL); 72 } 73 }, 74 AddressFamily::INet => match socket_type { 75 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())), 76 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())), 77 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())), 78 _ => { 79 return Err(SystemError::EINVAL); 80 } 81 }, 82 _ => { 83 return Err(SystemError::EAFNOSUPPORT); 84 } 85 }; 86 Ok(socket) 87 } 88 89 pub trait Socket: Sync + Send + Debug + Any { 90 /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回 91 /// 92 /// @param buf 读取到的数据存放的缓冲区 93 /// 94 /// @return - 成功:(返回读取的数据的长度,读取数据的端点). 95 /// - 失败:错误码 96 fn read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint); 97 98 /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回 99 /// 100 /// @param buf 要写入的数据 101 /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃 102 /// 103 /// @return 返回写入的数据的长度 104 fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>; 105 106 /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点 107 /// 108 /// It is used to establish a connection to a remote server. 109 /// When a socket is connected to a remote server, 110 /// the operating system will establish a network connection with the server 111 /// and allow data to be sent and received between the local socket and the remote server. 112 /// 113 /// @param endpoint 要连接的端点 114 /// 115 /// @return 返回连接是否成功 116 fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>; 117 118 /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点 119 /// 120 /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine. 121 /// 122 /// @param endpoint 要绑定的端点 123 /// 124 /// @return 返回绑定是否成功 125 fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> { 126 Err(SystemError::ENOSYS) 127 } 128 129 /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。 130 /// 131 /// shutdown() 函数用于启动网络连接的正常关闭。 132 /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。 133 /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。 134 /// 135 /// @return 返回是否成功关闭 136 fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> { 137 Err(SystemError::ENOSYS) 138 } 139 140 /// @brief 对应于POSIX的listen函数,用于监听端点 141 /// 142 /// @param backlog 最大的等待连接数 143 /// 144 /// @return 返回监听是否成功 145 fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> { 146 Err(SystemError::ENOSYS) 147 } 148 149 /// @brief 对应于POSIX的accept函数,用于接受连接 150 /// 151 /// @param endpoint 对端的端点 152 /// 153 /// @return 返回接受连接是否成功 154 fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> { 155 Err(SystemError::ENOSYS) 156 } 157 158 /// @brief 获取socket的端点 159 /// 160 /// @return 返回socket的端点 161 fn endpoint(&self) -> Option<Endpoint> { 162 None 163 } 164 165 /// @brief 获取socket的对端端点 166 /// 167 /// @return 返回socket的对端端点 168 fn peer_endpoint(&self) -> Option<Endpoint> { 169 None 170 } 171 172 /// @brief 173 /// The purpose of the poll function is to provide 174 /// a non-blocking way to check if a socket is ready for reading or writing, 175 /// so that you can efficiently handle multiple sockets in a single thread or event loop. 176 /// 177 /// @return (in, out, err) 178 /// 179 /// The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking. 180 /// The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking. 181 /// The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset 182 /// 183 fn poll(&self) -> EPollEventType { 184 EPollEventType::empty() 185 } 186 187 /// @brief socket的ioctl函数 188 /// 189 /// @param cmd ioctl命令 190 /// @param arg0 ioctl命令的第一个参数 191 /// @param arg1 ioctl命令的第二个参数 192 /// @param arg2 ioctl命令的第三个参数 193 /// 194 /// @return 返回ioctl命令的返回值 195 fn ioctl( 196 &self, 197 _cmd: usize, 198 _arg0: usize, 199 _arg1: usize, 200 _arg2: usize, 201 ) -> Result<usize, SystemError> { 202 Ok(0) 203 } 204 205 /// @brief 获取socket的元数据 206 fn metadata(&self) -> SocketMetadata; 207 208 fn box_clone(&self) -> Box<dyn Socket>; 209 210 /// @brief 设置socket的选项 211 /// 212 /// @param level 选项的层次 213 /// @param optname 选项的名称 214 /// @param optval 选项的值 215 /// 216 /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS 217 fn setsockopt( 218 &self, 219 _level: usize, 220 _optname: usize, 221 _optval: &[u8], 222 ) -> Result<(), SystemError> { 223 kwarn!("setsockopt is not implemented"); 224 Ok(()) 225 } 226 227 fn socket_handle(&self) -> SocketHandle { 228 todo!() 229 } 230 231 fn write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError> { 232 todo!() 233 } 234 235 fn as_any_ref(&self) -> &dyn Any; 236 237 fn as_any_mut(&mut self) -> &mut dyn Any; 238 239 fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> { 240 HANDLE_MAP 241 .write_irqsave() 242 .get_mut(&self.socket_handle()) 243 .unwrap() 244 .add_epoll(epitem); 245 Ok(()) 246 } 247 248 fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 249 HANDLE_MAP 250 .write_irqsave() 251 .get_mut(&self.socket_handle()) 252 .unwrap() 253 .remove_epoll(epoll)?; 254 255 Ok(()) 256 } 257 258 fn clear_epoll(&mut self) -> Result<(), SystemError> { 259 let mut handle_map_guard = HANDLE_MAP.write_irqsave(); 260 let handle_item = handle_map_guard.get_mut(&self.socket_handle()).unwrap(); 261 262 for epitem in handle_item.epitems.lock_irqsave().iter() { 263 let epoll = epitem.epoll(); 264 if epoll.upgrade().is_some() { 265 EventPoll::ep_remove( 266 &mut epoll.upgrade().unwrap().lock_irqsave(), 267 epitem.fd(), 268 None, 269 )?; 270 } 271 } 272 273 Ok(()) 274 } 275 } 276 277 impl Clone for Box<dyn Socket> { 278 fn clone(&self) -> Box<dyn Socket> { 279 self.box_clone() 280 } 281 } 282 283 /// # Socket在文件系统中的inode封装 284 #[derive(Debug)] 285 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize); 286 287 impl SocketInode { 288 pub fn new(socket: Box<dyn Socket>) -> Arc<Self> { 289 Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0))) 290 } 291 292 #[inline] 293 pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> { 294 self.0.lock() 295 } 296 297 pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> { 298 self.0.lock_no_preempt() 299 } 300 } 301 302 impl IndexNode for SocketInode { 303 fn open( 304 &self, 305 _data: SpinLockGuard<FilePrivateData>, 306 _mode: &FileMode, 307 ) -> Result<(), SystemError> { 308 self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst); 309 Ok(()) 310 } 311 312 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> { 313 let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst); 314 if prev_ref_count == 1 { 315 // 最后一次关闭,需要释放 316 let mut socket = self.0.lock_irqsave(); 317 318 if socket.metadata().socket_type == SocketType::Unix { 319 return Ok(()); 320 } 321 322 if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() { 323 PORT_MANAGER.unbind_port(socket.metadata().socket_type, ip.port)?; 324 } 325 326 socket.clear_epoll()?; 327 328 HANDLE_MAP 329 .write_irqsave() 330 .remove(&socket.socket_handle()) 331 .unwrap(); 332 } 333 Ok(()) 334 } 335 336 fn read_at( 337 &self, 338 _offset: usize, 339 len: usize, 340 buf: &mut [u8], 341 data: SpinLockGuard<FilePrivateData>, 342 ) -> Result<usize, SystemError> { 343 drop(data); 344 self.0.lock_no_preempt().read(&mut buf[0..len]).0 345 } 346 347 fn write_at( 348 &self, 349 _offset: usize, 350 len: usize, 351 buf: &[u8], 352 data: SpinLockGuard<FilePrivateData>, 353 ) -> Result<usize, SystemError> { 354 drop(data); 355 self.0.lock_no_preempt().write(&buf[0..len], None) 356 } 357 358 fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> { 359 let events = self.0.lock_irqsave().poll(); 360 return Ok(events.bits() as usize); 361 } 362 363 fn fs(&self) -> Arc<dyn FileSystem> { 364 todo!() 365 } 366 367 fn as_any_ref(&self) -> &dyn Any { 368 self 369 } 370 371 fn list(&self) -> Result<Vec<String>, SystemError> { 372 return Err(SystemError::ENOTDIR); 373 } 374 375 fn metadata(&self) -> Result<Metadata, SystemError> { 376 let meta = Metadata { 377 mode: ModeType::from_bits_truncate(0o755), 378 file_type: FileType::Socket, 379 ..Default::default() 380 }; 381 382 return Ok(meta); 383 } 384 385 fn resize(&self, _len: usize) -> Result<(), SystemError> { 386 return Ok(()); 387 } 388 } 389 390 #[derive(Debug)] 391 pub struct SocketHandleItem { 392 /// shutdown状态 393 pub shutdown_type: RwLock<ShutdownType>, 394 /// socket的waitqueue 395 pub wait_queue: EventWaitQueue, 396 /// epitems,考虑写在这是否是最优解? 397 pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>, 398 } 399 400 impl SocketHandleItem { 401 pub fn new() -> Self { 402 Self { 403 shutdown_type: RwLock::new(ShutdownType::empty()), 404 wait_queue: EventWaitQueue::new(), 405 epitems: SpinLock::new(LinkedList::new()), 406 } 407 } 408 409 /// ## 在socket的等待队列上睡眠 410 pub fn sleep( 411 socket_handle: SocketHandle, 412 events: u64, 413 handle_map_guard: RwLockReadGuard<'_, HashMap<SocketHandle, SocketHandleItem>>, 414 ) { 415 unsafe { 416 handle_map_guard 417 .get(&socket_handle) 418 .unwrap() 419 .wait_queue 420 .sleep_without_schedule(events) 421 }; 422 drop(handle_map_guard); 423 schedule(SchedMode::SM_NONE); 424 } 425 426 pub fn shutdown_type(&self) -> ShutdownType { 427 *self.shutdown_type.read() 428 } 429 430 pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> { 431 self.shutdown_type.write_irqsave() 432 } 433 434 pub fn add_epoll(&mut self, epitem: Arc<EPollItem>) { 435 self.epitems.lock_irqsave().push_back(epitem) 436 } 437 438 pub fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 439 let is_remove = !self 440 .epitems 441 .lock_irqsave() 442 .extract_if(|x| x.epoll().ptr_eq(epoll)) 443 .collect::<Vec<_>>() 444 .is_empty(); 445 446 if is_remove { 447 return Ok(()); 448 } 449 450 Err(SystemError::ENOENT) 451 } 452 } 453 454 /// # TCP 和 UDP 的端口管理器。 455 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。 456 pub struct PortManager { 457 // TCP 端口记录表 458 tcp_port_table: SpinLock<HashMap<u16, Arc<GlobalSocketHandle>>>, 459 // UDP 端口记录表 460 udp_port_table: SpinLock<HashMap<u16, Arc<GlobalSocketHandle>>>, 461 } 462 463 impl PortManager { 464 pub fn new() -> Self { 465 return Self { 466 tcp_port_table: SpinLock::new(HashMap::new()), 467 udp_port_table: SpinLock::new(HashMap::new()), 468 }; 469 } 470 471 /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE 472 pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> { 473 // TODO: selects non-conflict high port 474 475 static mut EPHEMERAL_PORT: u16 = 0; 476 unsafe { 477 if EPHEMERAL_PORT == 0 { 478 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16; 479 } 480 } 481 482 let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数 483 let mut port: u16; 484 while remaining > 0 { 485 unsafe { 486 if EPHEMERAL_PORT == 65535 { 487 EPHEMERAL_PORT = 49152; 488 } else { 489 EPHEMERAL_PORT += 1; 490 } 491 port = EPHEMERAL_PORT; 492 } 493 494 // 使用 ListenTable 检查端口是否被占用 495 let listen_table_guard = match socket_type { 496 SocketType::Udp => self.udp_port_table.lock(), 497 SocketType::Tcp => self.tcp_port_table.lock(), 498 _ => panic!("{:?} cann't get a port", socket_type), 499 }; 500 if listen_table_guard.get(&port).is_none() { 501 drop(listen_table_guard); 502 return Ok(port); 503 } 504 remaining -= 1; 505 } 506 return Err(SystemError::EADDRINUSE); 507 } 508 509 /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录 510 /// 511 /// TODO: 增加支持端口复用的逻辑 512 pub fn bind_port( 513 &self, 514 socket_type: SocketType, 515 port: u16, 516 handle: Arc<GlobalSocketHandle>, 517 ) -> Result<(), SystemError> { 518 if port > 0 { 519 let mut listen_table_guard = match socket_type { 520 SocketType::Udp => self.udp_port_table.lock(), 521 SocketType::Tcp => self.tcp_port_table.lock(), 522 _ => panic!("{:?} cann't bind a port", socket_type), 523 }; 524 match listen_table_guard.get(&port) { 525 Some(_) => return Err(SystemError::EADDRINUSE), 526 None => listen_table_guard.insert(port, handle), 527 }; 528 drop(listen_table_guard); 529 } 530 return Ok(()); 531 } 532 533 /// @brief 在对应的端口记录表中将端口和 socket 解绑 534 pub fn unbind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> { 535 let mut listen_table_guard = match socket_type { 536 SocketType::Udp => self.udp_port_table.lock(), 537 SocketType::Tcp => self.tcp_port_table.lock(), 538 _ => return Ok(()), 539 }; 540 listen_table_guard.remove(&port); 541 drop(listen_table_guard); 542 return Ok(()); 543 } 544 } 545 546 /// # socket的句柄管理组件 547 /// 它在smoltcp的SocketHandle上封装了一层,增加更多的功能。 548 /// 比如,在socket被关闭时,自动释放socket的资源,通知系统的其他组件。 549 #[derive(Debug)] 550 pub struct GlobalSocketHandle(SocketHandle); 551 552 impl GlobalSocketHandle { 553 pub fn new(handle: SocketHandle) -> Arc<Self> { 554 return Arc::new(Self(handle)); 555 } 556 } 557 558 impl Clone for GlobalSocketHandle { 559 fn clone(&self) -> Self { 560 Self(self.0) 561 } 562 } 563 564 impl Drop for GlobalSocketHandle { 565 fn drop(&mut self) { 566 let mut socket_set_guard = SOCKET_SET.lock_irqsave(); 567 socket_set_guard.remove(self.0); // 删除的时候,会发送一条FINISH的信息? 568 drop(socket_set_guard); 569 poll_ifaces(); 570 } 571 } 572 573 /// @brief socket的类型 574 #[derive(Debug, Clone, Copy, PartialEq)] 575 pub enum SocketType { 576 /// 原始的socket 577 Raw, 578 /// 用于Tcp通信的 Socket 579 Tcp, 580 /// 用于Udp通信的 Socket 581 Udp, 582 /// unix域的 Socket 583 Unix, 584 } 585 586 bitflags! { 587 /// @brief socket的选项 588 #[derive(Default)] 589 pub struct SocketOptions: u32 { 590 /// 是否阻塞 591 const BLOCK = 1 << 0; 592 /// 是否允许广播 593 const BROADCAST = 1 << 1; 594 /// 是否允许多播 595 const MULTICAST = 1 << 2; 596 /// 是否允许重用地址 597 const REUSEADDR = 1 << 3; 598 /// 是否允许重用端口 599 const REUSEPORT = 1 << 4; 600 } 601 } 602 603 #[derive(Debug, Clone)] 604 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用 605 pub struct SocketMetadata { 606 /// socket的类型 607 pub socket_type: SocketType, 608 /// 接收缓冲区的大小 609 pub rx_buf_size: usize, 610 /// 发送缓冲区的大小 611 pub tx_buf_size: usize, 612 /// 元数据的缓冲区的大小 613 pub metadata_buf_size: usize, 614 /// socket的选项 615 pub options: SocketOptions, 616 } 617 618 impl SocketMetadata { 619 fn new( 620 socket_type: SocketType, 621 rx_buf_size: usize, 622 tx_buf_size: usize, 623 metadata_buf_size: usize, 624 options: SocketOptions, 625 ) -> Self { 626 Self { 627 socket_type, 628 rx_buf_size, 629 tx_buf_size, 630 metadata_buf_size, 631 options, 632 } 633 } 634 } 635 636 /// @brief 地址族的枚举 637 /// 638 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180 639 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 640 pub enum AddressFamily { 641 /// AF_UNSPEC 表示地址族未指定 642 Unspecified = 0, 643 /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同) 644 Unix = 1, 645 /// AF_INET 表示IPv4的socket 646 INet = 2, 647 /// AF_AX25 表示AMPR AX.25的socket 648 AX25 = 3, 649 /// AF_IPX 表示IPX的socket 650 IPX = 4, 651 /// AF_APPLETALK 表示Appletalk的socket 652 Appletalk = 5, 653 /// AF_NETROM 表示AMPR NET/ROM的socket 654 Netrom = 6, 655 /// AF_BRIDGE 表示多协议桥接的socket 656 Bridge = 7, 657 /// AF_ATMPVC 表示ATM PVCs的socket 658 Atmpvc = 8, 659 /// AF_X25 表示X.25的socket 660 X25 = 9, 661 /// AF_INET6 表示IPv6的socket 662 INet6 = 10, 663 /// AF_ROSE 表示AMPR ROSE的socket 664 Rose = 11, 665 /// AF_DECnet Reserved for DECnet project 666 Decnet = 12, 667 /// AF_NETBEUI Reserved for 802.2LLC project 668 Netbeui = 13, 669 /// AF_SECURITY 表示Security callback的伪AF 670 Security = 14, 671 /// AF_KEY 表示Key management API 672 Key = 15, 673 /// AF_NETLINK 表示Netlink的socket 674 Netlink = 16, 675 /// AF_PACKET 表示Low level packet interface 676 Packet = 17, 677 /// AF_ASH 表示Ash 678 Ash = 18, 679 /// AF_ECONET 表示Acorn Econet 680 Econet = 19, 681 /// AF_ATMSVC 表示ATM SVCs 682 Atmsvc = 20, 683 /// AF_RDS 表示Reliable Datagram Sockets 684 Rds = 21, 685 /// AF_SNA 表示Linux SNA Project 686 Sna = 22, 687 /// AF_IRDA 表示IRDA sockets 688 Irda = 23, 689 /// AF_PPPOX 表示PPPoX sockets 690 Pppox = 24, 691 /// AF_WANPIPE 表示WANPIPE API sockets 692 WanPipe = 25, 693 /// AF_LLC 表示Linux LLC 694 Llc = 26, 695 /// AF_IB 表示Native InfiniBand address 696 /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks 697 Ib = 27, 698 /// AF_MPLS 表示MPLS 699 Mpls = 28, 700 /// AF_CAN 表示Controller Area Network 701 Can = 29, 702 /// AF_TIPC 表示TIPC sockets 703 Tipc = 30, 704 /// AF_BLUETOOTH 表示Bluetooth sockets 705 Bluetooth = 31, 706 /// AF_IUCV 表示IUCV sockets 707 Iucv = 32, 708 /// AF_RXRPC 表示RxRPC sockets 709 Rxrpc = 33, 710 /// AF_ISDN 表示mISDN sockets 711 Isdn = 34, 712 /// AF_PHONET 表示Phonet sockets 713 Phonet = 35, 714 /// AF_IEEE802154 表示IEEE 802.15.4 sockets 715 Ieee802154 = 36, 716 /// AF_CAIF 表示CAIF sockets 717 Caif = 37, 718 /// AF_ALG 表示Algorithm sockets 719 Alg = 38, 720 /// AF_NFC 表示NFC sockets 721 Nfc = 39, 722 /// AF_VSOCK 表示vSockets 723 Vsock = 40, 724 /// AF_KCM 表示Kernel Connection Multiplexor 725 Kcm = 41, 726 /// AF_QIPCRTR 表示Qualcomm IPC Router 727 Qipcrtr = 42, 728 /// AF_SMC 表示SMC-R sockets. 729 /// reserve number for PF_SMC protocol family that reuses AF_INET address family 730 Smc = 43, 731 /// AF_XDP 表示XDP sockets 732 Xdp = 44, 733 /// AF_MCTP 表示Management Component Transport Protocol 734 Mctp = 45, 735 /// AF_MAX 表示最大的地址族 736 Max = 46, 737 } 738 739 impl TryFrom<u16> for AddressFamily { 740 type Error = SystemError; 741 fn try_from(x: u16) -> Result<Self, Self::Error> { 742 use num_traits::FromPrimitive; 743 return <Self as FromPrimitive>::from_u16(x).ok_or(SystemError::EINVAL); 744 } 745 } 746 747 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致) 748 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 749 pub enum PosixSocketType { 750 Stream = 1, 751 Datagram = 2, 752 Raw = 3, 753 Rdm = 4, 754 SeqPacket = 5, 755 Dccp = 6, 756 Packet = 10, 757 } 758 759 impl TryFrom<u8> for PosixSocketType { 760 type Error = SystemError; 761 fn try_from(x: u8) -> Result<Self, Self::Error> { 762 use num_traits::FromPrimitive; 763 return <Self as FromPrimitive>::from_u8(x).ok_or(SystemError::EINVAL); 764 } 765 } 766 767 /// ### 为socket提供无锁的poll方法 768 /// 769 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll 770 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无的poll 771 pub struct SocketPollMethod; 772 773 impl SocketPollMethod { 774 pub fn poll(socket: &socket::Socket, shutdown: ShutdownType) -> EPollEventType { 775 match socket { 776 socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown), 777 socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown), 778 _ => todo!(), 779 } 780 } 781 782 pub fn tcp_poll(socket: &tcp::Socket, shutdown: ShutdownType) -> EPollEventType { 783 let mut events = EPollEventType::empty(); 784 if socket.is_listening() && socket.is_active() { 785 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 786 return events; 787 } 788 789 // socket已经关闭 790 if !socket.is_open() { 791 events.insert(EPollEventType::EPOLLHUP) 792 } 793 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 794 events.insert( 795 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP, 796 ); 797 } 798 799 let state = socket.state(); 800 if state != tcp::State::SynSent && state != tcp::State::SynReceived { 801 // socket有可读数据 802 if socket.can_recv() { 803 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 804 } 805 806 if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) { 807 // 缓冲区可写 808 if socket.send_queue() < socket.send_capacity() { 809 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 810 } else { 811 // TODO:触发缓冲区已满的信号 812 todo!("A signal that the buffer is full needs to be sent"); 813 } 814 } else { 815 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT 816 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 817 } 818 } else if state == tcp::State::SynSent { 819 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 820 } 821 822 // socket发生错误 823 if !socket.is_active() { 824 events.insert(EPollEventType::EPOLLERR); 825 } 826 827 events 828 } 829 830 pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType { 831 let mut event = EPollEventType::empty(); 832 833 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 834 event.insert( 835 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 836 ); 837 } 838 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 839 event.insert(EPollEventType::EPOLLHUP); 840 } 841 842 if socket.can_recv() { 843 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 844 } 845 846 if socket.can_send() { 847 event.insert( 848 EPollEventType::EPOLLOUT 849 | EPollEventType::EPOLLWRNORM 850 | EPollEventType::EPOLLWRBAND, 851 ); 852 } else { 853 // TODO: 缓冲区空间不够,需要使用信号处理 854 todo!() 855 } 856 857 return event; 858 } 859 } 860