xref: /DragonOS/kernel/src/net/socket/mod.rs (revision c719ddc6312acd7976e0f6fd449a94ff9abad5a6)
1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize};
2 
3 use alloc::{
4     boxed::Box,
5     collections::LinkedList,
6     string::String,
7     sync::{Arc, Weak},
8     vec::Vec,
9 };
10 use hashbrown::HashMap;
11 use smoltcp::{
12     iface::{SocketHandle, SocketSet},
13     socket::{self, tcp, udp},
14 };
15 use system_error::SystemError;
16 
17 use crate::{
18     arch::rand::rand,
19     filesystem::vfs::{
20         file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode,
21         Metadata,
22     },
23     libs::{
24         rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
25         spinlock::{SpinLock, SpinLockGuard},
26         wait_queue::EventWaitQueue,
27     },
28     sched::{schedule, SchedMode},
29 };
30 
31 use self::{
32     inet::{RawSocket, TcpSocket, UdpSocket},
33     unix::{SeqpacketSocket, StreamSocket},
34 };
35 
36 use super::{
37     event_poll::{EPollEventType, EPollItem, EventPoll},
38     net_core::poll_ifaces,
39     Endpoint, Protocol, ShutdownType,
40 };
41 
42 pub mod inet;
43 pub mod unix;
44 
45 lazy_static! {
46     /// 所有socket的集合
47     /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket
48     pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![]));
49     /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem,
50     /// 注意!:在网卡中断中需要拿到这张表的��,在获取读锁时应该确保关中断避免死锁
51     pub static ref HANDLE_MAP: RwLock<HashMap<SocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new());
52     /// 端口管理器
53     pub static ref PORT_MANAGER: PortManager = PortManager::new();
54 }
55 
56 /* For setsockopt(2) */
57 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9
58 pub const SOL_SOCKET: u8 = 1;
59 
60 /// 根据地址族、socket类型和协议创建socket
61 pub(super) fn new_socket(
62     address_family: AddressFamily,
63     socket_type: PosixSocketType,
64     protocol: Protocol,
65 ) -> Result<Box<dyn Socket>, SystemError> {
66     let socket: Box<dyn Socket> = match address_family {
67         AddressFamily::Unix => match socket_type {
68             PosixSocketType::Stream => Box::new(StreamSocket::new(SocketOptions::default())),
69             PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())),
70             _ => {
71                 return Err(SystemError::EINVAL);
72             }
73         },
74         AddressFamily::INet => match socket_type {
75             PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())),
76             PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())),
77             PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())),
78             _ => {
79                 return Err(SystemError::EINVAL);
80             }
81         },
82         _ => {
83             return Err(SystemError::EAFNOSUPPORT);
84         }
85     };
86     Ok(socket)
87 }
88 
89 pub trait Socket: Sync + Send + Debug + Any {
90     /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回
91     ///
92     /// @param buf 读取到的数据存放的缓冲区
93     ///
94     /// @return - 成功:(返回读取的数据的长度,读取数据的端点).
95     ///         - 失败:错误码
96     fn read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint);
97 
98     /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回
99     ///
100     /// @param buf 要写入的数据
101     /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃
102     ///
103     /// @return 返回写入的数据的长度
104     fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>;
105 
106     /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点
107     ///
108     /// It is used to establish a connection to a remote server.
109     /// When a socket is connected to a remote server,
110     /// the operating system will establish a network connection with the server
111     /// and allow data to be sent and received between the local socket and the remote server.
112     ///
113     /// @param endpoint 要连接的端点
114     ///
115     /// @return 返回连接是否成功
116     fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>;
117 
118     /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点
119     ///
120     /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine.
121     ///
122     /// @param endpoint 要绑定的端点
123     ///
124     /// @return 返回绑定是否成功
125     fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> {
126         Err(SystemError::ENOSYS)
127     }
128 
129     /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。
130     ///
131     /// shutdown() 函数用于启动网络连接的正常关闭。
132     /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。
133     /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。
134     ///
135     /// @return 返回是否成功关闭
136     fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> {
137         Err(SystemError::ENOSYS)
138     }
139 
140     /// @brief 对应于POSIX的listen函数,用于监听端点
141     ///
142     /// @param backlog 最大的等待连接数
143     ///
144     /// @return 返回监听是否成功
145     fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> {
146         Err(SystemError::ENOSYS)
147     }
148 
149     /// @brief 对应于POSIX的accept函数,用于接受连接
150     ///
151     /// @param endpoint 对端的端点
152     ///
153     /// @return 返回接受连接是否成功
154     fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> {
155         Err(SystemError::ENOSYS)
156     }
157 
158     /// @brief 获取socket的端点
159     ///
160     /// @return 返回socket的端点
161     fn endpoint(&self) -> Option<Endpoint> {
162         None
163     }
164 
165     /// @brief 获取socket的对端端点
166     ///
167     /// @return 返回socket的对端端点
168     fn peer_endpoint(&self) -> Option<Endpoint> {
169         None
170     }
171 
172     /// @brief
173     ///     The purpose of the poll function is to provide
174     ///     a non-blocking way to check if a socket is ready for reading or writing,
175     ///     so that you can efficiently handle multiple sockets in a single thread or event loop.
176     ///
177     /// @return (in, out, err)
178     ///
179     ///     The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking.
180     ///     The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking.
181     ///     The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset
182     ///
183     fn poll(&self) -> EPollEventType {
184         EPollEventType::empty()
185     }
186 
187     /// @brief socket的ioctl函数
188     ///
189     /// @param cmd ioctl命令
190     /// @param arg0 ioctl命令的第一个参数
191     /// @param arg1 ioctl命令的第二个参数
192     /// @param arg2 ioctl命令的第三个参数
193     ///
194     /// @return 返回ioctl命令的返回值
195     fn ioctl(
196         &self,
197         _cmd: usize,
198         _arg0: usize,
199         _arg1: usize,
200         _arg2: usize,
201     ) -> Result<usize, SystemError> {
202         Ok(0)
203     }
204 
205     /// @brief 获取socket的元数据
206     fn metadata(&self) -> SocketMetadata;
207 
208     fn box_clone(&self) -> Box<dyn Socket>;
209 
210     /// @brief 设置socket的选项
211     ///
212     /// @param level 选项的层次
213     /// @param optname 选项的名称
214     /// @param optval 选项的值
215     ///
216     /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS
217     fn setsockopt(
218         &self,
219         _level: usize,
220         _optname: usize,
221         _optval: &[u8],
222     ) -> Result<(), SystemError> {
223         kwarn!("setsockopt is not implemented");
224         Ok(())
225     }
226 
227     fn socket_handle(&self) -> SocketHandle {
228         todo!()
229     }
230 
231     fn write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError> {
232         todo!()
233     }
234 
235     fn as_any_ref(&self) -> &dyn Any;
236 
237     fn as_any_mut(&mut self) -> &mut dyn Any;
238 
239     fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> {
240         HANDLE_MAP
241             .write_irqsave()
242             .get_mut(&self.socket_handle())
243             .unwrap()
244             .add_epoll(epitem);
245         Ok(())
246     }
247 
248     fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> {
249         HANDLE_MAP
250             .write_irqsave()
251             .get_mut(&self.socket_handle())
252             .unwrap()
253             .remove_epoll(epoll)?;
254 
255         Ok(())
256     }
257 
258     fn clear_epoll(&mut self) -> Result<(), SystemError> {
259         let mut handle_map_guard = HANDLE_MAP.write_irqsave();
260         let handle_item = handle_map_guard.get_mut(&self.socket_handle()).unwrap();
261 
262         for epitem in handle_item.epitems.lock_irqsave().iter() {
263             let epoll = epitem.epoll();
264             if epoll.upgrade().is_some() {
265                 EventPoll::ep_remove(
266                     &mut epoll.upgrade().unwrap().lock_irqsave(),
267                     epitem.fd(),
268                     None,
269                 )?;
270             }
271         }
272 
273         Ok(())
274     }
275 }
276 
277 impl Clone for Box<dyn Socket> {
278     fn clone(&self) -> Box<dyn Socket> {
279         self.box_clone()
280     }
281 }
282 
283 /// # Socket在文件系统中的inode封装
284 #[derive(Debug)]
285 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize);
286 
287 impl SocketInode {
288     pub fn new(socket: Box<dyn Socket>) -> Arc<Self> {
289         Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0)))
290     }
291 
292     #[inline]
293     pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> {
294         self.0.lock()
295     }
296 
297     pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> {
298         self.0.lock_no_preempt()
299     }
300 }
301 
302 impl IndexNode for SocketInode {
303     fn open(
304         &self,
305         _data: SpinLockGuard<FilePrivateData>,
306         _mode: &FileMode,
307     ) -> Result<(), SystemError> {
308         self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst);
309         Ok(())
310     }
311 
312     fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> {
313         let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst);
314         if prev_ref_count == 1 {
315             // 最后一次关闭,需要释放
316             let mut socket = self.0.lock_irqsave();
317 
318             if socket.metadata().socket_type == SocketType::Unix {
319                 return Ok(());
320             }
321 
322             if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() {
323                 PORT_MANAGER.unbind_port(socket.metadata().socket_type, ip.port)?;
324             }
325 
326             socket.clear_epoll()?;
327 
328             HANDLE_MAP
329                 .write_irqsave()
330                 .remove(&socket.socket_handle())
331                 .unwrap();
332         }
333 
334         Ok(())
335     }
336 
337     fn read_at(
338         &self,
339         _offset: usize,
340         len: usize,
341         buf: &mut [u8],
342         data: SpinLockGuard<FilePrivateData>,
343     ) -> Result<usize, SystemError> {
344         drop(data);
345         self.0.lock_no_preempt().read(&mut buf[0..len]).0
346     }
347 
348     fn write_at(
349         &self,
350         _offset: usize,
351         len: usize,
352         buf: &[u8],
353         data: SpinLockGuard<FilePrivateData>,
354     ) -> Result<usize, SystemError> {
355         drop(data);
356         self.0.lock_no_preempt().write(&buf[0..len], None)
357     }
358 
359     fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> {
360         let events = self.0.lock_irqsave().poll();
361         return Ok(events.bits() as usize);
362     }
363 
364     fn fs(&self) -> Arc<dyn FileSystem> {
365         todo!()
366     }
367 
368     fn as_any_ref(&self) -> &dyn Any {
369         self
370     }
371 
372     fn list(&self) -> Result<Vec<String>, SystemError> {
373         return Err(SystemError::ENOTDIR);
374     }
375 
376     fn metadata(&self) -> Result<Metadata, SystemError> {
377         let meta = Metadata {
378             mode: ModeType::from_bits_truncate(0o755),
379             file_type: FileType::Socket,
380             ..Default::default()
381         };
382 
383         return Ok(meta);
384     }
385 
386     fn resize(&self, _len: usize) -> Result<(), SystemError> {
387         return Ok(());
388     }
389 }
390 
391 #[derive(Debug)]
392 pub struct SocketHandleItem {
393     /// shutdown状态
394     pub shutdown_type: RwLock<ShutdownType>,
395     /// socket的waitqueue
396     pub wait_queue: EventWaitQueue,
397     /// epitems,考虑写在这是否是最优解?
398     pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>,
399 }
400 
401 impl SocketHandleItem {
402     pub fn new() -> Self {
403         Self {
404             shutdown_type: RwLock::new(ShutdownType::empty()),
405             wait_queue: EventWaitQueue::new(),
406             epitems: SpinLock::new(LinkedList::new()),
407         }
408     }
409 
410     /// ## 在socket的等待队列上睡眠
411     pub fn sleep(
412         socket_handle: SocketHandle,
413         events: u64,
414         handle_map_guard: RwLockReadGuard<'_, HashMap<SocketHandle, SocketHandleItem>>,
415     ) {
416         unsafe {
417             handle_map_guard
418                 .get(&socket_handle)
419                 .unwrap()
420                 .wait_queue
421                 .sleep_without_schedule(events)
422         };
423         drop(handle_map_guard);
424         schedule(SchedMode::SM_NONE);
425     }
426 
427     pub fn shutdown_type(&self) -> ShutdownType {
428         *self.shutdown_type.read()
429     }
430 
431     pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> {
432         self.shutdown_type.write_irqsave()
433     }
434 
435     pub fn add_epoll(&mut self, epitem: Arc<EPollItem>) {
436         self.epitems.lock_irqsave().push_back(epitem)
437     }
438 
439     pub fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> {
440         let is_remove = !self
441             .epitems
442             .lock_irqsave()
443             .extract_if(|x| x.epoll().ptr_eq(epoll))
444             .collect::<Vec<_>>()
445             .is_empty();
446 
447         if is_remove {
448             return Ok(());
449         }
450 
451         Err(SystemError::ENOENT)
452     }
453 }
454 
455 /// # TCP 和 UDP 的端口管理器。
456 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。
457 pub struct PortManager {
458     // TCP 端口记录表
459     tcp_port_table: SpinLock<HashMap<u16, Arc<dyn Socket>>>,
460     // UDP 端口记录表
461     udp_port_table: SpinLock<HashMap<u16, Arc<dyn Socket>>>,
462 }
463 
464 impl PortManager {
465     pub fn new() -> Self {
466         return Self {
467             tcp_port_table: SpinLock::new(HashMap::new()),
468             udp_port_table: SpinLock::new(HashMap::new()),
469         };
470     }
471 
472     /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE
473     pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> {
474         // TODO: selects non-conflict high port
475 
476         static mut EPHEMERAL_PORT: u16 = 0;
477         unsafe {
478             if EPHEMERAL_PORT == 0 {
479                 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16;
480             }
481         }
482 
483         let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数
484         let mut port: u16;
485         while remaining > 0 {
486             unsafe {
487                 if EPHEMERAL_PORT == 65535 {
488                     EPHEMERAL_PORT = 49152;
489                 } else {
490                     EPHEMERAL_PORT += 1;
491                 }
492                 port = EPHEMERAL_PORT;
493             }
494 
495             // 使用 ListenTable 检查端口是否被占用
496             let listen_table_guard = match socket_type {
497                 SocketType::Udp => self.udp_port_table.lock(),
498                 SocketType::Tcp => self.tcp_port_table.lock(),
499                 _ => panic!("{:?} cann't get a port", socket_type),
500             };
501             if listen_table_guard.get(&port).is_none() {
502                 drop(listen_table_guard);
503                 return Ok(port);
504             }
505             remaining -= 1;
506         }
507         return Err(SystemError::EADDRINUSE);
508     }
509 
510     /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录
511     ///
512     /// TODO: 增加支持端口复用的逻辑
513     pub fn bind_port(
514         &self,
515         socket_type: SocketType,
516         port: u16,
517         socket: impl Socket,
518     ) -> Result<(), SystemError> {
519         if port > 0 {
520             let mut listen_table_guard = match socket_type {
521                 SocketType::Udp => self.udp_port_table.lock(),
522                 SocketType::Tcp => self.tcp_port_table.lock(),
523                 _ => panic!("{:?} cann't bind a port", socket_type),
524             };
525             match listen_table_guard.get(&port) {
526                 Some(_) => return Err(SystemError::EADDRINUSE),
527                 None => listen_table_guard.insert(port, Arc::new(socket)),
528             };
529             drop(listen_table_guard);
530         }
531         return Ok(());
532     }
533 
534     /// @brief 在对应的端口记录表中将端口和 socket 解绑
535     pub fn unbind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> {
536         let mut listen_table_guard = match socket_type {
537             SocketType::Udp => self.udp_port_table.lock(),
538             SocketType::Tcp => self.tcp_port_table.lock(),
539             _ => return Ok(()),
540         };
541         listen_table_guard.remove(&port);
542         drop(listen_table_guard);
543         return Ok(());
544     }
545 }
546 
547 /// # socket的句柄管理组件
548 /// 它在smoltcp的SocketHandle上封装了一层,增加更多的功能。
549 /// 比如,在socket被关闭时,自动释放socket的资源,通知系统的其他组件。
550 #[derive(Debug)]
551 pub struct GlobalSocketHandle(SocketHandle);
552 
553 impl GlobalSocketHandle {
554     pub fn new(handle: SocketHandle) -> Arc<Self> {
555         return Arc::new(Self(handle));
556     }
557 }
558 
559 impl Clone for GlobalSocketHandle {
560     fn clone(&self) -> Self {
561         Self(self.0)
562     }
563 }
564 
565 impl Drop for GlobalSocketHandle {
566     fn drop(&mut self) {
567         let mut socket_set_guard = SOCKET_SET.lock_irqsave();
568         socket_set_guard.remove(self.0); // 删除的时候,会发送一条FINISH的信息?
569         drop(socket_set_guard);
570         poll_ifaces();
571     }
572 }
573 
574 /// @brief socket的类型
575 #[derive(Debug, Clone, Copy, PartialEq)]
576 pub enum SocketType {
577     /// 原始的socket
578     Raw,
579     /// 用于Tcp通信的 Socket
580     Tcp,
581     /// 用于Udp通信的 Socket
582     Udp,
583     /// unix域的 Socket
584     Unix,
585 }
586 
587 bitflags! {
588     /// @brief socket的选项
589     #[derive(Default)]
590     pub struct SocketOptions: u32 {
591         /// 是否阻塞
592         const BLOCK = 1 << 0;
593         /// 是否允许广播
594         const BROADCAST = 1 << 1;
595         /// 是否允许多播
596         const MULTICAST = 1 << 2;
597         /// 是否允许重用地址
598         const REUSEADDR = 1 << 3;
599         /// 是否允许重用端口
600         const REUSEPORT = 1 << 4;
601     }
602 }
603 
604 #[derive(Debug, Clone)]
605 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用
606 pub struct SocketMetadata {
607     /// socket的类型
608     pub socket_type: SocketType,
609     /// 接收缓冲区的大小
610     pub rx_buf_size: usize,
611     /// 发送缓冲区的大小
612     pub tx_buf_size: usize,
613     /// 元数据的缓冲区的大小
614     pub metadata_buf_size: usize,
615     /// socket的选项
616     pub options: SocketOptions,
617 }
618 
619 impl SocketMetadata {
620     fn new(
621         socket_type: SocketType,
622         rx_buf_size: usize,
623         tx_buf_size: usize,
624         metadata_buf_size: usize,
625         options: SocketOptions,
626     ) -> Self {
627         Self {
628             socket_type,
629             rx_buf_size,
630             tx_buf_size,
631             metadata_buf_size,
632             options,
633         }
634     }
635 }
636 
637 /// @brief 地址族的枚举
638 ///
639 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180
640 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)]
641 pub enum AddressFamily {
642     /// AF_UNSPEC 表示地址族未指定
643     Unspecified = 0,
644     /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同)
645     Unix = 1,
646     ///  AF_INET 表示IPv4的socket
647     INet = 2,
648     /// AF_AX25 表示AMPR AX.25的socket
649     AX25 = 3,
650     /// AF_IPX 表示IPX的socket
651     IPX = 4,
652     /// AF_APPLETALK 表示Appletalk的socket
653     Appletalk = 5,
654     /// AF_NETROM 表示AMPR NET/ROM的socket
655     Netrom = 6,
656     /// AF_BRIDGE 表示多协议桥接的socket
657     Bridge = 7,
658     /// AF_ATMPVC 表示ATM PVCs的socket
659     Atmpvc = 8,
660     /// AF_X25 表示X.25的socket
661     X25 = 9,
662     /// AF_INET6 表示IPv6的socket
663     INet6 = 10,
664     /// AF_ROSE 表示AMPR ROSE的socket
665     Rose = 11,
666     /// AF_DECnet Reserved for DECnet project
667     Decnet = 12,
668     /// AF_NETBEUI Reserved for 802.2LLC project
669     Netbeui = 13,
670     /// AF_SECURITY 表示Security callback的伪AF
671     Security = 14,
672     /// AF_KEY 表示Key management API
673     Key = 15,
674     /// AF_NETLINK 表示Netlink的socket
675     Netlink = 16,
676     /// AF_PACKET 表示Low level packet interface
677     Packet = 17,
678     /// AF_ASH 表示Ash
679     Ash = 18,
680     /// AF_ECONET 表示Acorn Econet
681     Econet = 19,
682     /// AF_ATMSVC 表示ATM SVCs
683     Atmsvc = 20,
684     /// AF_RDS 表示Reliable Datagram Sockets
685     Rds = 21,
686     /// AF_SNA 表示Linux SNA Project
687     Sna = 22,
688     /// AF_IRDA 表示IRDA sockets
689     Irda = 23,
690     /// AF_PPPOX 表示PPPoX sockets
691     Pppox = 24,
692     /// AF_WANPIPE 表示WANPIPE API sockets
693     WanPipe = 25,
694     /// AF_LLC 表示Linux LLC
695     Llc = 26,
696     /// AF_IB 表示Native InfiniBand address
697     /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks
698     Ib = 27,
699     /// AF_MPLS 表示MPLS
700     Mpls = 28,
701     /// AF_CAN 表示Controller Area Network
702     Can = 29,
703     /// AF_TIPC 表示TIPC sockets
704     Tipc = 30,
705     /// AF_BLUETOOTH 表示Bluetooth sockets
706     Bluetooth = 31,
707     /// AF_IUCV 表示IUCV sockets
708     Iucv = 32,
709     /// AF_RXRPC 表示RxRPC sockets
710     Rxrpc = 33,
711     /// AF_ISDN 表示mISDN sockets
712     Isdn = 34,
713     /// AF_PHONET 表示Phonet sockets
714     Phonet = 35,
715     /// AF_IEEE802154 表示IEEE 802.15.4 sockets
716     Ieee802154 = 36,
717     /// AF_CAIF 表示CAIF sockets
718     Caif = 37,
719     /// AF_ALG 表示Algorithm sockets
720     Alg = 38,
721     /// AF_NFC 表示NFC sockets
722     Nfc = 39,
723     /// AF_VSOCK 表示vSockets
724     Vsock = 40,
725     /// AF_KCM 表示Kernel Connection Multiplexor
726     Kcm = 41,
727     /// AF_QIPCRTR 表示Qualcomm IPC Router
728     Qipcrtr = 42,
729     /// AF_SMC 表示SMC-R sockets.
730     /// reserve number for PF_SMC protocol family that reuses AF_INET address family
731     Smc = 43,
732     /// AF_XDP 表示XDP sockets
733     Xdp = 44,
734     /// AF_MCTP 表示Management Component Transport Protocol
735     Mctp = 45,
736     /// AF_MAX 表示最大的地址族
737     Max = 46,
738 }
739 
740 impl TryFrom<u16> for AddressFamily {
741     type Error = SystemError;
742     fn try_from(x: u16) -> Result<Self, Self::Error> {
743         use num_traits::FromPrimitive;
744         return <Self as FromPrimitive>::from_u16(x).ok_or(SystemError::EINVAL);
745     }
746 }
747 
748 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致)
749 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)]
750 pub enum PosixSocketType {
751     Stream = 1,
752     Datagram = 2,
753     Raw = 3,
754     Rdm = 4,
755     SeqPacket = 5,
756     Dccp = 6,
757     Packet = 10,
758 }
759 
760 impl TryFrom<u8> for PosixSocketType {
761     type Error = SystemError;
762     fn try_from(x: u8) -> Result<Self, Self::Error> {
763         use num_traits::FromPrimitive;
764         return <Self as FromPrimitive>::from_u8(x).ok_or(SystemError::EINVAL);
765     }
766 }
767 
768 /// ### 为socket提供无锁的poll方法
769 ///
770 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll
771 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无��的poll
772 pub struct SocketPollMethod;
773 
774 impl SocketPollMethod {
775     pub fn poll(socket: &socket::Socket, shutdown: ShutdownType) -> EPollEventType {
776         match socket {
777             socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown),
778             socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown),
779             _ => todo!(),
780         }
781     }
782 
783     pub fn tcp_poll(socket: &tcp::Socket, shutdown: ShutdownType) -> EPollEventType {
784         let mut events = EPollEventType::empty();
785         if socket.is_listening() && socket.is_active() {
786             events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM);
787             return events;
788         }
789 
790         // socket已经关闭
791         if !socket.is_open() {
792             events.insert(EPollEventType::EPOLLHUP)
793         }
794         if shutdown.contains(ShutdownType::RCV_SHUTDOWN) {
795             events.insert(
796                 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP,
797             );
798         }
799 
800         let state = socket.state();
801         if state != tcp::State::SynSent && state != tcp::State::SynReceived {
802             // socket有可读数据
803             if socket.can_recv() {
804                 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM);
805             }
806 
807             if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) {
808                 // 缓冲区可写
809                 if socket.send_queue() < socket.send_capacity() {
810                     events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM);
811                 } else {
812                     // TODO:触发缓冲区已满的信号
813                     todo!("A signal that the buffer is full needs to be sent");
814                 }
815             } else {
816                 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT
817                 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM);
818             }
819         } else if state == tcp::State::SynSent {
820             events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM);
821         }
822 
823         // socket发生错误
824         if !socket.is_active() {
825             events.insert(EPollEventType::EPOLLERR);
826         }
827 
828         events
829     }
830 
831     pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType {
832         let mut event = EPollEventType::empty();
833 
834         if shutdown.contains(ShutdownType::RCV_SHUTDOWN) {
835             event.insert(
836                 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM,
837             );
838         }
839         if shutdown.contains(ShutdownType::SHUTDOWN_MASK) {
840             event.insert(EPollEventType::EPOLLHUP);
841         }
842 
843         if socket.can_recv() {
844             event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM);
845         }
846 
847         if socket.can_send() {
848             event.insert(
849                 EPollEventType::EPOLLOUT
850                     | EPollEventType::EPOLLWRNORM
851                     | EPollEventType::EPOLLWRBAND,
852             );
853         } else {
854             // TODO: 缓冲区空间不够,需要使用信号处理
855             todo!()
856         }
857 
858         return event;
859     }
860 }
861