1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize}; 2 3 use alloc::{ 4 boxed::Box, 5 collections::LinkedList, 6 string::String, 7 sync::{Arc, Weak}, 8 vec::Vec, 9 }; 10 use hashbrown::HashMap; 11 use smoltcp::{ 12 iface::SocketSet, 13 socket::{self, raw, tcp, udp}, 14 }; 15 use system_error::SystemError; 16 17 use crate::{ 18 arch::rand::rand, 19 filesystem::vfs::{ 20 file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode, 21 Metadata, 22 }, 23 libs::{ 24 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 25 spinlock::{SpinLock, SpinLockGuard}, 26 wait_queue::EventWaitQueue, 27 }, 28 process::{Pid, ProcessManager}, 29 sched::{schedule, SchedMode}, 30 }; 31 32 use self::{ 33 handle::GlobalSocketHandle, 34 inet::{RawSocket, TcpSocket, UdpSocket}, 35 unix::{SeqpacketSocket, StreamSocket}, 36 }; 37 38 use super::{ 39 event_poll::{EPollEventType, EPollItem, EventPoll}, 40 Endpoint, Protocol, ShutdownType, 41 }; 42 43 pub mod handle; 44 pub mod inet; 45 pub mod unix; 46 47 lazy_static! { 48 /// 所有socket的集合 49 /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket 50 pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![])); 51 /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem, 52 /// 注意!:在网卡中断中需要拿到这张表的,在获取读锁时应该确保关中断避免死锁 53 pub static ref HANDLE_MAP: RwLock<HashMap<GlobalSocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new()); 54 /// 端口管理器 55 pub static ref PORT_MANAGER: PortManager = PortManager::new(); 56 } 57 58 /* For setsockopt(2) */ 59 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9 60 pub const SOL_SOCKET: u8 = 1; 61 62 /// 根据地址族、socket类型和协议创建socket 63 pub(super) fn new_socket( 64 address_family: AddressFamily, 65 socket_type: PosixSocketType, 66 protocol: Protocol, 67 ) -> Result<Box<dyn Socket>, SystemError> { 68 let socket: Box<dyn Socket> = match address_family { 69 AddressFamily::Unix => match socket_type { 70 PosixSocketType::Stream => Box::new(StreamSocket::new(SocketOptions::default())), 71 PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())), 72 _ => { 73 return Err(SystemError::EINVAL); 74 } 75 }, 76 AddressFamily::INet => match socket_type { 77 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())), 78 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())), 79 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())), 80 _ => { 81 return Err(SystemError::EINVAL); 82 } 83 }, 84 _ => { 85 return Err(SystemError::EAFNOSUPPORT); 86 } 87 }; 88 89 let handle_item = SocketHandleItem::new(None); 90 HANDLE_MAP 91 .write_irqsave() 92 .insert(socket.socket_handle(), handle_item); 93 Ok(socket) 94 } 95 96 pub trait Socket: Sync + Send + Debug + Any { 97 /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回 98 /// 99 /// @param buf 读取到的数据存放的缓冲区 100 /// 101 /// @return - 成功:(返回读取的数据的长度,读取数据的端点). 102 /// - 失败:错误码 103 fn read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint); 104 105 /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回 106 /// 107 /// @param buf 要写入的数据 108 /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃 109 /// 110 /// @return 返回写入的数据的长度 111 fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>; 112 113 /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点 114 /// 115 /// It is used to establish a connection to a remote server. 116 /// When a socket is connected to a remote server, 117 /// the operating system will establish a network connection with the server 118 /// and allow data to be sent and received between the local socket and the remote server. 119 /// 120 /// @param endpoint 要连接的端点 121 /// 122 /// @return 返回连接是否成功 123 fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>; 124 125 /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点 126 /// 127 /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine. 128 /// 129 /// @param endpoint 要绑定的端点 130 /// 131 /// @return 返回绑定是否成功 132 fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> { 133 Err(SystemError::ENOSYS) 134 } 135 136 /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。 137 /// 138 /// shutdown() 函数用于启动网络连接的正常关闭。 139 /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。 140 /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。 141 /// 142 /// @return 返回是否成功关闭 143 fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> { 144 Err(SystemError::ENOSYS) 145 } 146 147 /// @brief 对应于POSIX的listen函数,用于监听端点 148 /// 149 /// @param backlog 最大的等待连接数 150 /// 151 /// @return 返回监听是否成功 152 fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> { 153 Err(SystemError::ENOSYS) 154 } 155 156 /// @brief 对应于POSIX的accept函数,用于接受连接 157 /// 158 /// @param endpoint 对端的端点 159 /// 160 /// @return 返回接受连接是否成功 161 fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> { 162 Err(SystemError::ENOSYS) 163 } 164 165 /// @brief 获取socket的端点 166 /// 167 /// @return 返回socket的端点 168 fn endpoint(&self) -> Option<Endpoint> { 169 None 170 } 171 172 /// @brief 获取socket的对端端点 173 /// 174 /// @return 返回socket的对端端点 175 fn peer_endpoint(&self) -> Option<Endpoint> { 176 None 177 } 178 179 /// @brief 180 /// The purpose of the poll function is to provide 181 /// a non-blocking way to check if a socket is ready for reading or writing, 182 /// so that you can efficiently handle multiple sockets in a single thread or event loop. 183 /// 184 /// @return (in, out, err) 185 /// 186 /// The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking. 187 /// The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking. 188 /// The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset 189 /// 190 fn poll(&self) -> EPollEventType { 191 EPollEventType::empty() 192 } 193 194 /// @brief socket的ioctl函数 195 /// 196 /// @param cmd ioctl命令 197 /// @param arg0 ioctl命令的第一个参数 198 /// @param arg1 ioctl命令的第二个参数 199 /// @param arg2 ioctl命令的第三个参数 200 /// 201 /// @return 返回ioctl命令的返回值 202 fn ioctl( 203 &self, 204 _cmd: usize, 205 _arg0: usize, 206 _arg1: usize, 207 _arg2: usize, 208 ) -> Result<usize, SystemError> { 209 Ok(0) 210 } 211 212 /// @brief 获取socket的元数据 213 fn metadata(&self) -> SocketMetadata; 214 215 fn box_clone(&self) -> Box<dyn Socket>; 216 217 /// @brief 设置socket的选项 218 /// 219 /// @param level 选项的层次 220 /// @param optname 选项的名称 221 /// @param optval 选项的值 222 /// 223 /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS 224 fn setsockopt( 225 &self, 226 _level: usize, 227 _optname: usize, 228 _optval: &[u8], 229 ) -> Result<(), SystemError> { 230 kwarn!("setsockopt is not implemented"); 231 Ok(()) 232 } 233 234 fn socket_handle(&self) -> GlobalSocketHandle; 235 236 fn write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError> { 237 todo!() 238 } 239 240 fn as_any_ref(&self) -> &dyn Any; 241 242 fn as_any_mut(&mut self) -> &mut dyn Any; 243 244 fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> { 245 HANDLE_MAP 246 .write_irqsave() 247 .get_mut(&self.socket_handle()) 248 .unwrap() 249 .add_epoll(epitem); 250 Ok(()) 251 } 252 253 fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 254 HANDLE_MAP 255 .write_irqsave() 256 .get_mut(&self.socket_handle()) 257 .unwrap() 258 .remove_epoll(epoll)?; 259 260 Ok(()) 261 } 262 263 fn clear_epoll(&mut self) -> Result<(), SystemError> { 264 let mut handle_map_guard = HANDLE_MAP.write_irqsave(); 265 let handle_item = handle_map_guard.get_mut(&self.socket_handle()).unwrap(); 266 267 for epitem in handle_item.epitems.lock_irqsave().iter() { 268 let epoll = epitem.epoll(); 269 if epoll.upgrade().is_some() { 270 EventPoll::ep_remove( 271 &mut epoll.upgrade().unwrap().lock_irqsave(), 272 epitem.fd(), 273 None, 274 )?; 275 } 276 } 277 278 Ok(()) 279 } 280 281 fn close(&mut self); 282 } 283 284 impl Clone for Box<dyn Socket> { 285 fn clone(&self) -> Box<dyn Socket> { 286 self.box_clone() 287 } 288 } 289 290 /// # Socket在文件系统中的inode封装 291 #[derive(Debug)] 292 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize); 293 294 impl SocketInode { 295 pub fn new(socket: Box<dyn Socket>) -> Arc<Self> { 296 Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0))) 297 } 298 299 #[inline] 300 pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> { 301 self.0.lock() 302 } 303 304 pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> { 305 self.0.lock_no_preempt() 306 } 307 308 fn do_close(&self) -> Result<(), SystemError> { 309 let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst); 310 if prev_ref_count == 1 { 311 // 最后一次关闭,需要释放 312 let mut socket = self.0.lock_irqsave(); 313 314 if socket.metadata().socket_type == SocketType::Unix { 315 return Ok(()); 316 } 317 318 if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() { 319 PORT_MANAGER.unbind_port(socket.metadata().socket_type, ip.port); 320 } 321 322 socket.clear_epoll()?; 323 324 HANDLE_MAP 325 .write_irqsave() 326 .remove(&socket.socket_handle()) 327 .unwrap(); 328 socket.close(); 329 } 330 331 Ok(()) 332 } 333 } 334 335 impl Drop for SocketInode { 336 fn drop(&mut self) { 337 for _ in 0..self.1.load(core::sync::atomic::Ordering::SeqCst) { 338 let _ = self.do_close(); 339 } 340 } 341 } 342 343 impl IndexNode for SocketInode { 344 fn open( 345 &self, 346 _data: SpinLockGuard<FilePrivateData>, 347 _mode: &FileMode, 348 ) -> Result<(), SystemError> { 349 self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst); 350 Ok(()) 351 } 352 353 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> { 354 self.do_close() 355 } 356 357 fn read_at( 358 &self, 359 _offset: usize, 360 len: usize, 361 buf: &mut [u8], 362 data: SpinLockGuard<FilePrivateData>, 363 ) -> Result<usize, SystemError> { 364 drop(data); 365 self.0.lock_no_preempt().read(&mut buf[0..len]).0 366 } 367 368 fn write_at( 369 &self, 370 _offset: usize, 371 len: usize, 372 buf: &[u8], 373 data: SpinLockGuard<FilePrivateData>, 374 ) -> Result<usize, SystemError> { 375 drop(data); 376 self.0.lock_no_preempt().write(&buf[0..len], None) 377 } 378 379 fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> { 380 let events = self.0.lock_irqsave().poll(); 381 return Ok(events.bits() as usize); 382 } 383 384 fn fs(&self) -> Arc<dyn FileSystem> { 385 todo!() 386 } 387 388 fn as_any_ref(&self) -> &dyn Any { 389 self 390 } 391 392 fn list(&self) -> Result<Vec<String>, SystemError> { 393 return Err(SystemError::ENOTDIR); 394 } 395 396 fn metadata(&self) -> Result<Metadata, SystemError> { 397 let meta = Metadata { 398 mode: ModeType::from_bits_truncate(0o755), 399 file_type: FileType::Socket, 400 ..Default::default() 401 }; 402 403 return Ok(meta); 404 } 405 406 fn resize(&self, _len: usize) -> Result<(), SystemError> { 407 return Ok(()); 408 } 409 } 410 411 #[derive(Debug)] 412 pub struct SocketHandleItem { 413 /// shutdown状态 414 pub shutdown_type: RwLock<ShutdownType>, 415 /// socket的waitqueue 416 pub wait_queue: Arc<EventWaitQueue>, 417 /// epitems,考虑写在这是否是最优解? 418 pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>, 419 } 420 421 impl SocketHandleItem { 422 pub fn new(wait_queue: Option<Arc<EventWaitQueue>>) -> Self { 423 Self { 424 shutdown_type: RwLock::new(ShutdownType::empty()), 425 wait_queue: wait_queue.unwrap_or(Arc::new(EventWaitQueue::new())), 426 epitems: SpinLock::new(LinkedList::new()), 427 } 428 } 429 430 /// ## 在socket的等待队列上睡眠 431 pub fn sleep( 432 socket_handle: GlobalSocketHandle, 433 events: u64, 434 handle_map_guard: RwLockReadGuard<'_, HashMap<GlobalSocketHandle, SocketHandleItem>>, 435 ) { 436 unsafe { 437 handle_map_guard 438 .get(&socket_handle) 439 .unwrap() 440 .wait_queue 441 .sleep_without_schedule(events) 442 }; 443 drop(handle_map_guard); 444 schedule(SchedMode::SM_NONE); 445 } 446 447 pub fn shutdown_type(&self) -> ShutdownType { 448 *self.shutdown_type.read() 449 } 450 451 pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> { 452 self.shutdown_type.write_irqsave() 453 } 454 455 pub fn add_epoll(&mut self, epitem: Arc<EPollItem>) { 456 self.epitems.lock_irqsave().push_back(epitem) 457 } 458 459 pub fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 460 let is_remove = !self 461 .epitems 462 .lock_irqsave() 463 .extract_if(|x| x.epoll().ptr_eq(epoll)) 464 .collect::<Vec<_>>() 465 .is_empty(); 466 467 if is_remove { 468 return Ok(()); 469 } 470 471 Err(SystemError::ENOENT) 472 } 473 } 474 475 /// # TCP 和 UDP 的端口管理器。 476 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。 477 pub struct PortManager { 478 // TCP 端口记录表 479 tcp_port_table: SpinLock<HashMap<u16, Pid>>, 480 // UDP 端口记录表 481 udp_port_table: SpinLock<HashMap<u16, Pid>>, 482 } 483 484 impl PortManager { 485 pub fn new() -> Self { 486 return Self { 487 tcp_port_table: SpinLock::new(HashMap::new()), 488 udp_port_table: SpinLock::new(HashMap::new()), 489 }; 490 } 491 492 /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE 493 pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> { 494 // TODO: selects non-conflict high port 495 496 static mut EPHEMERAL_PORT: u16 = 0; 497 unsafe { 498 if EPHEMERAL_PORT == 0 { 499 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16; 500 } 501 } 502 503 let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数 504 let mut port: u16; 505 while remaining > 0 { 506 unsafe { 507 if EPHEMERAL_PORT == 65535 { 508 EPHEMERAL_PORT = 49152; 509 } else { 510 EPHEMERAL_PORT += 1; 511 } 512 port = EPHEMERAL_PORT; 513 } 514 515 // 使用 ListenTable 检查端口是否被占用 516 let listen_table_guard = match socket_type { 517 SocketType::Udp => self.udp_port_table.lock(), 518 SocketType::Tcp => self.tcp_port_table.lock(), 519 _ => panic!("{:?} cann't get a port", socket_type), 520 }; 521 if listen_table_guard.get(&port).is_none() { 522 drop(listen_table_guard); 523 return Ok(port); 524 } 525 remaining -= 1; 526 } 527 return Err(SystemError::EADDRINUSE); 528 } 529 530 /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录 531 /// 532 /// TODO: 增加支持端口复用的逻辑 533 pub fn bind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> { 534 if port > 0 { 535 let mut listen_table_guard = match socket_type { 536 SocketType::Udp => self.udp_port_table.lock(), 537 SocketType::Tcp => self.tcp_port_table.lock(), 538 _ => panic!("{:?} cann't bind a port", socket_type), 539 }; 540 match listen_table_guard.get(&port) { 541 Some(_) => return Err(SystemError::EADDRINUSE), 542 None => listen_table_guard.insert(port, ProcessManager::current_pid()), 543 }; 544 drop(listen_table_guard); 545 } 546 return Ok(()); 547 } 548 549 /// @brief 在对应的端口记录表中将端口和 socket 解绑 550 /// should call this function when socket is closed or aborted 551 pub fn unbind_port(&self, socket_type: SocketType, port: u16) { 552 let mut listen_table_guard = match socket_type { 553 SocketType::Udp => self.udp_port_table.lock(), 554 SocketType::Tcp => self.tcp_port_table.lock(), 555 _ => { 556 return; 557 } 558 }; 559 listen_table_guard.remove(&port); 560 drop(listen_table_guard); 561 } 562 } 563 564 /// @brief socket的类型 565 #[derive(Debug, Clone, Copy, PartialEq)] 566 pub enum SocketType { 567 /// 原始的socket 568 Raw, 569 /// 用于Tcp通信的 Socket 570 Tcp, 571 /// 用于Udp通信的 Socket 572 Udp, 573 /// unix域的 Socket 574 Unix, 575 } 576 577 bitflags! { 578 /// @brief socket的选项 579 #[derive(Default)] 580 pub struct SocketOptions: u32 { 581 /// 是否阻塞 582 const BLOCK = 1 << 0; 583 /// 是否允许广播 584 const BROADCAST = 1 << 1; 585 /// 是否允许多播 586 const MULTICAST = 1 << 2; 587 /// 是否允许重用地址 588 const REUSEADDR = 1 << 3; 589 /// 是否允许重用端口 590 const REUSEPORT = 1 << 4; 591 } 592 } 593 594 #[derive(Debug, Clone)] 595 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用 596 pub struct SocketMetadata { 597 /// socket的类型 598 pub socket_type: SocketType, 599 /// 接收缓冲区的大小 600 pub rx_buf_size: usize, 601 /// 发送缓冲区的大小 602 pub tx_buf_size: usize, 603 /// 元数据的缓冲区的大小 604 pub metadata_buf_size: usize, 605 /// socket的选项 606 pub options: SocketOptions, 607 } 608 609 impl SocketMetadata { 610 fn new( 611 socket_type: SocketType, 612 rx_buf_size: usize, 613 tx_buf_size: usize, 614 metadata_buf_size: usize, 615 options: SocketOptions, 616 ) -> Self { 617 Self { 618 socket_type, 619 rx_buf_size, 620 tx_buf_size, 621 metadata_buf_size, 622 options, 623 } 624 } 625 } 626 627 /// @brief 地址族的枚举 628 /// 629 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180 630 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 631 pub enum AddressFamily { 632 /// AF_UNSPEC 表示地址族未指定 633 Unspecified = 0, 634 /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同) 635 Unix = 1, 636 /// AF_INET 表示IPv4的socket 637 INet = 2, 638 /// AF_AX25 表示AMPR AX.25的socket 639 AX25 = 3, 640 /// AF_IPX 表示IPX的socket 641 IPX = 4, 642 /// AF_APPLETALK 表示Appletalk的socket 643 Appletalk = 5, 644 /// AF_NETROM 表示AMPR NET/ROM的socket 645 Netrom = 6, 646 /// AF_BRIDGE 表示多协议桥接的socket 647 Bridge = 7, 648 /// AF_ATMPVC 表示ATM PVCs的socket 649 Atmpvc = 8, 650 /// AF_X25 表示X.25的socket 651 X25 = 9, 652 /// AF_INET6 表示IPv6的socket 653 INet6 = 10, 654 /// AF_ROSE 表示AMPR ROSE的socket 655 Rose = 11, 656 /// AF_DECnet Reserved for DECnet project 657 Decnet = 12, 658 /// AF_NETBEUI Reserved for 802.2LLC project 659 Netbeui = 13, 660 /// AF_SECURITY 表示Security callback的伪AF 661 Security = 14, 662 /// AF_KEY 表示Key management API 663 Key = 15, 664 /// AF_NETLINK 表示Netlink的socket 665 Netlink = 16, 666 /// AF_PACKET 表示Low level packet interface 667 Packet = 17, 668 /// AF_ASH 表示Ash 669 Ash = 18, 670 /// AF_ECONET 表示Acorn Econet 671 Econet = 19, 672 /// AF_ATMSVC 表示ATM SVCs 673 Atmsvc = 20, 674 /// AF_RDS 表示Reliable Datagram Sockets 675 Rds = 21, 676 /// AF_SNA 表示Linux SNA Project 677 Sna = 22, 678 /// AF_IRDA 表示IRDA sockets 679 Irda = 23, 680 /// AF_PPPOX 表示PPPoX sockets 681 Pppox = 24, 682 /// AF_WANPIPE 表示WANPIPE API sockets 683 WanPipe = 25, 684 /// AF_LLC 表示Linux LLC 685 Llc = 26, 686 /// AF_IB 表示Native InfiniBand address 687 /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks 688 Ib = 27, 689 /// AF_MPLS 表示MPLS 690 Mpls = 28, 691 /// AF_CAN 表示Controller Area Network 692 Can = 29, 693 /// AF_TIPC 表示TIPC sockets 694 Tipc = 30, 695 /// AF_BLUETOOTH 表示Bluetooth sockets 696 Bluetooth = 31, 697 /// AF_IUCV 表示IUCV sockets 698 Iucv = 32, 699 /// AF_RXRPC 表示RxRPC sockets 700 Rxrpc = 33, 701 /// AF_ISDN 表示mISDN sockets 702 Isdn = 34, 703 /// AF_PHONET 表示Phonet sockets 704 Phonet = 35, 705 /// AF_IEEE802154 表示IEEE 802.15.4 sockets 706 Ieee802154 = 36, 707 /// AF_CAIF 表示CAIF sockets 708 Caif = 37, 709 /// AF_ALG 表示Algorithm sockets 710 Alg = 38, 711 /// AF_NFC 表示NFC sockets 712 Nfc = 39, 713 /// AF_VSOCK 表示vSockets 714 Vsock = 40, 715 /// AF_KCM 表示Kernel Connection Multiplexor 716 Kcm = 41, 717 /// AF_QIPCRTR 表示Qualcomm IPC Router 718 Qipcrtr = 42, 719 /// AF_SMC 表示SMC-R sockets. 720 /// reserve number for PF_SMC protocol family that reuses AF_INET address family 721 Smc = 43, 722 /// AF_XDP 表示XDP sockets 723 Xdp = 44, 724 /// AF_MCTP 表示Management Component Transport Protocol 725 Mctp = 45, 726 /// AF_MAX 表示最大的地址族 727 Max = 46, 728 } 729 730 impl TryFrom<u16> for AddressFamily { 731 type Error = SystemError; 732 fn try_from(x: u16) -> Result<Self, Self::Error> { 733 use num_traits::FromPrimitive; 734 return <Self as FromPrimitive>::from_u16(x).ok_or(SystemError::EINVAL); 735 } 736 } 737 738 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致) 739 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 740 pub enum PosixSocketType { 741 Stream = 1, 742 Datagram = 2, 743 Raw = 3, 744 Rdm = 4, 745 SeqPacket = 5, 746 Dccp = 6, 747 Packet = 10, 748 } 749 750 impl TryFrom<u8> for PosixSocketType { 751 type Error = SystemError; 752 fn try_from(x: u8) -> Result<Self, Self::Error> { 753 use num_traits::FromPrimitive; 754 return <Self as FromPrimitive>::from_u8(x).ok_or(SystemError::EINVAL); 755 } 756 } 757 758 /// ### 为socket提供无锁的poll方法 759 /// 760 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll 761 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无的poll 762 pub struct SocketPollMethod; 763 764 impl SocketPollMethod { 765 pub fn poll(socket: &socket::Socket, shutdown: ShutdownType) -> EPollEventType { 766 match socket { 767 socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown), 768 socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown), 769 socket::Socket::Raw(raw) => Self::raw_poll(raw, shutdown), 770 _ => todo!(), 771 } 772 } 773 774 pub fn tcp_poll(socket: &tcp::Socket, shutdown: ShutdownType) -> EPollEventType { 775 let mut events = EPollEventType::empty(); 776 if socket.is_listening() && socket.is_active() { 777 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 778 return events; 779 } 780 781 // socket已经关闭 782 if !socket.is_open() { 783 events.insert(EPollEventType::EPOLLHUP) 784 } 785 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 786 events.insert( 787 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP, 788 ); 789 } 790 791 let state = socket.state(); 792 if state != tcp::State::SynSent && state != tcp::State::SynReceived { 793 // socket有可读数据 794 if socket.can_recv() { 795 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 796 } 797 798 if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) { 799 // 缓冲区可写 800 if socket.send_queue() < socket.send_capacity() { 801 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 802 } else { 803 // TODO:触发缓冲区已满的信号 804 todo!("A signal that the buffer is full needs to be sent"); 805 } 806 } else { 807 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT 808 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 809 } 810 } else if state == tcp::State::SynSent { 811 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 812 } 813 814 // socket发生错误 815 if !socket.is_active() { 816 events.insert(EPollEventType::EPOLLERR); 817 } 818 819 events 820 } 821 822 pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType { 823 let mut event = EPollEventType::empty(); 824 825 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 826 event.insert( 827 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 828 ); 829 } 830 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 831 event.insert(EPollEventType::EPOLLHUP); 832 } 833 834 if socket.can_recv() { 835 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 836 } 837 838 if socket.can_send() { 839 event.insert( 840 EPollEventType::EPOLLOUT 841 | EPollEventType::EPOLLWRNORM 842 | EPollEventType::EPOLLWRBAND, 843 ); 844 } else { 845 // TODO: 缓冲区空间不够,需要使用信号处理 846 todo!() 847 } 848 849 return event; 850 } 851 852 pub fn raw_poll(socket: &raw::Socket, shutdown: ShutdownType) -> EPollEventType { 853 //kdebug!("enter raw_poll!"); 854 let mut event = EPollEventType::empty(); 855 856 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 857 event.insert( 858 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 859 ); 860 } 861 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 862 event.insert(EPollEventType::EPOLLHUP); 863 } 864 865 if socket.can_recv() { 866 //kdebug!("poll can recv!"); 867 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 868 } else { 869 //kdebug!("poll can not recv!"); 870 } 871 872 if socket.can_send() { 873 //kdebug!("poll can send!"); 874 event.insert( 875 EPollEventType::EPOLLOUT 876 | EPollEventType::EPOLLWRNORM 877 | EPollEventType::EPOLLWRBAND, 878 ); 879 } else { 880 //kdebug!("poll can not send!"); 881 // TODO: 缓冲区空间不够,需要使用信号处理 882 todo!() 883 } 884 return event; 885 } 886 } 887