1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize}; 2 3 use alloc::{ 4 boxed::Box, 5 collections::LinkedList, 6 string::String, 7 sync::{Arc, Weak}, 8 vec::Vec, 9 }; 10 use hashbrown::HashMap; 11 use smoltcp::{ 12 iface::{SocketHandle, SocketSet}, 13 socket::{self, tcp, udp}, 14 }; 15 use system_error::SystemError; 16 17 use crate::{ 18 arch::{rand::rand, sched::sched}, 19 filesystem::vfs::{ 20 file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode, 21 Metadata, 22 }, 23 libs::{ 24 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 25 spinlock::{SpinLock, SpinLockGuard}, 26 wait_queue::EventWaitQueue, 27 }, 28 }; 29 30 use self::sockets::{RawSocket, SeqpacketSocket, TcpSocket, UdpSocket}; 31 32 use super::{ 33 event_poll::{EPollEventType, EPollItem, EventPoll}, 34 net_core::poll_ifaces, 35 Endpoint, Protocol, ShutdownType, 36 }; 37 38 pub mod sockets; 39 40 lazy_static! { 41 /// 所有socket的集合 42 /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket 43 pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![])); 44 /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem, 45 /// 注意!:在网卡中断中需要拿到这张表的,在获取读锁时应该确保关中断避免死锁 46 pub static ref HANDLE_MAP: RwLock<HashMap<SocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new()); 47 /// 端口管理器 48 pub static ref PORT_MANAGER: PortManager = PortManager::new(); 49 } 50 51 /* For setsockopt(2) */ 52 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9 53 pub const SOL_SOCKET: u8 = 1; 54 55 /// 根据地址族、socket类型和协议创建socket 56 pub(super) fn new_socket( 57 address_family: AddressFamily, 58 socket_type: PosixSocketType, 59 protocol: Protocol, 60 ) -> Result<Box<dyn Socket>, SystemError> { 61 let socket: Box<dyn Socket> = match address_family { 62 AddressFamily::Unix => match socket_type { 63 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())), 64 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())), 65 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())), 66 PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())), 67 _ => { 68 return Err(SystemError::EINVAL); 69 } 70 }, 71 AddressFamily::INet => match socket_type { 72 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())), 73 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())), 74 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())), 75 _ => { 76 return Err(SystemError::EINVAL); 77 } 78 }, 79 _ => { 80 return Err(SystemError::EAFNOSUPPORT); 81 } 82 }; 83 Ok(socket) 84 } 85 86 pub trait Socket: Sync + Send + Debug + Any { 87 fn as_any_ref(&self) -> &dyn Any; 88 89 fn as_any_mut(&mut self) -> &mut dyn Any; 90 /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回 91 /// 92 /// @param buf 读取到的数据存放的缓冲区 93 /// 94 /// @return - 成功:(返回读取的数据的长度,读取数据的端点). 95 /// - 失败:错误码 96 fn read(&mut self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint); 97 98 /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回 99 /// 100 /// @param buf 要写入的数据 101 /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃 102 /// 103 /// @return 返回写入的数据的长度 104 fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>; 105 106 /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点 107 /// 108 /// It is used to establish a connection to a remote server. 109 /// When a socket is connected to a remote server, 110 /// the operating system will establish a network connection with the server 111 /// and allow data to be sent and received between the local socket and the remote server. 112 /// 113 /// @param endpoint 要连接的端点 114 /// 115 /// @return 返回连接是否成功 116 fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> { 117 return Err(SystemError::ENOSYS); 118 } 119 120 /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点 121 /// 122 /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine. 123 /// 124 /// @param endpoint 要绑定的端点 125 /// 126 /// @return 返回绑定是否成功 127 fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> { 128 return Err(SystemError::ENOSYS); 129 } 130 131 /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。 132 /// 133 /// shutdown() 函数用于启动网络连接的正常关闭。 134 /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。 135 /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。 136 /// 137 /// @return 返回是否成功关闭 138 fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> { 139 return Err(SystemError::ENOSYS); 140 } 141 142 /// @brief 对应于POSIX的listen函数,用于监听端点 143 /// 144 /// @param backlog 最大的等待连接数 145 /// 146 /// @return 返回监听是否成功 147 fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> { 148 return Err(SystemError::ENOSYS); 149 } 150 151 /// @brief 对应于POSIX的accept函数,用于接受连接 152 /// 153 /// @param endpoint 对端的端点 154 /// 155 /// @return 返回接受连接是否成功 156 fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> { 157 return Err(SystemError::ENOSYS); 158 } 159 160 /// @brief 获取socket的端点 161 /// 162 /// @return 返回socket的端点 163 fn endpoint(&self) -> Option<Endpoint> { 164 return None; 165 } 166 167 /// @brief 获取socket的对端端点 168 /// 169 /// @return 返回socket的对端端点 170 fn peer_endpoint(&self) -> Option<Endpoint> { 171 return None; 172 } 173 174 fn socketpair_ops(&self) -> Option<&'static dyn SocketpairOps> { 175 None 176 } 177 178 /// @brief 179 /// The purpose of the poll function is to provide 180 /// a non-blocking way to check if a socket is ready for reading or writing, 181 /// so that you can efficiently handle multiple sockets in a single thread or event loop. 182 /// 183 /// @return (in, out, err) 184 /// 185 /// The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking. 186 /// The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking. 187 /// The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset 188 /// 189 fn poll(&self) -> EPollEventType { 190 return EPollEventType::empty(); 191 } 192 193 /// @brief socket的ioctl函数 194 /// 195 /// @param cmd ioctl命令 196 /// @param arg0 ioctl命令的第一个参数 197 /// @param arg1 ioctl命令的第二个参数 198 /// @param arg2 ioctl命令的第三个参数 199 /// 200 /// @return 返回ioctl命令的返回值 201 fn ioctl( 202 &self, 203 _cmd: usize, 204 _arg0: usize, 205 _arg1: usize, 206 _arg2: usize, 207 ) -> Result<usize, SystemError> { 208 return Ok(0); 209 } 210 211 /// @brief 获取socket的元数据 212 fn metadata(&self) -> Result<SocketMetadata, SystemError>; 213 214 fn box_clone(&self) -> Box<dyn Socket>; 215 216 /// @brief 设置socket的选项 217 /// 218 /// @param level 选项的层次 219 /// @param optname 选项的名称 220 /// @param optval 选项的值 221 /// 222 /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS 223 fn setsockopt( 224 &self, 225 _level: usize, 226 _optname: usize, 227 _optval: &[u8], 228 ) -> Result<(), SystemError> { 229 kwarn!("setsockopt is not implemented"); 230 return Ok(()); 231 } 232 233 fn socket_handle(&self) -> SocketHandle { 234 todo!() 235 } 236 237 fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> { 238 HANDLE_MAP 239 .write_irqsave() 240 .get_mut(&self.socket_handle()) 241 .unwrap() 242 .add_epoll(epitem); 243 Ok(()) 244 } 245 246 fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 247 HANDLE_MAP 248 .write_irqsave() 249 .get_mut(&self.socket_handle()) 250 .unwrap() 251 .remove_epoll(epoll)?; 252 253 Ok(()) 254 } 255 256 fn clear_epoll(&mut self) -> Result<(), SystemError> { 257 let mut handle_map_guard = HANDLE_MAP.write_irqsave(); 258 let handle_item = handle_map_guard.get_mut(&self.socket_handle()).unwrap(); 259 260 for epitem in handle_item.epitems.lock_irqsave().iter() { 261 let epoll = epitem.epoll(); 262 if epoll.upgrade().is_some() { 263 EventPoll::ep_remove( 264 &mut epoll.upgrade().unwrap().lock_irqsave(), 265 epitem.fd(), 266 None, 267 )?; 268 } 269 } 270 271 Ok(()) 272 } 273 } 274 275 impl Clone for Box<dyn Socket> { 276 fn clone(&self) -> Box<dyn Socket> { 277 self.box_clone() 278 } 279 } 280 281 pub trait SocketpairOps { 282 /// 执行socketpair 283 fn socketpair(&self, socket0: &mut Box<dyn Socket>, socket1: &mut Box<dyn Socket>); 284 } 285 286 /// # Socket在文件系统中的inode封装 287 #[derive(Debug)] 288 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize); 289 290 impl SocketInode { 291 pub fn new(socket: Box<dyn Socket>) -> Arc<Self> { 292 Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0))) 293 } 294 295 #[inline] 296 pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> { 297 return self.0.lock(); 298 } 299 300 pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> { 301 return self.0.lock_no_preempt(); 302 } 303 } 304 305 impl IndexNode for SocketInode { 306 fn open(&self, _data: &mut FilePrivateData, _mode: &FileMode) -> Result<(), SystemError> { 307 self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst); 308 Ok(()) 309 } 310 311 fn close(&self, _data: &mut FilePrivateData) -> Result<(), SystemError> { 312 let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst); 313 if prev_ref_count == 1 { 314 // 最后一次关闭,需要释放 315 let mut socket = self.0.lock_irqsave(); 316 317 if socket.metadata().unwrap().socket_type == SocketType::SeqpacketSocket { 318 return Ok(()); 319 } 320 321 if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() { 322 PORT_MANAGER.unbind_port(socket.metadata().unwrap().socket_type, ip.port)?; 323 } 324 325 socket.clear_epoll()?; 326 327 HANDLE_MAP 328 .write_irqsave() 329 .remove(&socket.socket_handle()) 330 .unwrap(); 331 } 332 Ok(()) 333 } 334 335 fn read_at( 336 &self, 337 _offset: usize, 338 len: usize, 339 buf: &mut [u8], 340 _data: &mut FilePrivateData, 341 ) -> Result<usize, SystemError> { 342 return self.0.lock_no_preempt().read(&mut buf[0..len]).0; 343 } 344 345 fn write_at( 346 &self, 347 _offset: usize, 348 len: usize, 349 buf: &[u8], 350 _data: &mut FilePrivateData, 351 ) -> Result<usize, SystemError> { 352 return self.0.lock_no_preempt().write(&buf[0..len], None); 353 } 354 355 fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> { 356 let events = self.0.lock_irqsave().poll(); 357 return Ok(events.bits() as usize); 358 } 359 360 fn fs(&self) -> Arc<dyn FileSystem> { 361 todo!() 362 } 363 364 fn as_any_ref(&self) -> &dyn Any { 365 self 366 } 367 368 fn list(&self) -> Result<Vec<String>, SystemError> { 369 return Err(SystemError::ENOTDIR); 370 } 371 372 fn metadata(&self) -> Result<Metadata, SystemError> { 373 let meta = Metadata { 374 mode: ModeType::from_bits_truncate(0o755), 375 file_type: FileType::Socket, 376 ..Default::default() 377 }; 378 379 return Ok(meta); 380 } 381 382 fn resize(&self, _len: usize) -> Result<(), SystemError> { 383 return Ok(()); 384 } 385 } 386 387 #[allow(dead_code)] 388 #[derive(Debug)] 389 pub struct SocketHandleItem { 390 /// socket元数据 391 metadata: SocketMetadata, 392 /// shutdown状态 393 pub shutdown_type: RwLock<ShutdownType>, 394 /// socket的waitqueue 395 pub wait_queue: EventWaitQueue, 396 /// epitems,考虑写在这是否是最优解? 397 pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>, 398 } 399 400 impl SocketHandleItem { 401 pub fn new(socket: &Box<dyn Socket>) -> Self { 402 Self { 403 metadata: socket.metadata().unwrap(), 404 shutdown_type: RwLock::new(ShutdownType::empty()), 405 wait_queue: EventWaitQueue::new(), 406 epitems: SpinLock::new(LinkedList::new()), 407 } 408 } 409 410 pub fn from_socket<A: Socket>(socket: &Box<A>) -> Self { 411 Self { 412 metadata: socket.metadata().unwrap(), 413 shutdown_type: RwLock::new(ShutdownType::empty()), 414 wait_queue: EventWaitQueue::new(), 415 epitems: SpinLock::new(LinkedList::new()), 416 } 417 } 418 419 /// ### 在socket的等待队列上睡眠 420 pub fn sleep( 421 socket_handle: SocketHandle, 422 events: u64, 423 handle_map_guard: RwLockReadGuard<'_, HashMap<SocketHandle, SocketHandleItem>>, 424 ) { 425 unsafe { 426 handle_map_guard 427 .get(&socket_handle) 428 .unwrap() 429 .wait_queue 430 .sleep_without_schedule(events) 431 }; 432 drop(handle_map_guard); 433 sched(); 434 } 435 436 pub fn shutdown_type(&self) -> ShutdownType { 437 self.shutdown_type.read().clone() 438 } 439 440 pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> { 441 self.shutdown_type.write_irqsave() 442 } 443 444 pub fn add_epoll(&mut self, epitem: Arc<EPollItem>) { 445 self.epitems.lock_irqsave().push_back(epitem) 446 } 447 448 pub fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 449 let is_remove = !self 450 .epitems 451 .lock_irqsave() 452 .extract_if(|x| x.epoll().ptr_eq(epoll)) 453 .collect::<Vec<_>>() 454 .is_empty(); 455 456 if is_remove { 457 return Ok(()); 458 } 459 460 Err(SystemError::ENOENT) 461 } 462 } 463 464 /// # TCP 和 UDP 的端口管理器。 465 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。 466 pub struct PortManager { 467 // TCP 端口记录表 468 tcp_port_table: SpinLock<HashMap<u16, Arc<GlobalSocketHandle>>>, 469 // UDP 端口记录表 470 udp_port_table: SpinLock<HashMap<u16, Arc<GlobalSocketHandle>>>, 471 } 472 473 impl PortManager { 474 pub fn new() -> Self { 475 return Self { 476 tcp_port_table: SpinLock::new(HashMap::new()), 477 udp_port_table: SpinLock::new(HashMap::new()), 478 }; 479 } 480 481 /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE 482 pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> { 483 // TODO: selects non-conflict high port 484 485 static mut EPHEMERAL_PORT: u16 = 0; 486 unsafe { 487 if EPHEMERAL_PORT == 0 { 488 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16; 489 } 490 } 491 492 let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数 493 let mut port: u16; 494 while remaining > 0 { 495 unsafe { 496 if EPHEMERAL_PORT == 65535 { 497 EPHEMERAL_PORT = 49152; 498 } else { 499 EPHEMERAL_PORT = EPHEMERAL_PORT + 1; 500 } 501 port = EPHEMERAL_PORT; 502 } 503 504 // 使用 ListenTable 检查端口是否被占用 505 let listen_table_guard = match socket_type { 506 SocketType::UdpSocket => self.udp_port_table.lock(), 507 SocketType::TcpSocket => self.tcp_port_table.lock(), 508 _ => panic!("{:?} cann't get a port", socket_type), 509 }; 510 if let None = listen_table_guard.get(&port) { 511 drop(listen_table_guard); 512 return Ok(port); 513 } 514 remaining -= 1; 515 } 516 return Err(SystemError::EADDRINUSE); 517 } 518 519 /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录 520 /// 521 /// TODO: 增加支持端口复用的逻辑 522 pub fn bind_port( 523 &self, 524 socket_type: SocketType, 525 port: u16, 526 handle: Arc<GlobalSocketHandle>, 527 ) -> Result<(), SystemError> { 528 if port > 0 { 529 let mut listen_table_guard = match socket_type { 530 SocketType::UdpSocket => self.udp_port_table.lock(), 531 SocketType::TcpSocket => self.tcp_port_table.lock(), 532 _ => panic!("{:?} cann't bind a port", socket_type), 533 }; 534 match listen_table_guard.get(&port) { 535 Some(_) => return Err(SystemError::EADDRINUSE), 536 None => listen_table_guard.insert(port, handle), 537 }; 538 drop(listen_table_guard); 539 } 540 return Ok(()); 541 } 542 543 /// @brief 在对应的端口记录表中将端口和 socket 解绑 544 pub fn unbind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> { 545 let mut listen_table_guard = match socket_type { 546 SocketType::UdpSocket => self.udp_port_table.lock(), 547 SocketType::TcpSocket => self.tcp_port_table.lock(), 548 _ => return Ok(()), 549 }; 550 listen_table_guard.remove(&port); 551 drop(listen_table_guard); 552 return Ok(()); 553 } 554 } 555 556 /// # socket的句柄管理组件 557 /// 它在smoltcp的SocketHandle上封装了一层,增加更多的功能。 558 /// 比如,在socket被关闭时,自动释放socket的资源,通知系统的其他组件。 559 #[derive(Debug)] 560 pub struct GlobalSocketHandle(SocketHandle); 561 562 impl GlobalSocketHandle { 563 pub fn new(handle: SocketHandle) -> Arc<Self> { 564 return Arc::new(Self(handle)); 565 } 566 } 567 568 impl Clone for GlobalSocketHandle { 569 fn clone(&self) -> Self { 570 Self(self.0) 571 } 572 } 573 574 impl Drop for GlobalSocketHandle { 575 fn drop(&mut self) { 576 let mut socket_set_guard = SOCKET_SET.lock_irqsave(); 577 socket_set_guard.remove(self.0); // 删除的时候,会发送一条FINISH的信息? 578 drop(socket_set_guard); 579 poll_ifaces(); 580 } 581 } 582 583 /// @brief socket的类型 584 #[derive(Debug, Clone, Copy, PartialEq)] 585 pub enum SocketType { 586 /// 原始的socket 587 RawSocket, 588 /// 用于Tcp通信的 Socket 589 TcpSocket, 590 /// 用于Udp通信的 Socket 591 UdpSocket, 592 /// 用于进程间通信的 Socket 593 SeqpacketSocket, 594 } 595 596 bitflags! { 597 /// @brief socket的选项 598 #[derive(Default)] 599 pub struct SocketOptions: u32 { 600 /// 是否阻塞 601 const BLOCK = 1 << 0; 602 /// 是否允许广播 603 const BROADCAST = 1 << 1; 604 /// 是否允许多播 605 const MULTICAST = 1 << 2; 606 /// 是否允许重用地址 607 const REUSEADDR = 1 << 3; 608 /// 是否允许重用端口 609 const REUSEPORT = 1 << 4; 610 } 611 } 612 613 #[derive(Debug, Clone)] 614 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用 615 pub struct SocketMetadata { 616 /// socket的类型 617 pub socket_type: SocketType, 618 /// 接收缓冲区的大小 619 pub rx_buf_size: usize, 620 /// 发送缓冲区的大小 621 pub tx_buf_size: usize, 622 /// 元数据的缓冲区的大小 623 pub metadata_buf_size: usize, 624 /// socket的选项 625 pub options: SocketOptions, 626 } 627 628 impl SocketMetadata { 629 fn new( 630 socket_type: SocketType, 631 rx_buf_size: usize, 632 tx_buf_size: usize, 633 metadata_buf_size: usize, 634 options: SocketOptions, 635 ) -> Self { 636 Self { 637 socket_type, 638 rx_buf_size, 639 tx_buf_size, 640 metadata_buf_size, 641 options, 642 } 643 } 644 } 645 646 /// @brief 地址族的枚举 647 /// 648 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180 649 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 650 pub enum AddressFamily { 651 /// AF_UNSPEC 表示地址族未指定 652 Unspecified = 0, 653 /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同) 654 Unix = 1, 655 /// AF_INET 表示IPv4的socket 656 INet = 2, 657 /// AF_AX25 表示AMPR AX.25的socket 658 AX25 = 3, 659 /// AF_IPX 表示IPX的socket 660 IPX = 4, 661 /// AF_APPLETALK 表示Appletalk的socket 662 Appletalk = 5, 663 /// AF_NETROM 表示AMPR NET/ROM的socket 664 Netrom = 6, 665 /// AF_BRIDGE 表示多协议桥接的socket 666 Bridge = 7, 667 /// AF_ATMPVC 表示ATM PVCs的socket 668 Atmpvc = 8, 669 /// AF_X25 表示X.25的socket 670 X25 = 9, 671 /// AF_INET6 表示IPv6的socket 672 INet6 = 10, 673 /// AF_ROSE 表示AMPR ROSE的socket 674 Rose = 11, 675 /// AF_DECnet Reserved for DECnet project 676 Decnet = 12, 677 /// AF_NETBEUI Reserved for 802.2LLC project 678 Netbeui = 13, 679 /// AF_SECURITY 表示Security callback的伪AF 680 Security = 14, 681 /// AF_KEY 表示Key management API 682 Key = 15, 683 /// AF_NETLINK 表示Netlink的socket 684 Netlink = 16, 685 /// AF_PACKET 表示Low level packet interface 686 Packet = 17, 687 /// AF_ASH 表示Ash 688 Ash = 18, 689 /// AF_ECONET 表示Acorn Econet 690 Econet = 19, 691 /// AF_ATMSVC 表示ATM SVCs 692 Atmsvc = 20, 693 /// AF_RDS 表示Reliable Datagram Sockets 694 Rds = 21, 695 /// AF_SNA 表示Linux SNA Project 696 Sna = 22, 697 /// AF_IRDA 表示IRDA sockets 698 Irda = 23, 699 /// AF_PPPOX 表示PPPoX sockets 700 Pppox = 24, 701 /// AF_WANPIPE 表示WANPIPE API sockets 702 WanPipe = 25, 703 /// AF_LLC 表示Linux LLC 704 Llc = 26, 705 /// AF_IB 表示Native InfiniBand address 706 /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks 707 Ib = 27, 708 /// AF_MPLS 表示MPLS 709 Mpls = 28, 710 /// AF_CAN 表示Controller Area Network 711 Can = 29, 712 /// AF_TIPC 表示TIPC sockets 713 Tipc = 30, 714 /// AF_BLUETOOTH 表示Bluetooth sockets 715 Bluetooth = 31, 716 /// AF_IUCV 表示IUCV sockets 717 Iucv = 32, 718 /// AF_RXRPC 表示RxRPC sockets 719 Rxrpc = 33, 720 /// AF_ISDN 表示mISDN sockets 721 Isdn = 34, 722 /// AF_PHONET 表示Phonet sockets 723 Phonet = 35, 724 /// AF_IEEE802154 表示IEEE 802.15.4 sockets 725 Ieee802154 = 36, 726 /// AF_CAIF 表示CAIF sockets 727 Caif = 37, 728 /// AF_ALG 表示Algorithm sockets 729 Alg = 38, 730 /// AF_NFC 表示NFC sockets 731 Nfc = 39, 732 /// AF_VSOCK 表示vSockets 733 Vsock = 40, 734 /// AF_KCM 表示Kernel Connection Multiplexor 735 Kcm = 41, 736 /// AF_QIPCRTR 表示Qualcomm IPC Router 737 Qipcrtr = 42, 738 /// AF_SMC 表示SMC-R sockets. 739 /// reserve number for PF_SMC protocol family that reuses AF_INET address family 740 Smc = 43, 741 /// AF_XDP 表示XDP sockets 742 Xdp = 44, 743 /// AF_MCTP 表示Management Component Transport Protocol 744 Mctp = 45, 745 /// AF_MAX 表示最大的地址族 746 Max = 46, 747 } 748 749 impl TryFrom<u16> for AddressFamily { 750 type Error = SystemError; 751 fn try_from(x: u16) -> Result<Self, Self::Error> { 752 use num_traits::FromPrimitive; 753 return <Self as FromPrimitive>::from_u16(x).ok_or_else(|| SystemError::EINVAL); 754 } 755 } 756 757 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致) 758 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 759 pub enum PosixSocketType { 760 Stream = 1, 761 Datagram = 2, 762 Raw = 3, 763 Rdm = 4, 764 SeqPacket = 5, 765 Dccp = 6, 766 Packet = 10, 767 } 768 769 impl TryFrom<u8> for PosixSocketType { 770 type Error = SystemError; 771 fn try_from(x: u8) -> Result<Self, Self::Error> { 772 use num_traits::FromPrimitive; 773 return <Self as FromPrimitive>::from_u8(x).ok_or_else(|| SystemError::EINVAL); 774 } 775 } 776 777 /// ### 为socket提供无锁的poll方法 778 /// 779 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll 780 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无的poll 781 pub struct SocketPollMethod; 782 783 impl SocketPollMethod { 784 pub fn poll(socket: &socket::Socket, shutdown: ShutdownType) -> EPollEventType { 785 match socket { 786 socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown), 787 socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown), 788 _ => todo!(), 789 } 790 } 791 792 pub fn tcp_poll(socket: &tcp::Socket, shutdown: ShutdownType) -> EPollEventType { 793 let mut events = EPollEventType::empty(); 794 if socket.is_listening() && socket.is_active() { 795 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 796 return events; 797 } 798 799 // socket已经关闭 800 if !socket.is_open() { 801 events.insert(EPollEventType::EPOLLHUP) 802 } 803 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 804 events.insert( 805 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP, 806 ); 807 } 808 809 let state = socket.state(); 810 if state != tcp::State::SynSent && state != tcp::State::SynReceived { 811 // socket有可读数据 812 if socket.can_recv() { 813 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 814 } 815 816 if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) { 817 // 缓冲区可写 818 if socket.send_queue() < socket.send_capacity() { 819 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 820 } else { 821 // TODO:触发缓冲区已满的信号 822 todo!("A signal that the buffer is full needs to be sent"); 823 } 824 } else { 825 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT 826 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 827 } 828 } else if state == tcp::State::SynSent { 829 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 830 } 831 832 // socket发生错误 833 if !socket.is_active() { 834 events.insert(EPollEventType::EPOLLERR); 835 } 836 837 events 838 } 839 840 pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType { 841 let mut event = EPollEventType::empty(); 842 843 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 844 event.insert( 845 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 846 ); 847 } 848 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 849 event.insert(EPollEventType::EPOLLHUP); 850 } 851 852 if socket.can_recv() { 853 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 854 } 855 856 if socket.can_send() { 857 event.insert( 858 EPollEventType::EPOLLOUT 859 | EPollEventType::EPOLLWRNORM 860 | EPollEventType::EPOLLWRBAND, 861 ); 862 } else { 863 // TODO: 缓冲区空间不够,需要使用信号处理 864 todo!() 865 } 866 867 return event; 868 } 869 } 870