1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize}; 2 3 use alloc::{ 4 boxed::Box, 5 collections::LinkedList, 6 string::String, 7 sync::{Arc, Weak}, 8 vec::Vec, 9 }; 10 use hashbrown::HashMap; 11 use smoltcp::{ 12 iface::SocketSet, 13 socket::{self, raw, tcp, udp}, 14 }; 15 use system_error::SystemError; 16 17 use crate::{ 18 arch::rand::rand, 19 filesystem::vfs::{ 20 file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode, 21 Metadata, 22 }, 23 libs::{ 24 rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}, 25 spinlock::{SpinLock, SpinLockGuard}, 26 wait_queue::EventWaitQueue, 27 }, 28 sched::{schedule, SchedMode}, 29 }; 30 31 use self::{ 32 handle::GlobalSocketHandle, 33 inet::{RawSocket, TcpSocket, UdpSocket}, 34 unix::{SeqpacketSocket, StreamSocket}, 35 }; 36 37 use super::{ 38 event_poll::{EPollEventType, EPollItem, EventPoll}, 39 Endpoint, Protocol, ShutdownType, 40 }; 41 42 pub mod handle; 43 pub mod inet; 44 pub mod unix; 45 46 lazy_static! { 47 /// 所有socket的集合 48 /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket 49 pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![])); 50 /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem, 51 /// 注意!:在网卡中断中需要拿到这张表的,在获取读锁时应该确保关中断避免死锁 52 pub static ref HANDLE_MAP: RwLock<HashMap<GlobalSocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new()); 53 /// 端口管理器 54 pub static ref PORT_MANAGER: PortManager = PortManager::new(); 55 } 56 57 /* For setsockopt(2) */ 58 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9 59 pub const SOL_SOCKET: u8 = 1; 60 61 /// 根据地址族、socket类型和协议创建socket 62 pub(super) fn new_socket( 63 address_family: AddressFamily, 64 socket_type: PosixSocketType, 65 protocol: Protocol, 66 ) -> Result<Box<dyn Socket>, SystemError> { 67 let socket: Box<dyn Socket> = match address_family { 68 AddressFamily::Unix => match socket_type { 69 PosixSocketType::Stream => Box::new(StreamSocket::new(SocketOptions::default())), 70 PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())), 71 _ => { 72 return Err(SystemError::EINVAL); 73 } 74 }, 75 AddressFamily::INet => match socket_type { 76 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())), 77 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())), 78 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())), 79 _ => { 80 return Err(SystemError::EINVAL); 81 } 82 }, 83 _ => { 84 return Err(SystemError::EAFNOSUPPORT); 85 } 86 }; 87 88 let handle_item = SocketHandleItem::new(); 89 HANDLE_MAP 90 .write_irqsave() 91 .insert(socket.socket_handle(), handle_item); 92 Ok(socket) 93 } 94 95 pub trait Socket: Sync + Send + Debug + Any { 96 /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回 97 /// 98 /// @param buf 读取到的数据存放的缓冲区 99 /// 100 /// @return - 成功:(返回读取的数据的长度,读取数据的端点). 101 /// - 失败:错误码 102 fn read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint); 103 104 /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回 105 /// 106 /// @param buf 要写入的数据 107 /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃 108 /// 109 /// @return 返回写入的数据的长度 110 fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>; 111 112 /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点 113 /// 114 /// It is used to establish a connection to a remote server. 115 /// When a socket is connected to a remote server, 116 /// the operating system will establish a network connection with the server 117 /// and allow data to be sent and received between the local socket and the remote server. 118 /// 119 /// @param endpoint 要连接的端点 120 /// 121 /// @return 返回连接是否成功 122 fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>; 123 124 /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点 125 /// 126 /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine. 127 /// 128 /// @param endpoint 要绑定的端点 129 /// 130 /// @return 返回绑定是否成功 131 fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> { 132 Err(SystemError::ENOSYS) 133 } 134 135 /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。 136 /// 137 /// shutdown() 函数用于启动网络连接的正常关闭。 138 /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。 139 /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。 140 /// 141 /// @return 返回是否成功关闭 142 fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> { 143 Err(SystemError::ENOSYS) 144 } 145 146 /// @brief 对应于POSIX的listen函数,用于监听端点 147 /// 148 /// @param backlog 最大的等待连接数 149 /// 150 /// @return 返回监听是否成功 151 fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> { 152 Err(SystemError::ENOSYS) 153 } 154 155 /// @brief 对应于POSIX的accept函数,用于接受连接 156 /// 157 /// @param endpoint 对端的端点 158 /// 159 /// @return 返回接受连接是否成功 160 fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> { 161 Err(SystemError::ENOSYS) 162 } 163 164 /// @brief 获取socket的端点 165 /// 166 /// @return 返回socket的端点 167 fn endpoint(&self) -> Option<Endpoint> { 168 None 169 } 170 171 /// @brief 获取socket的对端端点 172 /// 173 /// @return 返回socket的对端端点 174 fn peer_endpoint(&self) -> Option<Endpoint> { 175 None 176 } 177 178 /// @brief 179 /// The purpose of the poll function is to provide 180 /// a non-blocking way to check if a socket is ready for reading or writing, 181 /// so that you can efficiently handle multiple sockets in a single thread or event loop. 182 /// 183 /// @return (in, out, err) 184 /// 185 /// The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking. 186 /// The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking. 187 /// The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset 188 /// 189 fn poll(&self) -> EPollEventType { 190 EPollEventType::empty() 191 } 192 193 /// @brief socket的ioctl函数 194 /// 195 /// @param cmd ioctl命令 196 /// @param arg0 ioctl命令的第一个参数 197 /// @param arg1 ioctl命令的第二个参数 198 /// @param arg2 ioctl命令的第三个参数 199 /// 200 /// @return 返回ioctl命令的返回值 201 fn ioctl( 202 &self, 203 _cmd: usize, 204 _arg0: usize, 205 _arg1: usize, 206 _arg2: usize, 207 ) -> Result<usize, SystemError> { 208 Ok(0) 209 } 210 211 /// @brief 获取socket的元数据 212 fn metadata(&self) -> SocketMetadata; 213 214 fn box_clone(&self) -> Box<dyn Socket>; 215 216 /// @brief 设置socket的选项 217 /// 218 /// @param level 选项的层次 219 /// @param optname 选项的名称 220 /// @param optval 选项的值 221 /// 222 /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS 223 fn setsockopt( 224 &self, 225 _level: usize, 226 _optname: usize, 227 _optval: &[u8], 228 ) -> Result<(), SystemError> { 229 kwarn!("setsockopt is not implemented"); 230 Ok(()) 231 } 232 233 fn socket_handle(&self) -> GlobalSocketHandle; 234 235 fn write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError> { 236 todo!() 237 } 238 239 fn as_any_ref(&self) -> &dyn Any; 240 241 fn as_any_mut(&mut self) -> &mut dyn Any; 242 243 fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> { 244 HANDLE_MAP 245 .write_irqsave() 246 .get_mut(&self.socket_handle()) 247 .unwrap() 248 .add_epoll(epitem); 249 Ok(()) 250 } 251 252 fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 253 HANDLE_MAP 254 .write_irqsave() 255 .get_mut(&self.socket_handle()) 256 .unwrap() 257 .remove_epoll(epoll)?; 258 259 Ok(()) 260 } 261 262 fn clear_epoll(&mut self) -> Result<(), SystemError> { 263 let mut handle_map_guard = HANDLE_MAP.write_irqsave(); 264 let handle_item = handle_map_guard.get_mut(&self.socket_handle()).unwrap(); 265 266 for epitem in handle_item.epitems.lock_irqsave().iter() { 267 let epoll = epitem.epoll(); 268 if epoll.upgrade().is_some() { 269 EventPoll::ep_remove( 270 &mut epoll.upgrade().unwrap().lock_irqsave(), 271 epitem.fd(), 272 None, 273 )?; 274 } 275 } 276 277 Ok(()) 278 } 279 280 fn close(&mut self); 281 } 282 283 impl Clone for Box<dyn Socket> { 284 fn clone(&self) -> Box<dyn Socket> { 285 self.box_clone() 286 } 287 } 288 289 /// # Socket在文件系统中的inode封装 290 #[derive(Debug)] 291 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize); 292 293 impl SocketInode { 294 pub fn new(socket: Box<dyn Socket>) -> Arc<Self> { 295 Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0))) 296 } 297 298 #[inline] 299 pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> { 300 self.0.lock() 301 } 302 303 pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> { 304 self.0.lock_no_preempt() 305 } 306 } 307 308 impl IndexNode for SocketInode { 309 fn open( 310 &self, 311 _data: SpinLockGuard<FilePrivateData>, 312 _mode: &FileMode, 313 ) -> Result<(), SystemError> { 314 self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst); 315 Ok(()) 316 } 317 318 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> { 319 let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst); 320 if prev_ref_count == 1 { 321 // 最后一次关闭,需要释放 322 let mut socket = self.0.lock_irqsave(); 323 324 if socket.metadata().socket_type == SocketType::Unix { 325 return Ok(()); 326 } 327 328 if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() { 329 PORT_MANAGER.unbind_port(socket.metadata().socket_type, ip.port)?; 330 } 331 332 socket.clear_epoll()?; 333 334 HANDLE_MAP 335 .write_irqsave() 336 .remove(&socket.socket_handle()) 337 .unwrap(); 338 socket.close(); 339 } 340 341 Ok(()) 342 } 343 344 fn read_at( 345 &self, 346 _offset: usize, 347 len: usize, 348 buf: &mut [u8], 349 data: SpinLockGuard<FilePrivateData>, 350 ) -> Result<usize, SystemError> { 351 drop(data); 352 self.0.lock_no_preempt().read(&mut buf[0..len]).0 353 } 354 355 fn write_at( 356 &self, 357 _offset: usize, 358 len: usize, 359 buf: &[u8], 360 data: SpinLockGuard<FilePrivateData>, 361 ) -> Result<usize, SystemError> { 362 drop(data); 363 self.0.lock_no_preempt().write(&buf[0..len], None) 364 } 365 366 fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> { 367 let events = self.0.lock_irqsave().poll(); 368 return Ok(events.bits() as usize); 369 } 370 371 fn fs(&self) -> Arc<dyn FileSystem> { 372 todo!() 373 } 374 375 fn as_any_ref(&self) -> &dyn Any { 376 self 377 } 378 379 fn list(&self) -> Result<Vec<String>, SystemError> { 380 return Err(SystemError::ENOTDIR); 381 } 382 383 fn metadata(&self) -> Result<Metadata, SystemError> { 384 let meta = Metadata { 385 mode: ModeType::from_bits_truncate(0o755), 386 file_type: FileType::Socket, 387 ..Default::default() 388 }; 389 390 return Ok(meta); 391 } 392 393 fn resize(&self, _len: usize) -> Result<(), SystemError> { 394 return Ok(()); 395 } 396 } 397 398 #[derive(Debug)] 399 pub struct SocketHandleItem { 400 /// shutdown状态 401 pub shutdown_type: RwLock<ShutdownType>, 402 /// socket的waitqueue 403 pub wait_queue: EventWaitQueue, 404 /// epitems,考虑写在这是否是最优解? 405 pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>, 406 } 407 408 impl SocketHandleItem { 409 pub fn new() -> Self { 410 Self { 411 shutdown_type: RwLock::new(ShutdownType::empty()), 412 wait_queue: EventWaitQueue::new(), 413 epitems: SpinLock::new(LinkedList::new()), 414 } 415 } 416 417 /// ## 在socket的等待队列上睡眠 418 pub fn sleep( 419 socket_handle: GlobalSocketHandle, 420 events: u64, 421 handle_map_guard: RwLockReadGuard<'_, HashMap<GlobalSocketHandle, SocketHandleItem>>, 422 ) { 423 unsafe { 424 handle_map_guard 425 .get(&socket_handle) 426 .unwrap() 427 .wait_queue 428 .sleep_without_schedule(events) 429 }; 430 drop(handle_map_guard); 431 schedule(SchedMode::SM_NONE); 432 } 433 434 pub fn shutdown_type(&self) -> ShutdownType { 435 *self.shutdown_type.read() 436 } 437 438 pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> { 439 self.shutdown_type.write_irqsave() 440 } 441 442 pub fn add_epoll(&mut self, epitem: Arc<EPollItem>) { 443 self.epitems.lock_irqsave().push_back(epitem) 444 } 445 446 pub fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> { 447 let is_remove = !self 448 .epitems 449 .lock_irqsave() 450 .extract_if(|x| x.epoll().ptr_eq(epoll)) 451 .collect::<Vec<_>>() 452 .is_empty(); 453 454 if is_remove { 455 return Ok(()); 456 } 457 458 Err(SystemError::ENOENT) 459 } 460 } 461 462 /// # TCP 和 UDP 的端口管理器。 463 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。 464 pub struct PortManager { 465 // TCP 端口记录表 466 tcp_port_table: SpinLock<HashMap<u16, Arc<dyn Socket>>>, 467 // UDP 端口记录表 468 udp_port_table: SpinLock<HashMap<u16, Arc<dyn Socket>>>, 469 } 470 471 impl PortManager { 472 pub fn new() -> Self { 473 return Self { 474 tcp_port_table: SpinLock::new(HashMap::new()), 475 udp_port_table: SpinLock::new(HashMap::new()), 476 }; 477 } 478 479 /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE 480 pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> { 481 // TODO: selects non-conflict high port 482 483 static mut EPHEMERAL_PORT: u16 = 0; 484 unsafe { 485 if EPHEMERAL_PORT == 0 { 486 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16; 487 } 488 } 489 490 let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数 491 let mut port: u16; 492 while remaining > 0 { 493 unsafe { 494 if EPHEMERAL_PORT == 65535 { 495 EPHEMERAL_PORT = 49152; 496 } else { 497 EPHEMERAL_PORT += 1; 498 } 499 port = EPHEMERAL_PORT; 500 } 501 502 // 使用 ListenTable 检查端口是否被占用 503 let listen_table_guard = match socket_type { 504 SocketType::Udp => self.udp_port_table.lock(), 505 SocketType::Tcp => self.tcp_port_table.lock(), 506 _ => panic!("{:?} cann't get a port", socket_type), 507 }; 508 if listen_table_guard.get(&port).is_none() { 509 drop(listen_table_guard); 510 return Ok(port); 511 } 512 remaining -= 1; 513 } 514 return Err(SystemError::EADDRINUSE); 515 } 516 517 /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录 518 /// 519 /// TODO: 增加支持端口复用的逻辑 520 pub fn bind_port( 521 &self, 522 socket_type: SocketType, 523 port: u16, 524 socket: impl Socket, 525 ) -> Result<(), SystemError> { 526 if port > 0 { 527 let mut listen_table_guard = match socket_type { 528 SocketType::Udp => self.udp_port_table.lock(), 529 SocketType::Tcp => self.tcp_port_table.lock(), 530 _ => panic!("{:?} cann't bind a port", socket_type), 531 }; 532 match listen_table_guard.get(&port) { 533 Some(_) => return Err(SystemError::EADDRINUSE), 534 None => listen_table_guard.insert(port, Arc::new(socket)), 535 }; 536 drop(listen_table_guard); 537 } 538 return Ok(()); 539 } 540 541 /// @brief 在对应的端口记录表中将端口和 socket 解绑 542 pub fn unbind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> { 543 let mut listen_table_guard = match socket_type { 544 SocketType::Udp => self.udp_port_table.lock(), 545 SocketType::Tcp => self.tcp_port_table.lock(), 546 _ => return Ok(()), 547 }; 548 listen_table_guard.remove(&port); 549 drop(listen_table_guard); 550 return Ok(()); 551 } 552 } 553 554 /// @brief socket的类型 555 #[derive(Debug, Clone, Copy, PartialEq)] 556 pub enum SocketType { 557 /// 原始的socket 558 Raw, 559 /// 用于Tcp通信的 Socket 560 Tcp, 561 /// 用于Udp通信的 Socket 562 Udp, 563 /// unix域的 Socket 564 Unix, 565 } 566 567 bitflags! { 568 /// @brief socket的选项 569 #[derive(Default)] 570 pub struct SocketOptions: u32 { 571 /// 是否阻塞 572 const BLOCK = 1 << 0; 573 /// 是否允许广播 574 const BROADCAST = 1 << 1; 575 /// 是否允许多播 576 const MULTICAST = 1 << 2; 577 /// 是否允许重用地址 578 const REUSEADDR = 1 << 3; 579 /// 是否允许重用端口 580 const REUSEPORT = 1 << 4; 581 } 582 } 583 584 #[derive(Debug, Clone)] 585 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用 586 pub struct SocketMetadata { 587 /// socket的类型 588 pub socket_type: SocketType, 589 /// 接收缓冲区的大小 590 pub rx_buf_size: usize, 591 /// 发送缓冲区的大小 592 pub tx_buf_size: usize, 593 /// 元数据的缓冲区的大小 594 pub metadata_buf_size: usize, 595 /// socket的选项 596 pub options: SocketOptions, 597 } 598 599 impl SocketMetadata { 600 fn new( 601 socket_type: SocketType, 602 rx_buf_size: usize, 603 tx_buf_size: usize, 604 metadata_buf_size: usize, 605 options: SocketOptions, 606 ) -> Self { 607 Self { 608 socket_type, 609 rx_buf_size, 610 tx_buf_size, 611 metadata_buf_size, 612 options, 613 } 614 } 615 } 616 617 /// @brief 地址族的枚举 618 /// 619 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180 620 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 621 pub enum AddressFamily { 622 /// AF_UNSPEC 表示地址族未指定 623 Unspecified = 0, 624 /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同) 625 Unix = 1, 626 /// AF_INET 表示IPv4的socket 627 INet = 2, 628 /// AF_AX25 表示AMPR AX.25的socket 629 AX25 = 3, 630 /// AF_IPX 表示IPX的socket 631 IPX = 4, 632 /// AF_APPLETALK 表示Appletalk的socket 633 Appletalk = 5, 634 /// AF_NETROM 表示AMPR NET/ROM的socket 635 Netrom = 6, 636 /// AF_BRIDGE 表示多协议桥接的socket 637 Bridge = 7, 638 /// AF_ATMPVC 表示ATM PVCs的socket 639 Atmpvc = 8, 640 /// AF_X25 表示X.25的socket 641 X25 = 9, 642 /// AF_INET6 表示IPv6的socket 643 INet6 = 10, 644 /// AF_ROSE 表示AMPR ROSE的socket 645 Rose = 11, 646 /// AF_DECnet Reserved for DECnet project 647 Decnet = 12, 648 /// AF_NETBEUI Reserved for 802.2LLC project 649 Netbeui = 13, 650 /// AF_SECURITY 表示Security callback的伪AF 651 Security = 14, 652 /// AF_KEY 表示Key management API 653 Key = 15, 654 /// AF_NETLINK 表示Netlink的socket 655 Netlink = 16, 656 /// AF_PACKET 表示Low level packet interface 657 Packet = 17, 658 /// AF_ASH 表示Ash 659 Ash = 18, 660 /// AF_ECONET 表示Acorn Econet 661 Econet = 19, 662 /// AF_ATMSVC 表示ATM SVCs 663 Atmsvc = 20, 664 /// AF_RDS 表示Reliable Datagram Sockets 665 Rds = 21, 666 /// AF_SNA 表示Linux SNA Project 667 Sna = 22, 668 /// AF_IRDA 表示IRDA sockets 669 Irda = 23, 670 /// AF_PPPOX 表示PPPoX sockets 671 Pppox = 24, 672 /// AF_WANPIPE 表示WANPIPE API sockets 673 WanPipe = 25, 674 /// AF_LLC 表示Linux LLC 675 Llc = 26, 676 /// AF_IB 表示Native InfiniBand address 677 /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks 678 Ib = 27, 679 /// AF_MPLS 表示MPLS 680 Mpls = 28, 681 /// AF_CAN 表示Controller Area Network 682 Can = 29, 683 /// AF_TIPC 表示TIPC sockets 684 Tipc = 30, 685 /// AF_BLUETOOTH 表示Bluetooth sockets 686 Bluetooth = 31, 687 /// AF_IUCV 表示IUCV sockets 688 Iucv = 32, 689 /// AF_RXRPC 表示RxRPC sockets 690 Rxrpc = 33, 691 /// AF_ISDN 表示mISDN sockets 692 Isdn = 34, 693 /// AF_PHONET 表示Phonet sockets 694 Phonet = 35, 695 /// AF_IEEE802154 表示IEEE 802.15.4 sockets 696 Ieee802154 = 36, 697 /// AF_CAIF 表示CAIF sockets 698 Caif = 37, 699 /// AF_ALG 表示Algorithm sockets 700 Alg = 38, 701 /// AF_NFC 表示NFC sockets 702 Nfc = 39, 703 /// AF_VSOCK 表示vSockets 704 Vsock = 40, 705 /// AF_KCM 表示Kernel Connection Multiplexor 706 Kcm = 41, 707 /// AF_QIPCRTR 表示Qualcomm IPC Router 708 Qipcrtr = 42, 709 /// AF_SMC 表示SMC-R sockets. 710 /// reserve number for PF_SMC protocol family that reuses AF_INET address family 711 Smc = 43, 712 /// AF_XDP 表示XDP sockets 713 Xdp = 44, 714 /// AF_MCTP 表示Management Component Transport Protocol 715 Mctp = 45, 716 /// AF_MAX 表示最大的地址族 717 Max = 46, 718 } 719 720 impl TryFrom<u16> for AddressFamily { 721 type Error = SystemError; 722 fn try_from(x: u16) -> Result<Self, Self::Error> { 723 use num_traits::FromPrimitive; 724 return <Self as FromPrimitive>::from_u16(x).ok_or(SystemError::EINVAL); 725 } 726 } 727 728 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致) 729 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)] 730 pub enum PosixSocketType { 731 Stream = 1, 732 Datagram = 2, 733 Raw = 3, 734 Rdm = 4, 735 SeqPacket = 5, 736 Dccp = 6, 737 Packet = 10, 738 } 739 740 impl TryFrom<u8> for PosixSocketType { 741 type Error = SystemError; 742 fn try_from(x: u8) -> Result<Self, Self::Error> { 743 use num_traits::FromPrimitive; 744 return <Self as FromPrimitive>::from_u8(x).ok_or(SystemError::EINVAL); 745 } 746 } 747 748 /// ### 为socket提供无锁的poll方法 749 /// 750 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll 751 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无的poll 752 pub struct SocketPollMethod; 753 754 impl SocketPollMethod { 755 pub fn poll(socket: &socket::Socket, shutdown: ShutdownType) -> EPollEventType { 756 match socket { 757 socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown), 758 socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown), 759 socket::Socket::Raw(raw) => Self::raw_poll(raw, shutdown), 760 _ => todo!(), 761 } 762 } 763 764 pub fn tcp_poll(socket: &tcp::Socket, shutdown: ShutdownType) -> EPollEventType { 765 let mut events = EPollEventType::empty(); 766 if socket.is_listening() && socket.is_active() { 767 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 768 return events; 769 } 770 771 // socket已经关闭 772 if !socket.is_open() { 773 events.insert(EPollEventType::EPOLLHUP) 774 } 775 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 776 events.insert( 777 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP, 778 ); 779 } 780 781 let state = socket.state(); 782 if state != tcp::State::SynSent && state != tcp::State::SynReceived { 783 // socket有可读数据 784 if socket.can_recv() { 785 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 786 } 787 788 if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) { 789 // 缓冲区可写 790 if socket.send_queue() < socket.send_capacity() { 791 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 792 } else { 793 // TODO:触发缓冲区已满的信号 794 todo!("A signal that the buffer is full needs to be sent"); 795 } 796 } else { 797 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT 798 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 799 } 800 } else if state == tcp::State::SynSent { 801 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM); 802 } 803 804 // socket发生错误 805 if !socket.is_active() { 806 events.insert(EPollEventType::EPOLLERR); 807 } 808 809 events 810 } 811 812 pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType { 813 let mut event = EPollEventType::empty(); 814 815 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 816 event.insert( 817 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 818 ); 819 } 820 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 821 event.insert(EPollEventType::EPOLLHUP); 822 } 823 824 if socket.can_recv() { 825 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 826 } 827 828 if socket.can_send() { 829 event.insert( 830 EPollEventType::EPOLLOUT 831 | EPollEventType::EPOLLWRNORM 832 | EPollEventType::EPOLLWRBAND, 833 ); 834 } else { 835 // TODO: 缓冲区空间不够,需要使用信号处理 836 todo!() 837 } 838 839 return event; 840 } 841 842 pub fn raw_poll(socket: &raw::Socket, shutdown: ShutdownType) -> EPollEventType { 843 //kdebug!("enter raw_poll!"); 844 let mut event = EPollEventType::empty(); 845 846 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) { 847 event.insert( 848 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM, 849 ); 850 } 851 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) { 852 event.insert(EPollEventType::EPOLLHUP); 853 } 854 855 if socket.can_recv() { 856 //kdebug!("poll can recv!"); 857 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM); 858 } else { 859 //kdebug!("poll can not recv!"); 860 } 861 862 if socket.can_send() { 863 //kdebug!("poll can send!"); 864 event.insert( 865 EPollEventType::EPOLLOUT 866 | EPollEventType::EPOLLWRNORM 867 | EPollEventType::EPOLLWRBAND, 868 ); 869 } else { 870 //kdebug!("poll can not send!"); 871 // TODO: 缓冲区空间不够,需要使用信号处理 872 todo!() 873 } 874 return event; 875 } 876 } 877