1 use core::{any::Any, fmt::Debug, sync::atomic::AtomicUsize};
2
3 use alloc::{
4 boxed::Box,
5 collections::LinkedList,
6 string::String,
7 sync::{Arc, Weak},
8 vec::Vec,
9 };
10 use hashbrown::HashMap;
11 use log::warn;
12 use smoltcp::{
13 iface::SocketSet,
14 socket::{self, raw, tcp, udp},
15 };
16 use system_error::SystemError;
17
18 use crate::{
19 arch::rand::rand,
20 filesystem::vfs::{
21 file::FileMode, syscall::ModeType, FilePrivateData, FileSystem, FileType, IndexNode,
22 Metadata,
23 },
24 libs::{
25 rwlock::{RwLock, RwLockWriteGuard},
26 spinlock::{SpinLock, SpinLockGuard},
27 wait_queue::EventWaitQueue,
28 },
29 process::{Pid, ProcessManager},
30 sched::{schedule, SchedMode},
31 };
32
33 use self::{
34 handle::GlobalSocketHandle,
35 inet::{RawSocket, TcpSocket, UdpSocket},
36 unix::{SeqpacketSocket, StreamSocket},
37 };
38
39 use super::{
40 event_poll::{EPollEventType, EPollItem, EventPoll},
41 Endpoint, Protocol, ShutdownType,
42 };
43
44 pub mod handle;
45 pub mod inet;
46 pub mod unix;
47
48 lazy_static! {
49 /// 所有socket的集合
50 /// TODO: 优化这里,自己实现SocketSet!!!现在这样的话,不管全局有多少个网卡,每个时间点都只会有1个进程能够访问socket
51 pub static ref SOCKET_SET: SpinLock<SocketSet<'static >> = SpinLock::new(SocketSet::new(vec![]));
52 /// SocketHandle表,每个SocketHandle对应一个SocketHandleItem,
53 /// 注意!:在网卡中断中需要拿到这张表的,在获取读锁时应该确保关中断避免死锁
54 pub static ref HANDLE_MAP: RwLock<HashMap<GlobalSocketHandle, SocketHandleItem>> = RwLock::new(HashMap::new());
55 /// 端口管理器
56 pub static ref PORT_MANAGER: PortManager = PortManager::new();
57 }
58
59 /* For setsockopt(2) */
60 // See: linux-5.19.10/include/uapi/asm-generic/socket.h#9
61 pub const SOL_SOCKET: u8 = 1;
62
63 /// 根据地址族、socket类型和协议创建socket
new_socket( address_family: AddressFamily, socket_type: PosixSocketType, protocol: Protocol, ) -> Result<Box<dyn Socket>, SystemError>64 pub(super) fn new_socket(
65 address_family: AddressFamily,
66 socket_type: PosixSocketType,
67 protocol: Protocol,
68 ) -> Result<Box<dyn Socket>, SystemError> {
69 let socket: Box<dyn Socket> = match address_family {
70 AddressFamily::Unix => match socket_type {
71 PosixSocketType::Stream => Box::new(StreamSocket::new(SocketOptions::default())),
72 PosixSocketType::SeqPacket => Box::new(SeqpacketSocket::new(SocketOptions::default())),
73 _ => {
74 return Err(SystemError::EINVAL);
75 }
76 },
77 AddressFamily::INet => match socket_type {
78 PosixSocketType::Stream => Box::new(TcpSocket::new(SocketOptions::default())),
79 PosixSocketType::Datagram => Box::new(UdpSocket::new(SocketOptions::default())),
80 PosixSocketType::Raw => Box::new(RawSocket::new(protocol, SocketOptions::default())),
81 _ => {
82 return Err(SystemError::EINVAL);
83 }
84 },
85 _ => {
86 return Err(SystemError::EAFNOSUPPORT);
87 }
88 };
89
90 let handle_item = SocketHandleItem::new(Arc::downgrade(&socket.posix_item()));
91 HANDLE_MAP
92 .write_irqsave()
93 .insert(socket.socket_handle(), handle_item);
94 Ok(socket)
95 }
96
97 pub trait Socket: Sync + Send + Debug + Any {
98 /// @brief 从socket中读取数据,如果socket是阻塞的,那么直到读取到数据才返回
99 ///
100 /// @param buf 读取到的数据存放的缓冲区
101 ///
102 /// @return - 成功:(返回读取的数据的长度,读取数据的端点).
103 /// - 失败:错误码
read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint)104 fn read(&self, buf: &mut [u8]) -> (Result<usize, SystemError>, Endpoint);
105
106 /// @brief 向socket中写入数据。如果socket是阻塞的,那么直到写入的数据全部写入socket中才返回
107 ///
108 /// @param buf 要写入的数据
109 /// @param to 要写入的目的端点,如果是None,那么写入的数据将会被丢弃
110 ///
111 /// @return 返回写入的数据的长度
write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>112 fn write(&self, buf: &[u8], to: Option<Endpoint>) -> Result<usize, SystemError>;
113
114 /// @brief 对应于POSIX的connect函数,用于连接到指定的远程服务器端点
115 ///
116 /// It is used to establish a connection to a remote server.
117 /// When a socket is connected to a remote server,
118 /// the operating system will establish a network connection with the server
119 /// and allow data to be sent and received between the local socket and the remote server.
120 ///
121 /// @param endpoint 要连接的端点
122 ///
123 /// @return 返回连接是否成功
connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>124 fn connect(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>;
125
126 /// @brief 对应于POSIX的bind函数,用于绑定到本机指定的端点
127 ///
128 /// The bind() function is used to associate a socket with a particular IP address and port number on the local machine.
129 ///
130 /// @param endpoint 要绑定的端点
131 ///
132 /// @return 返回绑定是否成功
bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError>133 fn bind(&mut self, _endpoint: Endpoint) -> Result<(), SystemError> {
134 Err(SystemError::ENOSYS)
135 }
136
137 /// @brief 对应于 POSIX 的 shutdown 函数,用于关闭socket。
138 ///
139 /// shutdown() 函数用于启动网络连接的正常关闭。
140 /// 当在两个端点之间建立网络连接时,任一端点都可以通过调用其端点对象上的 shutdown() 函数来启动关闭序列。
141 /// 此函数向远程端点发送关闭消息以指示本地端点不再接受新数据。
142 ///
143 /// @return 返回是否成功关闭
shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError>144 fn shutdown(&mut self, _type: ShutdownType) -> Result<(), SystemError> {
145 Err(SystemError::ENOSYS)
146 }
147
148 /// @brief 对应于POSIX的listen函数,用于监听端点
149 ///
150 /// @param backlog 最大的等待连接数
151 ///
152 /// @return 返回监听是否成功
listen(&mut self, _backlog: usize) -> Result<(), SystemError>153 fn listen(&mut self, _backlog: usize) -> Result<(), SystemError> {
154 Err(SystemError::ENOSYS)
155 }
156
157 /// @brief 对应于POSIX的accept函数,用于接受连接
158 ///
159 /// @param endpoint 对端的端点
160 ///
161 /// @return 返回接受连接是否成功
accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError>162 fn accept(&mut self) -> Result<(Box<dyn Socket>, Endpoint), SystemError> {
163 Err(SystemError::ENOSYS)
164 }
165
166 /// @brief 获取socket的端点
167 ///
168 /// @return 返回socket的端点
endpoint(&self) -> Option<Endpoint>169 fn endpoint(&self) -> Option<Endpoint> {
170 None
171 }
172
173 /// @brief 获取socket的对端端点
174 ///
175 /// @return 返回socket的对端端点
peer_endpoint(&self) -> Option<Endpoint>176 fn peer_endpoint(&self) -> Option<Endpoint> {
177 None
178 }
179
180 /// @brief
181 /// The purpose of the poll function is to provide
182 /// a non-blocking way to check if a socket is ready for reading or writing,
183 /// so that you can efficiently handle multiple sockets in a single thread or event loop.
184 ///
185 /// @return (in, out, err)
186 ///
187 /// The first boolean value indicates whether the socket is ready for reading. If it is true, then there is data available to be read from the socket without blocking.
188 /// The second boolean value indicates whether the socket is ready for writing. If it is true, then data can be written to the socket without blocking.
189 /// The third boolean value indicates whether the socket has encountered an error condition. If it is true, then the socket is in an error state and should be closed or reset
190 ///
poll(&self) -> EPollEventType191 fn poll(&self) -> EPollEventType {
192 EPollEventType::empty()
193 }
194
195 /// @brief socket的ioctl函数
196 ///
197 /// @param cmd ioctl命令
198 /// @param arg0 ioctl命令的第一个参数
199 /// @param arg1 ioctl命令的第二个参数
200 /// @param arg2 ioctl命令的第三个参数
201 ///
202 /// @return 返回ioctl命令的返回值
ioctl( &self, _cmd: usize, _arg0: usize, _arg1: usize, _arg2: usize, ) -> Result<usize, SystemError>203 fn ioctl(
204 &self,
205 _cmd: usize,
206 _arg0: usize,
207 _arg1: usize,
208 _arg2: usize,
209 ) -> Result<usize, SystemError> {
210 Ok(0)
211 }
212
213 /// @brief 获取socket的元数据
metadata(&self) -> SocketMetadata214 fn metadata(&self) -> SocketMetadata;
215
box_clone(&self) -> Box<dyn Socket>216 fn box_clone(&self) -> Box<dyn Socket>;
217
218 /// @brief 设置socket的选项
219 ///
220 /// @param level 选项的层次
221 /// @param optname 选项的名称
222 /// @param optval 选项的值
223 ///
224 /// @return 返回设置是否成功, 如果不支持该选项,返回ENOSYS
setsockopt( &self, _level: usize, _optname: usize, _optval: &[u8], ) -> Result<(), SystemError>225 fn setsockopt(
226 &self,
227 _level: usize,
228 _optname: usize,
229 _optval: &[u8],
230 ) -> Result<(), SystemError> {
231 warn!("setsockopt is not implemented");
232 Ok(())
233 }
234
socket_handle(&self) -> GlobalSocketHandle235 fn socket_handle(&self) -> GlobalSocketHandle;
236
write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError>237 fn write_buffer(&self, _buf: &[u8]) -> Result<usize, SystemError> {
238 todo!()
239 }
240
as_any_ref(&self) -> &dyn Any241 fn as_any_ref(&self) -> &dyn Any;
242
as_any_mut(&mut self) -> &mut dyn Any243 fn as_any_mut(&mut self) -> &mut dyn Any;
244
add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError>245 fn add_epoll(&mut self, epitem: Arc<EPollItem>) -> Result<(), SystemError> {
246 let posix_item = self.posix_item();
247 posix_item.add_epoll(epitem);
248 Ok(())
249 }
250
remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError>251 fn remove_epoll(&mut self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> {
252 let posix_item = self.posix_item();
253 posix_item.remove_epoll(epoll)?;
254
255 Ok(())
256 }
257
clear_epoll(&mut self) -> Result<(), SystemError>258 fn clear_epoll(&mut self) -> Result<(), SystemError> {
259 let posix_item = self.posix_item();
260
261 for epitem in posix_item.epitems.lock_irqsave().iter() {
262 let epoll = epitem.epoll();
263
264 if let Some(epoll) = epoll.upgrade() {
265 EventPoll::ep_remove(&mut epoll.lock_irqsave(), epitem.fd(), None)?;
266 }
267 }
268
269 Ok(())
270 }
271
close(&mut self)272 fn close(&mut self);
273
posix_item(&self) -> Arc<PosixSocketHandleItem>274 fn posix_item(&self) -> Arc<PosixSocketHandleItem>;
275 }
276
277 impl Clone for Box<dyn Socket> {
clone(&self) -> Box<dyn Socket>278 fn clone(&self) -> Box<dyn Socket> {
279 self.box_clone()
280 }
281 }
282
283 /// # Socket在文件系统中的inode封装
284 #[derive(Debug)]
285 pub struct SocketInode(SpinLock<Box<dyn Socket>>, AtomicUsize);
286
287 impl SocketInode {
new(socket: Box<dyn Socket>) -> Arc<Self>288 pub fn new(socket: Box<dyn Socket>) -> Arc<Self> {
289 Arc::new(Self(SpinLock::new(socket), AtomicUsize::new(0)))
290 }
291
292 #[inline]
inner(&self) -> SpinLockGuard<Box<dyn Socket>>293 pub fn inner(&self) -> SpinLockGuard<Box<dyn Socket>> {
294 self.0.lock()
295 }
296
inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>>297 pub unsafe fn inner_no_preempt(&self) -> SpinLockGuard<Box<dyn Socket>> {
298 self.0.lock_no_preempt()
299 }
300
do_close(&self) -> Result<(), SystemError>301 fn do_close(&self) -> Result<(), SystemError> {
302 let prev_ref_count = self.1.fetch_sub(1, core::sync::atomic::Ordering::SeqCst);
303 if prev_ref_count == 1 {
304 // 最后一次关闭,需要释放
305 let mut socket = self.0.lock_irqsave();
306
307 if socket.metadata().socket_type == SocketType::Unix {
308 return Ok(());
309 }
310
311 if let Some(Endpoint::Ip(Some(ip))) = socket.endpoint() {
312 PORT_MANAGER.unbind_port(socket.metadata().socket_type, ip.port);
313 }
314
315 socket.clear_epoll()?;
316
317 HANDLE_MAP
318 .write_irqsave()
319 .remove(&socket.socket_handle())
320 .unwrap();
321 socket.close();
322 }
323
324 Ok(())
325 }
326 }
327
328 impl Drop for SocketInode {
drop(&mut self)329 fn drop(&mut self) {
330 for _ in 0..self.1.load(core::sync::atomic::Ordering::SeqCst) {
331 let _ = self.do_close();
332 }
333 }
334 }
335
336 impl IndexNode for SocketInode {
open( &self, _data: SpinLockGuard<FilePrivateData>, _mode: &FileMode, ) -> Result<(), SystemError>337 fn open(
338 &self,
339 _data: SpinLockGuard<FilePrivateData>,
340 _mode: &FileMode,
341 ) -> Result<(), SystemError> {
342 self.1.fetch_add(1, core::sync::atomic::Ordering::SeqCst);
343 Ok(())
344 }
345
close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError>346 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> {
347 self.do_close()
348 }
349
read_at( &self, _offset: usize, len: usize, buf: &mut [u8], data: SpinLockGuard<FilePrivateData>, ) -> Result<usize, SystemError>350 fn read_at(
351 &self,
352 _offset: usize,
353 len: usize,
354 buf: &mut [u8],
355 data: SpinLockGuard<FilePrivateData>,
356 ) -> Result<usize, SystemError> {
357 drop(data);
358 self.0.lock_no_preempt().read(&mut buf[0..len]).0
359 }
360
write_at( &self, _offset: usize, len: usize, buf: &[u8], data: SpinLockGuard<FilePrivateData>, ) -> Result<usize, SystemError>361 fn write_at(
362 &self,
363 _offset: usize,
364 len: usize,
365 buf: &[u8],
366 data: SpinLockGuard<FilePrivateData>,
367 ) -> Result<usize, SystemError> {
368 drop(data);
369 self.0.lock_no_preempt().write(&buf[0..len], None)
370 }
371
poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError>372 fn poll(&self, _private_data: &FilePrivateData) -> Result<usize, SystemError> {
373 let events = self.0.lock_irqsave().poll();
374 return Ok(events.bits() as usize);
375 }
376
fs(&self) -> Arc<dyn FileSystem>377 fn fs(&self) -> Arc<dyn FileSystem> {
378 todo!()
379 }
380
as_any_ref(&self) -> &dyn Any381 fn as_any_ref(&self) -> &dyn Any {
382 self
383 }
384
list(&self) -> Result<Vec<String>, SystemError>385 fn list(&self) -> Result<Vec<String>, SystemError> {
386 return Err(SystemError::ENOTDIR);
387 }
388
metadata(&self) -> Result<Metadata, SystemError>389 fn metadata(&self) -> Result<Metadata, SystemError> {
390 let meta = Metadata {
391 mode: ModeType::from_bits_truncate(0o755),
392 file_type: FileType::Socket,
393 ..Default::default()
394 };
395
396 return Ok(meta);
397 }
398
resize(&self, _len: usize) -> Result<(), SystemError>399 fn resize(&self, _len: usize) -> Result<(), SystemError> {
400 return Ok(());
401 }
402 }
403
404 #[derive(Debug)]
405 pub struct PosixSocketHandleItem {
406 /// socket的waitqueue
407 wait_queue: Arc<EventWaitQueue>,
408
409 pub epitems: SpinLock<LinkedList<Arc<EPollItem>>>,
410 }
411
412 impl PosixSocketHandleItem {
new(wait_queue: Option<Arc<EventWaitQueue>>) -> Self413 pub fn new(wait_queue: Option<Arc<EventWaitQueue>>) -> Self {
414 Self {
415 wait_queue: wait_queue.unwrap_or(Arc::new(EventWaitQueue::new())),
416 epitems: SpinLock::new(LinkedList::new()),
417 }
418 }
419 /// ## 在socket的等待队列上睡眠
sleep(&self, events: u64)420 pub fn sleep(&self, events: u64) {
421 unsafe {
422 ProcessManager::preempt_disable();
423 self.wait_queue.sleep_without_schedule(events);
424 ProcessManager::preempt_enable();
425 }
426 schedule(SchedMode::SM_NONE);
427 }
428
add_epoll(&self, epitem: Arc<EPollItem>)429 pub fn add_epoll(&self, epitem: Arc<EPollItem>) {
430 self.epitems.lock_irqsave().push_back(epitem)
431 }
432
remove_epoll(&self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError>433 pub fn remove_epoll(&self, epoll: &Weak<SpinLock<EventPoll>>) -> Result<(), SystemError> {
434 let is_remove = !self
435 .epitems
436 .lock_irqsave()
437 .extract_if(|x| x.epoll().ptr_eq(epoll))
438 .collect::<Vec<_>>()
439 .is_empty();
440
441 if is_remove {
442 return Ok(());
443 }
444
445 Err(SystemError::ENOENT)
446 }
447
448 /// ### 唤醒该队列上等待events的进程
449 ///
450 /// ### 参数
451 /// - events: 发生的事件
452 ///
453 /// 需要注意的是,只要触发了events中的任意一件事件,进程都会被唤醒
wakeup_any(&self, events: u64)454 pub fn wakeup_any(&self, events: u64) {
455 self.wait_queue.wakeup_any(events);
456 }
457 }
458 #[derive(Debug)]
459 pub struct SocketHandleItem {
460 /// 对应的posix socket是否为listen的
461 pub is_posix_listen: bool,
462 /// shutdown状态
463 pub shutdown_type: RwLock<ShutdownType>,
464 pub posix_item: Weak<PosixSocketHandleItem>,
465 }
466
467 impl SocketHandleItem {
new(posix_item: Weak<PosixSocketHandleItem>) -> Self468 pub fn new(posix_item: Weak<PosixSocketHandleItem>) -> Self {
469 Self {
470 is_posix_listen: false,
471 shutdown_type: RwLock::new(ShutdownType::empty()),
472 posix_item,
473 }
474 }
475
shutdown_type(&self) -> ShutdownType476 pub fn shutdown_type(&self) -> ShutdownType {
477 *self.shutdown_type.read()
478 }
479
shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType>480 pub fn shutdown_type_writer(&mut self) -> RwLockWriteGuard<ShutdownType> {
481 self.shutdown_type.write_irqsave()
482 }
483
reset_shutdown_type(&self)484 pub fn reset_shutdown_type(&self) {
485 *self.shutdown_type.write() = ShutdownType::empty();
486 }
487
posix_item(&self) -> Option<Arc<PosixSocketHandleItem>>488 pub fn posix_item(&self) -> Option<Arc<PosixSocketHandleItem>> {
489 self.posix_item.upgrade()
490 }
491 }
492
493 /// # TCP 和 UDP 的端口管理器。
494 /// 如果 TCP/UDP 的 socket 绑定了某个端口,它会在对应的表中记录,以检测端口冲突。
495 pub struct PortManager {
496 // TCP 端口记录表
497 tcp_port_table: SpinLock<HashMap<u16, Pid>>,
498 // UDP 端口记录表
499 udp_port_table: SpinLock<HashMap<u16, Pid>>,
500 }
501
502 impl PortManager {
new() -> Self503 pub fn new() -> Self {
504 return Self {
505 tcp_port_table: SpinLock::new(HashMap::new()),
506 udp_port_table: SpinLock::new(HashMap::new()),
507 };
508 }
509
510 /// @brief 自动分配一个相对应协议中未被使用的PORT,如果动态端口均已被占用,返回错误码 EADDRINUSE
get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError>511 pub fn get_ephemeral_port(&self, socket_type: SocketType) -> Result<u16, SystemError> {
512 // TODO: selects non-conflict high port
513
514 static mut EPHEMERAL_PORT: u16 = 0;
515 unsafe {
516 if EPHEMERAL_PORT == 0 {
517 EPHEMERAL_PORT = (49152 + rand() % (65536 - 49152)) as u16;
518 }
519 }
520
521 let mut remaining = 65536 - 49152; // 剩余尝试分配端口次数
522 let mut port: u16;
523 while remaining > 0 {
524 unsafe {
525 if EPHEMERAL_PORT == 65535 {
526 EPHEMERAL_PORT = 49152;
527 } else {
528 EPHEMERAL_PORT += 1;
529 }
530 port = EPHEMERAL_PORT;
531 }
532
533 // 使用 ListenTable 检查端口是否被占用
534 let listen_table_guard = match socket_type {
535 SocketType::Udp => self.udp_port_table.lock(),
536 SocketType::Tcp => self.tcp_port_table.lock(),
537 _ => panic!("{:?} cann't get a port", socket_type),
538 };
539 if listen_table_guard.get(&port).is_none() {
540 drop(listen_table_guard);
541 return Ok(port);
542 }
543 remaining -= 1;
544 }
545 return Err(SystemError::EADDRINUSE);
546 }
547
548 /// @brief 检测给定端口是否已被占用,如果未被占用则在 TCP/UDP 对应的表中记录
549 ///
550 /// TODO: 增加支持端口复用的逻辑
bind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError>551 pub fn bind_port(&self, socket_type: SocketType, port: u16) -> Result<(), SystemError> {
552 if port > 0 {
553 let mut listen_table_guard = match socket_type {
554 SocketType::Udp => self.udp_port_table.lock(),
555 SocketType::Tcp => self.tcp_port_table.lock(),
556 _ => panic!("{:?} cann't bind a port", socket_type),
557 };
558 match listen_table_guard.get(&port) {
559 Some(_) => return Err(SystemError::EADDRINUSE),
560 None => listen_table_guard.insert(port, ProcessManager::current_pid()),
561 };
562 drop(listen_table_guard);
563 }
564 return Ok(());
565 }
566
567 /// @brief 在对应的端口记录表中将端口和 socket 解绑
568 /// should call this function when socket is closed or aborted
unbind_port(&self, socket_type: SocketType, port: u16)569 pub fn unbind_port(&self, socket_type: SocketType, port: u16) {
570 let mut listen_table_guard = match socket_type {
571 SocketType::Udp => self.udp_port_table.lock(),
572 SocketType::Tcp => self.tcp_port_table.lock(),
573 _ => {
574 return;
575 }
576 };
577 listen_table_guard.remove(&port);
578 drop(listen_table_guard);
579 }
580 }
581
582 /// @brief socket的类型
583 #[derive(Debug, Clone, Copy, PartialEq)]
584 pub enum SocketType {
585 /// 原始的socket
586 Raw,
587 /// 用于Tcp通信的 Socket
588 Tcp,
589 /// 用于Udp通信的 Socket
590 Udp,
591 /// unix域的 Socket
592 Unix,
593 }
594
595 bitflags! {
596 /// @brief socket的选项
597 #[derive(Default)]
598 pub struct SocketOptions: u32 {
599 /// 是否阻塞
600 const BLOCK = 1 << 0;
601 /// 是否允许广播
602 const BROADCAST = 1 << 1;
603 /// 是否允许多播
604 const MULTICAST = 1 << 2;
605 /// 是否允许重用地址
606 const REUSEADDR = 1 << 3;
607 /// 是否允许重用端口
608 const REUSEPORT = 1 << 4;
609 }
610 }
611
612 #[derive(Debug, Clone)]
613 /// @brief 在trait Socket的metadata函数中返回该结构体供外部使用
614 pub struct SocketMetadata {
615 /// socket的类型
616 pub socket_type: SocketType,
617 /// 接收缓冲区的大小
618 pub rx_buf_size: usize,
619 /// 发送缓冲区的大小
620 pub tx_buf_size: usize,
621 /// 元数据的缓冲区的大小
622 pub metadata_buf_size: usize,
623 /// socket的选项
624 pub options: SocketOptions,
625 }
626
627 impl SocketMetadata {
new( socket_type: SocketType, rx_buf_size: usize, tx_buf_size: usize, metadata_buf_size: usize, options: SocketOptions, ) -> Self628 fn new(
629 socket_type: SocketType,
630 rx_buf_size: usize,
631 tx_buf_size: usize,
632 metadata_buf_size: usize,
633 options: SocketOptions,
634 ) -> Self {
635 Self {
636 socket_type,
637 rx_buf_size,
638 tx_buf_size,
639 metadata_buf_size,
640 options,
641 }
642 }
643 }
644
645 /// @brief 地址族的枚举
646 ///
647 /// 参考:https://code.dragonos.org.cn/xref/linux-5.19.10/include/linux/socket.h#180
648 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)]
649 pub enum AddressFamily {
650 /// AF_UNSPEC 表示地址族未指定
651 Unspecified = 0,
652 /// AF_UNIX 表示Unix域的socket (与AF_LOCAL相同)
653 Unix = 1,
654 /// AF_INET 表示IPv4的socket
655 INet = 2,
656 /// AF_AX25 表示AMPR AX.25的socket
657 AX25 = 3,
658 /// AF_IPX 表示IPX的socket
659 IPX = 4,
660 /// AF_APPLETALK 表示Appletalk的socket
661 Appletalk = 5,
662 /// AF_NETROM 表示AMPR NET/ROM的socket
663 Netrom = 6,
664 /// AF_BRIDGE 表示多协议桥接的socket
665 Bridge = 7,
666 /// AF_ATMPVC 表示ATM PVCs的socket
667 Atmpvc = 8,
668 /// AF_X25 表示X.25的socket
669 X25 = 9,
670 /// AF_INET6 表示IPv6的socket
671 INet6 = 10,
672 /// AF_ROSE 表示AMPR ROSE的socket
673 Rose = 11,
674 /// AF_DECnet Reserved for DECnet project
675 Decnet = 12,
676 /// AF_NETBEUI Reserved for 802.2LLC project
677 Netbeui = 13,
678 /// AF_SECURITY 表示Security callback的伪AF
679 Security = 14,
680 /// AF_KEY 表示Key management API
681 Key = 15,
682 /// AF_NETLINK 表示Netlink的socket
683 Netlink = 16,
684 /// AF_PACKET 表示Low level packet interface
685 Packet = 17,
686 /// AF_ASH 表示Ash
687 Ash = 18,
688 /// AF_ECONET 表示Acorn Econet
689 Econet = 19,
690 /// AF_ATMSVC 表示ATM SVCs
691 Atmsvc = 20,
692 /// AF_RDS 表示Reliable Datagram Sockets
693 Rds = 21,
694 /// AF_SNA 表示Linux SNA Project
695 Sna = 22,
696 /// AF_IRDA 表示IRDA sockets
697 Irda = 23,
698 /// AF_PPPOX 表示PPPoX sockets
699 Pppox = 24,
700 /// AF_WANPIPE 表示WANPIPE API sockets
701 WanPipe = 25,
702 /// AF_LLC 表示Linux LLC
703 Llc = 26,
704 /// AF_IB 表示Native InfiniBand address
705 /// 介绍:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_infiniband_and_rdma_networks/index#understanding-infiniband-and-rdma_configuring-infiniband-and-rdma-networks
706 Ib = 27,
707 /// AF_MPLS 表示MPLS
708 Mpls = 28,
709 /// AF_CAN 表示Controller Area Network
710 Can = 29,
711 /// AF_TIPC 表示TIPC sockets
712 Tipc = 30,
713 /// AF_BLUETOOTH 表示Bluetooth sockets
714 Bluetooth = 31,
715 /// AF_IUCV 表示IUCV sockets
716 Iucv = 32,
717 /// AF_RXRPC 表示RxRPC sockets
718 Rxrpc = 33,
719 /// AF_ISDN 表示mISDN sockets
720 Isdn = 34,
721 /// AF_PHONET 表示Phonet sockets
722 Phonet = 35,
723 /// AF_IEEE802154 表示IEEE 802.15.4 sockets
724 Ieee802154 = 36,
725 /// AF_CAIF 表示CAIF sockets
726 Caif = 37,
727 /// AF_ALG 表示Algorithm sockets
728 Alg = 38,
729 /// AF_NFC 表示NFC sockets
730 Nfc = 39,
731 /// AF_VSOCK 表示vSockets
732 Vsock = 40,
733 /// AF_KCM 表示Kernel Connection Multiplexor
734 Kcm = 41,
735 /// AF_QIPCRTR 表示Qualcomm IPC Router
736 Qipcrtr = 42,
737 /// AF_SMC 表示SMC-R sockets.
738 /// reserve number for PF_SMC protocol family that reuses AF_INET address family
739 Smc = 43,
740 /// AF_XDP 表示XDP sockets
741 Xdp = 44,
742 /// AF_MCTP 表示Management Component Transport Protocol
743 Mctp = 45,
744 /// AF_MAX 表示最大的地址族
745 Max = 46,
746 }
747
748 impl TryFrom<u16> for AddressFamily {
749 type Error = SystemError;
try_from(x: u16) -> Result<Self, Self::Error>750 fn try_from(x: u16) -> Result<Self, Self::Error> {
751 use num_traits::FromPrimitive;
752 return <Self as FromPrimitive>::from_u16(x).ok_or(SystemError::EINVAL);
753 }
754 }
755
756 /// @brief posix套接字类型的枚举(这些值与linux内核中的值一致)
757 #[derive(Debug, Clone, Copy, PartialEq, Eq, FromPrimitive, ToPrimitive)]
758 pub enum PosixSocketType {
759 Stream = 1,
760 Datagram = 2,
761 Raw = 3,
762 Rdm = 4,
763 SeqPacket = 5,
764 Dccp = 6,
765 Packet = 10,
766 }
767
768 impl TryFrom<u8> for PosixSocketType {
769 type Error = SystemError;
try_from(x: u8) -> Result<Self, Self::Error>770 fn try_from(x: u8) -> Result<Self, Self::Error> {
771 use num_traits::FromPrimitive;
772 return <Self as FromPrimitive>::from_u8(x).ok_or(SystemError::EINVAL);
773 }
774 }
775
776 /// ### 为socket提供无锁的poll方法
777 ///
778 /// 因为在网卡中断中,需要轮询socket的状态,如果使用socket文件或者其inode来poll
779 /// 在当前的设计,会必然死锁,所以引用这一个设计来解决,提供无的poll
780 pub struct SocketPollMethod;
781
782 impl SocketPollMethod {
poll(socket: &socket::Socket, handle_item: &SocketHandleItem) -> EPollEventType783 pub fn poll(socket: &socket::Socket, handle_item: &SocketHandleItem) -> EPollEventType {
784 let shutdown = handle_item.shutdown_type();
785 match socket {
786 socket::Socket::Udp(udp) => Self::udp_poll(udp, shutdown),
787 socket::Socket::Tcp(tcp) => Self::tcp_poll(tcp, shutdown, handle_item.is_posix_listen),
788 socket::Socket::Raw(raw) => Self::raw_poll(raw, shutdown),
789 _ => todo!(),
790 }
791 }
792
tcp_poll( socket: &tcp::Socket, shutdown: ShutdownType, is_posix_listen: bool, ) -> EPollEventType793 pub fn tcp_poll(
794 socket: &tcp::Socket,
795 shutdown: ShutdownType,
796 is_posix_listen: bool,
797 ) -> EPollEventType {
798 let mut events = EPollEventType::empty();
799 // debug!("enter tcp_poll! is_posix_listen:{}", is_posix_listen);
800 // 处理listen的socket
801 if is_posix_listen {
802 // 如果是listen的socket,那么只有EPOLLIN和EPOLLRDNORM
803 if socket.is_active() {
804 events.insert(EPollEventType::EPOLL_LISTEN_CAN_ACCEPT);
805 }
806
807 // debug!("tcp_poll listen socket! events:{:?}", events);
808 return events;
809 }
810
811 let state = socket.state();
812
813 if shutdown == ShutdownType::SHUTDOWN_MASK || state == tcp::State::Closed {
814 events.insert(EPollEventType::EPOLLHUP);
815 }
816
817 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) {
818 events.insert(
819 EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM | EPollEventType::EPOLLRDHUP,
820 );
821 }
822
823 // Connected or passive Fast Open socket?
824 if state != tcp::State::SynSent && state != tcp::State::SynReceived {
825 // socket有可读数据
826 if socket.can_recv() {
827 events.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM);
828 }
829
830 if !(shutdown.contains(ShutdownType::SEND_SHUTDOWN)) {
831 // 缓冲区可写(这里判断可写的逻辑好像跟linux不太一样)
832 if socket.send_queue() < socket.send_capacity() {
833 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM);
834 } else {
835 // TODO:触发缓冲区已满的信号SIGIO
836 todo!("A signal SIGIO that the buffer is full needs to be sent");
837 }
838 } else {
839 // 如果我们的socket关闭了SEND_SHUTDOWN,epoll事件就是EPOLLOUT
840 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM);
841 }
842 } else if state == tcp::State::SynSent {
843 events.insert(EPollEventType::EPOLLOUT | EPollEventType::EPOLLWRNORM);
844 }
845
846 // socket发生错误
847 // TODO: 这里的逻辑可能有问题,需要进一步验证是否is_active()==false就代表socket发生错误
848 if !socket.is_active() {
849 events.insert(EPollEventType::EPOLLERR);
850 }
851
852 events
853 }
854
udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType855 pub fn udp_poll(socket: &udp::Socket, shutdown: ShutdownType) -> EPollEventType {
856 let mut event = EPollEventType::empty();
857
858 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) {
859 event.insert(
860 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM,
861 );
862 }
863 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) {
864 event.insert(EPollEventType::EPOLLHUP);
865 }
866
867 if socket.can_recv() {
868 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM);
869 }
870
871 if socket.can_send() {
872 event.insert(
873 EPollEventType::EPOLLOUT
874 | EPollEventType::EPOLLWRNORM
875 | EPollEventType::EPOLLWRBAND,
876 );
877 } else {
878 // TODO: 缓冲区空间不够,需要使用信号处理
879 todo!()
880 }
881
882 return event;
883 }
884
raw_poll(socket: &raw::Socket, shutdown: ShutdownType) -> EPollEventType885 pub fn raw_poll(socket: &raw::Socket, shutdown: ShutdownType) -> EPollEventType {
886 //debug!("enter raw_poll!");
887 let mut event = EPollEventType::empty();
888
889 if shutdown.contains(ShutdownType::RCV_SHUTDOWN) {
890 event.insert(
891 EPollEventType::EPOLLRDHUP | EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM,
892 );
893 }
894 if shutdown.contains(ShutdownType::SHUTDOWN_MASK) {
895 event.insert(EPollEventType::EPOLLHUP);
896 }
897
898 if socket.can_recv() {
899 //debug!("poll can recv!");
900 event.insert(EPollEventType::EPOLLIN | EPollEventType::EPOLLRDNORM);
901 } else {
902 //debug!("poll can not recv!");
903 }
904
905 if socket.can_send() {
906 //debug!("poll can send!");
907 event.insert(
908 EPollEventType::EPOLLOUT
909 | EPollEventType::EPOLLWRNORM
910 | EPollEventType::EPOLLWRBAND,
911 );
912 } else {
913 //debug!("poll can not send!");
914 // TODO: 缓冲区空间不够,需要使用信号处理
915 todo!()
916 }
917 return event;
918 }
919 }
920