xref: /DragonOS/kernel/src/mm/page.rs (revision 9fa0e95eeed8630a8a69c874090af2f10e8eee02)
1 use core::{
2     fmt::{self, Debug, Error, Formatter},
3     marker::PhantomData,
4     mem,
5     ops::Add,
6     sync::atomic::{compiler_fence, Ordering},
7 };
8 
9 use alloc::sync::Arc;
10 use hashbrown::{HashMap, HashSet};
11 use log::{error, info};
12 
13 use crate::{
14     arch::{interrupt::ipi::send_ipi, MMArch},
15     exception::ipi::{IpiKind, IpiTarget},
16     ipc::shm::ShmId,
17     libs::spinlock::{SpinLock, SpinLockGuard},
18 };
19 
20 use super::{
21     allocator::page_frame::{FrameAllocator, PageFrameCount},
22     syscall::ProtFlags,
23     ucontext::LockedVMA,
24     MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr,
25 };
26 
27 pub const PAGE_4K_SHIFT: usize = 12;
28 #[allow(dead_code)]
29 pub const PAGE_2M_SHIFT: usize = 21;
30 pub const PAGE_1G_SHIFT: usize = 30;
31 
32 pub const PAGE_4K_SIZE: usize = 1 << PAGE_4K_SHIFT;
33 pub const PAGE_2M_SIZE: usize = 1 << PAGE_2M_SHIFT;
34 
35 /// 全局物理页信息管理器
36 pub static mut PAGE_MANAGER: Option<SpinLock<PageManager>> = None;
37 
38 /// 初始化PAGE_MANAGER
39 pub fn page_manager_init() {
40     info!("page_manager_init");
41     let page_manager = SpinLock::new(PageManager::new());
42 
43     compiler_fence(Ordering::SeqCst);
44     unsafe { PAGE_MANAGER = Some(page_manager) };
45     compiler_fence(Ordering::SeqCst);
46 
47     info!("page_manager_init done");
48 }
49 
50 pub fn page_manager_lock_irqsave() -> SpinLockGuard<'static, PageManager> {
51     unsafe { PAGE_MANAGER.as_ref().unwrap().lock_irqsave() }
52 }
53 
54 // 物理页管理器
55 pub struct PageManager {
56     phys2page: HashMap<PhysAddr, Page>,
57 }
58 
59 impl PageManager {
60     pub fn new() -> Self {
61         Self {
62             phys2page: HashMap::new(),
63         }
64     }
65 
66     pub fn contains(&self, paddr: &PhysAddr) -> bool {
67         self.phys2page.contains_key(paddr)
68     }
69 
70     pub fn get(&self, paddr: &PhysAddr) -> Option<&Page> {
71         self.phys2page.get(paddr)
72     }
73 
74     pub fn get_mut(&mut self, paddr: &PhysAddr) -> &mut Page {
75         self.phys2page
76             .get_mut(paddr)
77             .unwrap_or_else(|| panic!("{:?}", paddr))
78     }
79 
80     pub fn insert(&mut self, paddr: PhysAddr, page: Page) {
81         self.phys2page.insert(paddr, page);
82     }
83 
84     pub fn remove_page(&mut self, paddr: &PhysAddr) {
85         self.phys2page.remove(paddr);
86     }
87 }
88 
89 /// 物理页面信息
90 pub struct Page {
91     /// 映射计数
92     map_count: usize,
93     /// 是否为共享页
94     shared: bool,
95     /// 映射计数为0时,是否可回收
96     free_when_zero: bool,
97     /// 共享页id(如果是共享页)
98     shm_id: Option<ShmId>,
99     /// 映射到当前page的VMA
100     anon_vma: HashSet<Arc<LockedVMA>>,
101 }
102 
103 impl Page {
104     pub fn new(shared: bool) -> Self {
105         let dealloc_when_zero = !shared;
106         Self {
107             map_count: 0,
108             shared,
109             free_when_zero: dealloc_when_zero,
110             shm_id: None,
111             anon_vma: HashSet::new(),
112         }
113     }
114 
115     /// 将vma加入anon_vma
116     pub fn insert_vma(&mut self, vma: Arc<LockedVMA>) {
117         self.anon_vma.insert(vma);
118         self.map_count += 1;
119     }
120 
121     /// 将vma从anon_vma中删去
122     pub fn remove_vma(&mut self, vma: &LockedVMA) {
123         self.anon_vma.remove(vma);
124         self.map_count -= 1;
125     }
126 
127     /// 判断当前物理页是否能被回
128     pub fn can_deallocate(&self) -> bool {
129         self.map_count == 0 && self.free_when_zero
130     }
131 
132     pub fn shared(&self) -> bool {
133         self.shared
134     }
135 
136     pub fn shm_id(&self) -> Option<ShmId> {
137         self.shm_id
138     }
139 
140     pub fn set_shm_id(&mut self, shm_id: ShmId) {
141         self.shm_id = Some(shm_id);
142     }
143 
144     pub fn set_dealloc_when_zero(&mut self, dealloc_when_zero: bool) {
145         self.free_when_zero = dealloc_when_zero;
146     }
147 
148     #[inline(always)]
149     pub fn anon_vma(&self) -> &HashSet<Arc<LockedVMA>> {
150         &self.anon_vma
151     }
152 
153     #[inline(always)]
154     pub fn map_count(&self) -> usize {
155         self.map_count
156     }
157 }
158 
159 #[derive(Debug)]
160 pub struct PageTable<Arch> {
161     /// 当前页表表示的虚拟地址空间的起始地址
162     base: VirtAddr,
163     /// 当前页表所在的物理地址
164     phys: PhysAddr,
165     /// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
166     level: usize,
167     phantom: PhantomData<Arch>,
168 }
169 
170 #[allow(dead_code)]
171 impl<Arch: MemoryManagementArch> PageTable<Arch> {
172     pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
173         Self {
174             base,
175             phys,
176             level,
177             phantom: PhantomData,
178         }
179     }
180 
181     /// 获取顶级页表
182     ///
183     /// ## 参数
184     ///
185     /// - table_kind 页表类型
186     ///
187     /// ## 返回值
188     ///
189     /// 返回顶级页表
190     pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
191         return Self::new(
192             VirtAddr::new(0),
193             Arch::table(table_kind),
194             Arch::PAGE_LEVELS - 1,
195         );
196     }
197 
198     /// 获取当前页表的物理地址
199     #[inline(always)]
200     pub fn phys(&self) -> PhysAddr {
201         self.phys
202     }
203 
204     /// 当前页表表示的虚拟地址空间的起始地址
205     #[inline(always)]
206     pub fn base(&self) -> VirtAddr {
207         self.base
208     }
209 
210     /// 获取当前页表的层级
211     #[inline(always)]
212     pub fn level(&self) -> usize {
213         self.level
214     }
215 
216     /// 获取当前页表自身所在的虚拟地址
217     #[inline(always)]
218     pub unsafe fn virt(&self) -> VirtAddr {
219         return Arch::phys_2_virt(self.phys).unwrap();
220     }
221 
222     /// 获取第i个页表项所表示的虚拟内存空间的起始地址
223     pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
224         if i < Arch::PAGE_ENTRY_NUM {
225             let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
226             return Some(self.base.add(i << shift));
227         } else {
228             return None;
229         }
230     }
231 
232     /// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
233     pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
234         if i < Arch::PAGE_ENTRY_NUM {
235             return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
236         } else {
237             return None;
238         }
239     }
240 
241     /// 获取当前页表的第i个页表项
242     pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
243         let entry_virt = self.entry_virt(i)?;
244         return Some(PageEntry::from_usize(Arch::read::<usize>(entry_virt)));
245     }
246 
247     /// 设置当前页表的第i个页表项
248     pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
249         let entry_virt = self.entry_virt(i)?;
250         Arch::write::<usize>(entry_virt, entry.data());
251         return Some(());
252     }
253 
254     /// 判断当前页表的第i个页表项是否已经填写了值
255     ///
256     /// ## 参数
257     /// - Some(true) 如果已经填写了值
258     /// - Some(false) 如果未填写值
259     /// - None 如果i超出了页表项的范围
260     pub fn entry_mapped(&self, i: usize) -> Option<bool> {
261         let etv = unsafe { self.entry_virt(i) }?;
262         if unsafe { Arch::read::<usize>(etv) } != 0 {
263             return Some(true);
264         } else {
265             return Some(false);
266         }
267     }
268 
269     /// 根据虚拟地址,获取对应的页表项在页表中的下标
270     ///
271     /// ## 参数
272     ///
273     /// - addr: 虚拟地址
274     ///
275     /// ## 返回值
276     ///
277     /// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
278     pub fn index_of(&self, addr: VirtAddr) -> Option<usize> {
279         let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
280         let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
281 
282         let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
283         if addr < self.base || addr >= self.base.add(mask) {
284             return None;
285         } else {
286             return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
287         }
288     }
289 
290     /// 获取第i个页表项指向的下一级页表
291     pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
292         if self.level == 0 {
293             return None;
294         }
295 
296         // 返回下一级页表
297         return Some(PageTable::new(
298             self.entry_base(index)?,
299             self.entry(index)?.address().ok()?,
300             self.level - 1,
301         ));
302     }
303 
304     /// 拷贝页表
305     /// ## 参数
306     ///
307     /// - `allocator`: 物理页框分配器
308     /// - `copy_on_write`: 是否写时复制
309     pub unsafe fn clone(
310         &self,
311         allocator: &mut impl FrameAllocator,
312         copy_on_write: bool,
313     ) -> Option<PageTable<Arch>> {
314         // 分配新页面作为新的页表
315         let phys = allocator.allocate_one()?;
316         let frame = MMArch::phys_2_virt(phys).unwrap();
317         MMArch::write_bytes(frame, 0, MMArch::PAGE_SIZE);
318         let new_table = PageTable::new(self.base, phys, self.level);
319         if self.level == 0 {
320             for i in 0..Arch::PAGE_ENTRY_NUM {
321                 if let Some(mut entry) = self.entry(i) {
322                     if entry.present() {
323                         if copy_on_write {
324                             let mut new_flags = entry.flags().set_write(false);
325                             entry.set_flags(new_flags);
326                             self.set_entry(i, entry);
327                             new_flags = new_flags.set_dirty(false);
328                             entry.set_flags(new_flags);
329                             new_table.set_entry(i, entry);
330                         } else {
331                             let phys = allocator.allocate_one()?;
332                             let mut anon_vma_guard = page_manager_lock_irqsave();
333                             anon_vma_guard.insert(phys, Page::new(false));
334                             let old_phys = entry.address().unwrap();
335                             let frame = MMArch::phys_2_virt(phys).unwrap().data() as *mut u8;
336                             frame.copy_from_nonoverlapping(
337                                 MMArch::phys_2_virt(old_phys).unwrap().data() as *mut u8,
338                                 MMArch::PAGE_SIZE,
339                             );
340                             new_table.set_entry(i, PageEntry::new(phys, entry.flags()));
341                         }
342                     }
343                 }
344             }
345         } else {
346             // 非一级页表拷贝时,对每个页表项对应的页表都进行拷贝
347             for i in 0..MMArch::PAGE_ENTRY_NUM {
348                 if let Some(next_table) = self.next_level_table(i) {
349                     let table = next_table.clone(allocator, copy_on_write)?;
350                     let old_entry = self.entry(i).unwrap();
351                     let entry = PageEntry::new(table.phys(), old_entry.flags());
352                     new_table.set_entry(i, entry);
353                 }
354             }
355         }
356         Some(new_table)
357     }
358 }
359 
360 /// 页表项
361 #[derive(Copy, Clone)]
362 pub struct PageEntry<Arch> {
363     data: usize,
364     phantom: PhantomData<Arch>,
365 }
366 
367 impl<Arch> Debug for PageEntry<Arch> {
368     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
369         f.write_fmt(format_args!("PageEntry({:#x})", self.data))
370     }
371 }
372 
373 impl<Arch: MemoryManagementArch> PageEntry<Arch> {
374     #[inline(always)]
375     pub fn new(paddr: PhysAddr, flags: PageFlags<Arch>) -> Self {
376         Self {
377             data: MMArch::make_entry(paddr, flags.data()),
378             phantom: PhantomData,
379         }
380     }
381     #[inline(always)]
382     pub fn from_usize(data: usize) -> Self {
383         Self {
384             data,
385             phantom: PhantomData,
386         }
387     }
388 
389     #[inline(always)]
390     pub fn data(&self) -> usize {
391         self.data
392     }
393 
394     /// 获取当前页表项指向的物理地址
395     ///
396     /// ## 返回值
397     ///
398     /// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
399     /// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
400     #[inline(always)]
401     pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
402         let paddr: PhysAddr = {
403             #[cfg(target_arch = "x86_64")]
404             {
405                 PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK)
406             }
407 
408             #[cfg(target_arch = "riscv64")]
409             {
410                 let ppn = ((self.data & (!((1 << 10) - 1))) >> 10) & ((1 << 54) - 1);
411                 super::allocator::page_frame::PhysPageFrame::from_ppn(ppn).phys_address()
412             }
413         };
414 
415         if self.present() {
416             Ok(paddr)
417         } else {
418             Err(paddr)
419         }
420     }
421 
422     #[inline(always)]
423     pub fn flags(&self) -> PageFlags<Arch> {
424         unsafe { PageFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
425     }
426 
427     #[inline(always)]
428     pub fn set_flags(&mut self, flags: PageFlags<Arch>) {
429         self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
430     }
431 
432     #[inline(always)]
433     pub fn present(&self) -> bool {
434         return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
435     }
436 
437     #[inline(always)]
438     pub fn empty(&self) -> bool {
439         self.data & !(Arch::ENTRY_FLAG_DIRTY & Arch::ENTRY_FLAG_ACCESSED) == 0
440     }
441 
442     #[inline(always)]
443     pub fn protnone(&self) -> bool {
444         return self.data & (Arch::ENTRY_FLAG_PRESENT | Arch::ENTRY_FLAG_GLOBAL)
445             == Arch::ENTRY_FLAG_GLOBAL;
446     }
447 
448     #[inline(always)]
449     pub fn write(&self) -> bool {
450         return self.data & Arch::ENTRY_FLAG_READWRITE != 0;
451     }
452 }
453 
454 /// 页表项的标志位
455 #[derive(Copy, Clone, Hash)]
456 pub struct PageFlags<Arch> {
457     data: usize,
458     phantom: PhantomData<Arch>,
459 }
460 
461 impl<Arch: MemoryManagementArch> Default for PageFlags<Arch> {
462     fn default() -> Self {
463         Self::new()
464     }
465 }
466 
467 #[allow(dead_code)]
468 impl<Arch: MemoryManagementArch> PageFlags<Arch> {
469     #[inline(always)]
470     pub fn new() -> Self {
471         let mut r = unsafe {
472             Self::from_data(
473                 Arch::ENTRY_FLAG_DEFAULT_PAGE
474                     | Arch::ENTRY_FLAG_READONLY
475                     | Arch::ENTRY_FLAG_NO_EXEC,
476             )
477         };
478 
479         #[cfg(target_arch = "x86_64")]
480         {
481             if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
482                 r = r.set_execute(true);
483             }
484         }
485 
486         return r;
487     }
488 
489     /// 根据ProtFlags生成PageFlags
490     ///
491     /// ## 参数
492     ///
493     /// - prot_flags: 页的保护标志
494     /// - user: 用户空间是否可访问
495     pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> PageFlags<Arch> {
496         let flags: PageFlags<Arch> = PageFlags::new()
497             .set_user(user)
498             .set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
499             .set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
500 
501         return flags;
502     }
503 
504     #[inline(always)]
505     pub fn data(&self) -> usize {
506         self.data
507     }
508 
509     #[inline(always)]
510     pub const unsafe fn from_data(data: usize) -> Self {
511         return Self {
512             data,
513             phantom: PhantomData,
514         };
515     }
516 
517     /// 为新页表的页表项设置默认值
518     ///
519     /// 默认值为:
520     /// - present
521     /// - read only
522     /// - kernel space
523     /// - no exec
524     #[inline(always)]
525     pub fn new_page_table(user: bool) -> Self {
526         return unsafe {
527             let r = {
528                 #[cfg(target_arch = "x86_64")]
529                 {
530                     Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE)
531                 }
532 
533                 #[cfg(target_arch = "riscv64")]
534                 {
535                     // riscv64指向下一级页表的页表项,不应设置R/W/X权限位
536                     Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE)
537                 }
538             };
539 
540             #[cfg(target_arch = "x86_64")]
541             {
542                 if user {
543                     r.set_user(true)
544                 } else {
545                     r
546                 }
547             }
548 
549             #[cfg(target_arch = "riscv64")]
550             {
551                 r
552             }
553         };
554     }
555 
556     /// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
557     ///
558     /// ## 参数
559     /// - flag 要更新的标志位的值
560     /// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
561     ///
562     /// ## 返回值
563     ///
564     /// 更新后的页表项
565     #[inline(always)]
566     #[must_use]
567     pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
568         if value {
569             self.data |= flag;
570         } else {
571             self.data &= !flag;
572         }
573         return self;
574     }
575 
576     /// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
577     #[inline(always)]
578     pub fn has_flag(&self, flag: usize) -> bool {
579         return self.data & flag == flag;
580     }
581 
582     #[inline(always)]
583     pub fn present(&self) -> bool {
584         return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
585     }
586 
587     /// 设置当前页表项的权限
588     ///
589     /// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
590     #[must_use]
591     #[inline(always)]
592     pub fn set_user(self, value: bool) -> Self {
593         return self.update_flags(Arch::ENTRY_FLAG_USER, value);
594     }
595 
596     /// 用户态是否可以访问当前页表项
597     #[inline(always)]
598     pub fn has_user(&self) -> bool {
599         return self.has_flag(Arch::ENTRY_FLAG_USER);
600     }
601 
602     /// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
603     ///
604     /// ## 返回值
605     ///
606     /// 更新后的页表项.
607     ///
608     /// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
609     #[must_use]
610     #[inline(always)]
611     pub fn set_write(self, value: bool) -> Self {
612         #[cfg(target_arch = "x86_64")]
613         {
614             // 有的架构同时具有可写和不可写的标志位,因此需要同时更新
615             return self
616                 .update_flags(Arch::ENTRY_FLAG_READONLY, !value)
617                 .update_flags(Arch::ENTRY_FLAG_READWRITE, value);
618         }
619 
620         #[cfg(target_arch = "riscv64")]
621         {
622             if value {
623                 return self.update_flags(Arch::ENTRY_FLAG_READWRITE, true);
624             } else {
625                 return self
626                     .update_flags(Arch::ENTRY_FLAG_READONLY, true)
627                     .update_flags(Arch::ENTRY_FLAG_WRITEABLE, false);
628             }
629         }
630     }
631 
632     /// 当前页表项是否可写
633     #[inline(always)]
634     pub fn has_write(&self) -> bool {
635         // 有的架构同时具有可写和不可写的标志位,因此需要同时判断
636         return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
637             == Arch::ENTRY_FLAG_READWRITE;
638     }
639 
640     /// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
641     #[must_use]
642     #[inline(always)]
643     pub fn set_execute(self, mut value: bool) -> Self {
644         #[cfg(target_arch = "x86_64")]
645         {
646             // 如果xd位被保留,那么将可执行性设置为true
647             if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
648                 value = true;
649             }
650         }
651 
652         // 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
653         return self
654             .update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
655             .update_flags(Arch::ENTRY_FLAG_EXEC, value);
656     }
657 
658     /// 当前页表项是否可执行
659     #[inline(always)]
660     pub fn has_execute(&self) -> bool {
661         // 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
662         return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
663             == Arch::ENTRY_FLAG_EXEC;
664     }
665 
666     /// 设置当前页表项的缓存策略
667     ///
668     /// ## 参数
669     ///
670     /// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
671     #[inline(always)]
672     pub fn set_page_cache_disable(self, value: bool) -> Self {
673         return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
674     }
675 
676     /// 获取当前页表项的缓存策略
677     ///
678     /// ## 返回值
679     ///
680     /// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
681     #[inline(always)]
682     pub fn has_page_cache_disable(&self) -> bool {
683         return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
684     }
685 
686     /// 设置当前页表项的写穿策略
687     ///
688     /// ## 参数
689     ///
690     /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
691     #[inline(always)]
692     pub fn set_page_write_through(self, value: bool) -> Self {
693         return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
694     }
695 
696     #[inline(always)]
697     pub fn set_page_global(self, value: bool) -> Self {
698         return self.update_flags(MMArch::ENTRY_FLAG_GLOBAL, value);
699     }
700 
701     /// 获取当前页表项的写穿策略
702     ///
703     /// ## 返回值
704     ///
705     /// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
706     #[inline(always)]
707     pub fn has_page_write_through(&self) -> bool {
708         return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
709     }
710 
711     /// 设置当前页表是否为脏页
712     ///
713     /// ## 参数
714     ///
715     /// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
716     #[inline(always)]
717     pub fn set_dirty(self, value: bool) -> Self {
718         return self.update_flags(Arch::ENTRY_FLAG_DIRTY, value);
719     }
720 
721     /// 设置当前页表被访问
722     ///
723     /// ## 参数
724     ///
725     /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
726     #[inline(always)]
727     pub fn set_access(self, value: bool) -> Self {
728         return self.update_flags(Arch::ENTRY_FLAG_ACCESSED, value);
729     }
730 
731     /// 设置指向的页是否为大页
732     ///
733     /// ## 参数
734     ///
735     /// - value: 如果为true,那么将当前页表项的访问标志设置为已访问。
736     #[inline(always)]
737     pub fn set_huge_page(self, value: bool) -> Self {
738         return self.update_flags(Arch::ENTRY_FLAG_HUGE_PAGE, value);
739     }
740 
741     /// MMIO内存的页表项标志
742     #[inline(always)]
743     pub fn mmio_flags() -> Self {
744         #[cfg(target_arch = "x86_64")]
745         {
746             Self::new()
747                 .set_user(false)
748                 .set_write(true)
749                 .set_execute(true)
750                 .set_page_cache_disable(true)
751                 .set_page_write_through(true)
752                 .set_page_global(true)
753         }
754 
755         #[cfg(target_arch = "riscv64")]
756         {
757             Self::new()
758                 .set_user(false)
759                 .set_write(true)
760                 .set_execute(true)
761                 .set_page_global(true)
762         }
763     }
764 }
765 
766 impl<Arch: MemoryManagementArch> fmt::Debug for PageFlags<Arch> {
767     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
768         f.debug_struct("PageFlags")
769             .field("bits", &format_args!("{:#0x}", self.data))
770             .field("present", &self.present())
771             .field("has_write", &self.has_write())
772             .field("has_execute", &self.has_execute())
773             .field("has_user", &self.has_user())
774             .finish()
775     }
776 }
777 
778 /// 页表映射器
779 #[derive(Hash)]
780 pub struct PageMapper<Arch, F> {
781     /// 页表类型
782     table_kind: PageTableKind,
783     /// 根页表物理地址
784     table_paddr: PhysAddr,
785     /// 页分配器
786     frame_allocator: F,
787     phantom: PhantomData<fn() -> Arch>,
788 }
789 
790 impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
791     /// 创建新的页面映射器
792     ///
793     /// ## 参数
794     /// - table_kind 页表类型
795     /// - table_paddr 根页表物理地址
796     /// - allocator 页分配器
797     ///
798     /// ## 返回值
799     ///
800     /// 页面映射器
801     pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
802         return Self {
803             table_kind,
804             table_paddr,
805             frame_allocator: allocator,
806             phantom: PhantomData,
807         };
808     }
809 
810     /// 创建页表,并为这个页表创建页面映射器
811     pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
812         let table_paddr = allocator.allocate_one()?;
813         // 清空页表
814         let table_vaddr = Arch::phys_2_virt(table_paddr)?;
815         Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
816         return Some(Self::new(table_kind, table_paddr, allocator));
817     }
818 
819     /// 获取当前页表的页面映射器
820     #[inline(always)]
821     pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
822         let table_paddr = Arch::table(table_kind);
823         return Self::new(table_kind, table_paddr, allocator);
824     }
825 
826     /// 判断当前页表分配器所属的页表是否是当前页表
827     #[inline(always)]
828     pub fn is_current(&self) -> bool {
829         return unsafe { self.table().phys() == Arch::table(self.table_kind) };
830     }
831 
832     /// 将当前页表分配器所属的页表设置为当前页表
833     #[inline(always)]
834     pub unsafe fn make_current(&self) {
835         Arch::set_table(self.table_kind, self.table_paddr);
836     }
837 
838     /// 获取当前页表分配器所属的根页表的结构体
839     #[inline(always)]
840     pub fn table(&self) -> PageTable<Arch> {
841         // 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
842         return unsafe {
843             PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
844         };
845     }
846 
847     /// 获取当前PageMapper所对应的页分配器实例的引用
848     #[inline(always)]
849     #[allow(dead_code)]
850     pub fn allocator_ref(&self) -> &F {
851         return &self.frame_allocator;
852     }
853 
854     /// 获取当前PageMapper所对应的页分配器实例的可变引用
855     #[inline(always)]
856     pub fn allocator_mut(&mut self) -> &mut F {
857         return &mut self.frame_allocator;
858     }
859 
860     /// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
861     pub unsafe fn map(
862         &mut self,
863         virt: VirtAddr,
864         flags: PageFlags<Arch>,
865     ) -> Option<PageFlush<Arch>> {
866         compiler_fence(Ordering::SeqCst);
867         let phys: PhysAddr = self.frame_allocator.allocate_one()?;
868         compiler_fence(Ordering::SeqCst);
869 
870         unsafe {
871             let vaddr = MMArch::phys_2_virt(phys).unwrap();
872             MMArch::write_bytes(vaddr, 0, MMArch::PAGE_SIZE);
873         }
874 
875         let mut page_manager_guard: SpinLockGuard<'static, PageManager> =
876             page_manager_lock_irqsave();
877         if !page_manager_guard.contains(&phys) {
878             page_manager_guard.insert(phys, Page::new(false))
879         }
880 
881         return self.map_phys(virt, phys, flags);
882     }
883 
884     /// 映射一个物理页到指定的虚拟地址
885     pub unsafe fn map_phys(
886         &mut self,
887         virt: VirtAddr,
888         phys: PhysAddr,
889         flags: PageFlags<Arch>,
890     ) -> Option<PageFlush<Arch>> {
891         // 验证虚拟地址和物理地址是否对齐
892         if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
893             error!(
894                 "Try to map unaligned page: virt={:?}, phys={:?}",
895                 virt, phys
896             );
897             return None;
898         }
899 
900         let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
901 
902         // TODO: 验证flags是否合法
903 
904         // 创建页表项
905         let entry = PageEntry::new(phys, flags);
906         let mut table = self.table();
907         loop {
908             let i = table.index_of(virt)?;
909 
910             assert!(i < Arch::PAGE_ENTRY_NUM);
911             if table.level() == 0 {
912                 compiler_fence(Ordering::SeqCst);
913 
914                 table.set_entry(i, entry);
915                 compiler_fence(Ordering::SeqCst);
916                 return Some(PageFlush::new(virt));
917             } else {
918                 let next_table = table.next_level_table(i);
919                 if let Some(next_table) = next_table {
920                     table = next_table;
921                     // debug!("Mapping {:?} to next level table...", virt);
922                 } else {
923                     // 分配下一级页表
924                     let frame = self.frame_allocator.allocate_one()?;
925 
926                     // 清空这个页帧
927                     MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
928                     // 设置页表项的flags
929                     let flags: PageFlags<Arch> =
930                         PageFlags::new_page_table(virt.kind() == PageTableKind::User);
931 
932                     // 把新分配的页表映射到当前页表
933                     table.set_entry(i, PageEntry::new(frame, flags));
934 
935                     // 获取新分配的页表
936                     table = table.next_level_table(i)?;
937                 }
938             }
939         }
940     }
941 
942     /// 进行大页映射
943     pub unsafe fn map_huge_page(
944         &mut self,
945         virt: VirtAddr,
946         flags: PageFlags<Arch>,
947     ) -> Option<PageFlush<Arch>> {
948         // 验证虚拟地址是否对齐
949         if !(virt.check_aligned(Arch::PAGE_SIZE)) {
950             error!("Try to map unaligned page: virt={:?}", virt);
951             return None;
952         }
953 
954         let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
955 
956         let mut table = self.table();
957         loop {
958             let i = table.index_of(virt)?;
959             assert!(i < Arch::PAGE_ENTRY_NUM);
960             let next_table = table.next_level_table(i);
961             if let Some(next_table) = next_table {
962                 table = next_table;
963             } else {
964                 break;
965             }
966         }
967 
968         // 支持2M、1G大页,即页表层级为1、2级的页表可以映射大页
969         if table.level == 0 || table.level > 2 {
970             return None;
971         }
972 
973         let (phys, count) = self.frame_allocator.allocate(PageFrameCount::new(
974             Arch::PAGE_ENTRY_NUM.pow(table.level as u32),
975         ))?;
976 
977         MMArch::write_bytes(
978             MMArch::phys_2_virt(phys).unwrap(),
979             0,
980             MMArch::PAGE_SIZE * count.data(),
981         );
982 
983         table.set_entry(
984             table.index_of(virt)?,
985             PageEntry::new(phys, flags.set_huge_page(true)),
986         )?;
987         Some(PageFlush::new(virt))
988     }
989 
990     /// 为虚拟地址分配指定层级的页表
991     /// ## 参数
992     ///
993     /// - `virt`: 虚拟地址
994     /// - `level`: 指定页表层级
995     ///
996     /// ## 返回值
997     /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
998     /// - None: 对应页表不存在
999     pub unsafe fn allocate_table(
1000         &mut self,
1001         virt: VirtAddr,
1002         level: usize,
1003     ) -> Option<PageTable<Arch>> {
1004         let table = self.get_table(virt, level + 1)?;
1005         let i = table.index_of(virt)?;
1006         let frame = self.frame_allocator.allocate_one()?;
1007 
1008         // 清空这个页帧
1009         MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
1010 
1011         // 设置页表项的flags
1012         let flags: PageFlags<Arch> = PageFlags::new_page_table(virt.kind() == PageTableKind::User);
1013 
1014         table.set_entry(i, PageEntry::new(frame, flags));
1015         table.next_level_table(i)
1016     }
1017 
1018     /// 获取虚拟地址的指定层级页表
1019     /// ## 参数
1020     ///
1021     /// - `virt`: 虚拟地址
1022     /// - `level`: 指定页表层级
1023     ///
1024     /// ## 返回值
1025     /// - Some(PageTable<Arch>): 虚拟地址对应层级的页表
1026     /// - None: 对应页表不存在
1027     pub fn get_table(&self, virt: VirtAddr, level: usize) -> Option<PageTable<Arch>> {
1028         let mut table = self.table();
1029         if level > Arch::PAGE_LEVELS - 1 {
1030             return None;
1031         }
1032 
1033         unsafe {
1034             loop {
1035                 if table.level == level {
1036                     return Some(table);
1037                 }
1038                 let i = table.index_of(virt)?;
1039                 assert!(i < Arch::PAGE_ENTRY_NUM);
1040 
1041                 table = table.next_level_table(i)?;
1042             }
1043         }
1044     }
1045 
1046     /// 获取虚拟地址在指定层级页表的PageEntry
1047     /// ## 参数
1048     ///
1049     /// - `virt`: 虚拟地址
1050     /// - `level`: 指定页表层级
1051     ///
1052     /// ## 返回值
1053     /// - Some(PageEntry<Arch>): 虚拟地址在指定层级的页表的有效PageEntry
1054     /// - None: 无对应的有效PageEntry
1055     pub fn get_entry(&self, virt: VirtAddr, level: usize) -> Option<PageEntry<Arch>> {
1056         let table = self.get_table(virt, level)?;
1057         let i = table.index_of(virt)?;
1058         let entry = unsafe { table.entry(i) }?;
1059 
1060         if !entry.empty() {
1061             Some(entry)
1062         } else {
1063             None
1064         }
1065 
1066         // let mut table = self.table();
1067         // if level > Arch::PAGE_LEVELS - 1 {
1068         //     return None;
1069         // }
1070         // unsafe {
1071         //     loop {
1072         //         let i = table.index_of(virt)?;
1073         //         assert!(i < Arch::PAGE_ENTRY_NUM);
1074 
1075         //         if table.level == level {
1076         //             let entry = table.entry(i)?;
1077         //             if !entry.empty() {
1078         //                 return Some(entry);
1079         //             } else {
1080         //                 return None;
1081         //             }
1082         //         }
1083 
1084         //         table = table.next_level_table(i)?;
1085         //     }
1086         // }
1087     }
1088 
1089     /// 拷贝用户空间映射
1090     /// ## 参数
1091     ///
1092     /// - `umapper`: 要拷贝的用户空间
1093     /// - `copy_on_write`: 是否写时复制
1094     pub unsafe fn clone_user_mapping(&mut self, umapper: &mut Self, copy_on_write: bool) {
1095         let old_table = umapper.table();
1096         let new_table = self.table();
1097         let allocator = self.allocator_mut();
1098         // 顶级页表的[0, PAGE_KERNEL_INDEX)项为用户空间映射
1099         for entry_index in 0..Arch::PAGE_KERNEL_INDEX {
1100             if let Some(next_table) = old_table.next_level_table(entry_index) {
1101                 let table = next_table.clone(allocator, copy_on_write).unwrap();
1102                 let old_entry = old_table.entry(entry_index).unwrap();
1103                 let entry = PageEntry::new(table.phys(), old_entry.flags());
1104                 new_table.set_entry(entry_index, entry);
1105             }
1106         }
1107     }
1108 
1109     /// 将物理地址映射到具有线性偏移量的虚拟地址
1110     #[allow(dead_code)]
1111     pub unsafe fn map_linearly(
1112         &mut self,
1113         phys: PhysAddr,
1114         flags: PageFlags<Arch>,
1115     ) -> Option<(VirtAddr, PageFlush<Arch>)> {
1116         let virt: VirtAddr = Arch::phys_2_virt(phys)?;
1117         return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
1118     }
1119 
1120     /// 修改虚拟地址的页表项的flags,并返回页表项刷新器
1121     ///
1122     /// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
1123     ///
1124     /// ## 参数
1125     /// - virt 虚拟地址
1126     /// - flags 新的页表项的flags
1127     ///
1128     /// ## 返回值
1129     ///
1130     /// 如果修改成功,返回刷新器,否则返回None
1131     pub unsafe fn remap(
1132         &mut self,
1133         virt: VirtAddr,
1134         flags: PageFlags<Arch>,
1135     ) -> Option<PageFlush<Arch>> {
1136         return self
1137             .visit(virt, |p1, i| {
1138                 let mut entry = p1.entry(i)?;
1139 
1140                 entry.set_flags(flags);
1141                 p1.set_entry(i, entry);
1142                 Some(PageFlush::new(virt))
1143             })
1144             .flatten();
1145     }
1146 
1147     /// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
1148     ///
1149     /// ## 参数
1150     ///
1151     /// - virt 虚拟地址
1152     ///
1153     /// ## 返回值
1154     ///
1155     /// 如果查找成功,返回物理地址和页表项的flags,否则返回None
1156     pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, PageFlags<Arch>)> {
1157         let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
1158         let paddr = entry.address().ok()?;
1159         let flags = entry.flags();
1160         return Some((paddr, flags));
1161     }
1162 
1163     /// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
1164     ///
1165     /// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
1166     ///
1167     /// ## 参数
1168     ///
1169     /// - virt 虚拟地址
1170     /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
1171     ///
1172     /// ## 返回值
1173     /// 如果取消成功,返回刷新器,否则返回None
1174     #[allow(dead_code)]
1175     pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
1176         let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
1177         self.frame_allocator.free_one(paddr);
1178         return Some(flusher);
1179     }
1180 
1181     /// 取消虚拟地址的映射,并返回物理地址和页表项的flags
1182     ///
1183     /// ## 参数
1184     ///
1185     /// - vaddr 虚拟地址
1186     /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
1187     ///
1188     /// ## 返回值
1189     ///
1190     /// 如果取消成功,返回物理地址和页表项的flags,否则返回None
1191     pub unsafe fn unmap_phys(
1192         &mut self,
1193         virt: VirtAddr,
1194         unmap_parents: bool,
1195     ) -> Option<(PhysAddr, PageFlags<Arch>, PageFlush<Arch>)> {
1196         if !virt.check_aligned(Arch::PAGE_SIZE) {
1197             error!("Try to unmap unaligned page: virt={:?}", virt);
1198             return None;
1199         }
1200 
1201         let table = self.table();
1202         return unmap_phys_inner(virt, &table, unmap_parents, self.allocator_mut())
1203             .map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
1204     }
1205 
1206     /// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
1207     fn visit<T>(
1208         &self,
1209         virt: VirtAddr,
1210         f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
1211     ) -> Option<T> {
1212         let mut table = self.table();
1213         unsafe {
1214             loop {
1215                 let i = table.index_of(virt)?;
1216                 if table.level() == 0 {
1217                     return Some(f(&mut table, i));
1218                 } else {
1219                     table = table.next_level_table(i)?;
1220                 }
1221             }
1222         }
1223     }
1224 }
1225 
1226 /// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
1227 ///
1228 /// ## 参数
1229 ///
1230 /// - vaddr 虚拟地址
1231 /// - table 页表
1232 /// - unmap_parents 是否在父页表内,取消空闲子页表的映射
1233 /// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
1234 ///
1235 /// ## 返回值
1236 ///
1237 /// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
1238 unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
1239     vaddr: VirtAddr,
1240     table: &PageTable<Arch>,
1241     unmap_parents: bool,
1242     allocator: &mut impl FrameAllocator,
1243 ) -> Option<(PhysAddr, PageFlags<Arch>)> {
1244     // 获取页表项的索引
1245     let i = table.index_of(vaddr)?;
1246 
1247     // 如果当前是最后一级页表,直接取消页面映射
1248     if table.level() == 0 {
1249         let entry = table.entry(i)?;
1250         table.set_entry(i, PageEntry::from_usize(0));
1251         return Some((entry.address().ok()?, entry.flags()));
1252     }
1253 
1254     let subtable = table.next_level_table(i)?;
1255     // 递归地取消映射
1256     let result = unmap_phys_inner(vaddr, &subtable, unmap_parents, allocator)?;
1257 
1258     // TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
1259     // as these mappings may become out of sync
1260     if unmap_parents {
1261         // 如果子页表已经没有映射的页面了,就取消子页表的映射
1262 
1263         // 检查子页表中是否还有映射的页面
1264         let x = (0..Arch::PAGE_ENTRY_NUM)
1265             .map(|k| subtable.entry(k).expect("invalid page entry"))
1266             .any(|e| e.present());
1267         if !x {
1268             // 如果没有,就取消子页表的映射
1269             table.set_entry(i, PageEntry::from_usize(0));
1270             // 释放子页表
1271             allocator.free_one(subtable.phys());
1272         }
1273     }
1274 
1275     return Some(result);
1276 }
1277 
1278 impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
1279     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1280         f.debug_struct("PageMapper")
1281             .field("table_paddr", &self.table_paddr)
1282             .field("frame_allocator", &self.frame_allocator)
1283             .finish()
1284     }
1285 }
1286 
1287 /// 页表刷新器的trait
1288 pub trait Flusher<Arch: MemoryManagementArch> {
1289     /// 取消对指定的page flusher的刷新
1290     fn consume(&mut self, flush: PageFlush<Arch>);
1291 }
1292 
1293 /// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
1294 /// 否则会造成对页表的更改被忽略,这是不安全的
1295 #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
1296 pub struct PageFlush<Arch: MemoryManagementArch> {
1297     virt: VirtAddr,
1298     phantom: PhantomData<Arch>,
1299 }
1300 
1301 impl<Arch: MemoryManagementArch> PageFlush<Arch> {
1302     pub fn new(virt: VirtAddr) -> Self {
1303         return Self {
1304             virt,
1305             phantom: PhantomData,
1306         };
1307     }
1308 
1309     pub fn flush(self) {
1310         unsafe { Arch::invalidate_page(self.virt) };
1311     }
1312 
1313     /// 忽略掉这个刷新器
1314     pub unsafe fn ignore(self) {
1315         mem::forget(self);
1316     }
1317 }
1318 
1319 impl<Arch: MemoryManagementArch> Drop for PageFlush<Arch> {
1320     fn drop(&mut self) {
1321         unsafe {
1322             MMArch::invalidate_page(self.virt);
1323         }
1324     }
1325 }
1326 
1327 /// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
1328 /// 否则会造成对页表的更改被忽略,这是不安全的
1329 #[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
1330 pub struct PageFlushAll<Arch: MemoryManagementArch> {
1331     phantom: PhantomData<fn() -> Arch>,
1332 }
1333 
1334 #[allow(dead_code)]
1335 impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
1336     pub fn new() -> Self {
1337         return Self {
1338             phantom: PhantomData,
1339         };
1340     }
1341 
1342     pub fn flush(self) {
1343         unsafe { Arch::invalidate_all() };
1344     }
1345 
1346     /// 忽略掉这个刷新器
1347     pub unsafe fn ignore(self) {
1348         mem::forget(self);
1349     }
1350 }
1351 
1352 impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
1353     /// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
1354     fn consume(&mut self, flush: PageFlush<Arch>) {
1355         unsafe { flush.ignore() };
1356     }
1357 }
1358 
1359 impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
1360     /// 允许一个flusher consume掉另一个flusher
1361     fn consume(&mut self, flush: PageFlush<Arch>) {
1362         <T as Flusher<Arch>>::consume(self, flush);
1363     }
1364 }
1365 
1366 impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
1367     fn consume(&mut self, _flush: PageFlush<Arch>) {}
1368 }
1369 
1370 impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
1371     fn drop(&mut self) {
1372         unsafe {
1373             Arch::invalidate_all();
1374         }
1375     }
1376 }
1377 
1378 /// 未在当前CPU上激活的页表的刷新器
1379 ///
1380 /// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
1381 ///
1382 /// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
1383 #[derive(Debug)]
1384 pub struct InactiveFlusher;
1385 
1386 impl InactiveFlusher {
1387     pub fn new() -> Self {
1388         return Self {};
1389     }
1390 }
1391 
1392 impl Flusher<MMArch> for InactiveFlusher {
1393     fn consume(&mut self, flush: PageFlush<MMArch>) {
1394         unsafe {
1395             flush.ignore();
1396         }
1397     }
1398 }
1399 
1400 impl Drop for InactiveFlusher {
1401     fn drop(&mut self) {
1402         // 发送刷新页表的IPI
1403         send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
1404     }
1405 }
1406 
1407 /// # 把一个地址向下对齐到页大小
1408 pub fn round_down_to_page_size(addr: usize) -> usize {
1409     addr & !(MMArch::PAGE_SIZE - 1)
1410 }
1411 
1412 /// # 把一个地址向上对齐到页大小
1413 pub fn round_up_to_page_size(addr: usize) -> usize {
1414     round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
1415 }
1416