1 #![allow(dead_code)] 2 use core::{any::Any, fmt::Debug}; 3 4 use alloc::{ 5 collections::BTreeMap, 6 string::String, 7 sync::{Arc, Weak}, 8 vec::Vec, 9 }; 10 11 use crate::{ 12 driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom}, 13 filesystem::vfs::{ 14 core::generate_inode_id, 15 file::{FileMode, FilePrivateData}, 16 syscall::ModeType, 17 FileSystem, FileType, IndexNode, InodeId, Metadata, PollStatus, 18 }, 19 kerror, 20 libs::{ 21 spinlock::{SpinLock, SpinLockGuard}, 22 vec_cursor::VecCursor, 23 }, 24 syscall::SystemError, 25 time::TimeSpec, 26 }; 27 28 use super::{ 29 bpb::{BiosParameterBlock, FATType}, 30 entry::{FATDir, FATDirEntry, FATDirIter, FATEntry}, 31 utils::RESERVED_CLUSTERS, 32 }; 33 34 /// FAT32文件系统的最大的文件大小 35 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff; 36 37 /// @brief 表示当前簇和上一个簇的关系的结构体 38 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。 39 #[derive(Debug, Clone, Copy, Default)] 40 pub struct Cluster { 41 pub cluster_num: u64, 42 pub parent_cluster: u64, 43 } 44 45 impl PartialOrd for Cluster { 46 /// @brief 根据当前簇号比较大小 47 fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { 48 return self.cluster_num.partial_cmp(&other.cluster_num); 49 } 50 } 51 52 impl PartialEq for Cluster { 53 /// @brief 根据当前簇号比较是否相等 54 fn eq(&self, other: &Self) -> bool { 55 self.cluster_num == other.cluster_num 56 } 57 } 58 59 impl Eq for Cluster {} 60 61 #[derive(Debug)] 62 pub struct FATFileSystem { 63 /// 当前文件系统所在的分区 64 pub partition: Arc<Partition>, 65 /// 当前文件系统的BOPB 66 pub bpb: BiosParameterBlock, 67 /// 当前文件系统的第一个数据扇区(相对分区开始位置) 68 pub first_data_sector: u64, 69 /// 文件系统信息结构体 70 pub fs_info: Arc<LockedFATFsInfo>, 71 /// 文件系统的根inode 72 root_inode: Arc<LockedFATInode>, 73 } 74 75 /// FAT文件系统的Inode 76 #[derive(Debug)] 77 pub struct LockedFATInode(SpinLock<FATInode>); 78 79 #[derive(Debug)] 80 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>); 81 82 impl LockedFATFsInfo { 83 #[inline] 84 pub fn new(fs_info: FATFsInfo) -> Self { 85 return Self(SpinLock::new(fs_info)); 86 } 87 } 88 89 #[derive(Debug)] 90 pub struct FATInode { 91 /// 指向父Inode的弱引用 92 parent: Weak<LockedFATInode>, 93 /// 指向自身的弱引用 94 self_ref: Weak<LockedFATInode>, 95 /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。 96 /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。 97 children: BTreeMap<String, Arc<LockedFATInode>>, 98 /// 当前inode的元数据 99 metadata: Metadata, 100 /// 指向inode所在的文件系统对象的指针 101 fs: Weak<FATFileSystem>, 102 103 /// 根据不同的Inode类型,创建不同的私有字段 104 inode_type: FATDirEntry, 105 } 106 107 impl FATInode { 108 /// @brief 更新当前inode的元数据 109 pub fn update_metadata(&mut self) { 110 // todo: 更新文件的访问时间等信息 111 match &self.inode_type { 112 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 113 self.metadata.size = f.size() as i64; 114 } 115 FATDirEntry::Dir(d) => { 116 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64; 117 } 118 FATDirEntry::UnInit => { 119 kerror!("update_metadata: Uninitialized FATDirEntry: {:?}", self); 120 return; 121 } 122 }; 123 } 124 125 fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> { 126 match &self.inode_type { 127 FATDirEntry::Dir(d) => { 128 // 尝试在缓存区查找 129 if let Some(entry) = self.children.get(&name.to_uppercase()) { 130 return Ok(entry.clone()); 131 } 132 // 在缓存区找不到 133 // 在磁盘查找 134 let fat_entry: FATDirEntry = 135 d.find_entry(name, None, None, self.fs.upgrade().unwrap())?; 136 // kdebug!("find entry from disk ok, entry={fat_entry:?}"); 137 // 创建新的inode 138 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new( 139 self.fs.upgrade().unwrap(), 140 self.self_ref.clone(), 141 fat_entry, 142 ); 143 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的 144 self.children 145 .insert(name.to_uppercase(), entry_inode.clone()); 146 return Ok(entry_inode); 147 } 148 FATDirEntry::UnInit => { 149 panic!( 150 "Uninitialized FAT Inode, fs = {:?}, inode={self:?}", 151 self.fs 152 ) 153 } 154 _ => { 155 return Err(SystemError::ENOTDIR); 156 } 157 } 158 } 159 } 160 161 impl LockedFATInode { 162 pub fn new( 163 fs: Arc<FATFileSystem>, 164 parent: Weak<LockedFATInode>, 165 inode_type: FATDirEntry, 166 ) -> Arc<LockedFATInode> { 167 let file_type = if let FATDirEntry::Dir(_) = inode_type { 168 FileType::Dir 169 } else { 170 FileType::File 171 }; 172 173 let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode { 174 parent: parent, 175 self_ref: Weak::default(), 176 children: BTreeMap::new(), 177 fs: Arc::downgrade(&fs), 178 inode_type: inode_type, 179 metadata: Metadata { 180 dev_id: 0, 181 inode_id: generate_inode_id(), 182 size: 0, 183 blk_size: fs.bpb.bytes_per_sector as usize, 184 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type { 185 fs.bpb.total_sectors_32 as usize 186 } else { 187 fs.bpb.total_sectors_16 as usize 188 }, 189 atime: TimeSpec::default(), 190 mtime: TimeSpec::default(), 191 ctime: TimeSpec::default(), 192 file_type: file_type, 193 mode: ModeType::from_bits_truncate(0o777), 194 nlinks: 1, 195 uid: 0, 196 gid: 0, 197 raw_dev: 0, 198 }, 199 }))); 200 201 inode.0.lock().self_ref = Arc::downgrade(&inode); 202 203 inode.0.lock().update_metadata(); 204 205 return inode; 206 } 207 } 208 209 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘) 210 #[derive(Debug)] 211 pub struct FATFsInfo { 212 /// Lead Signature - must equal 0x41615252 213 lead_sig: u32, 214 /// Value must equal 0x61417272 215 struc_sig: u32, 216 /// 空闲簇数目 217 free_count: u32, 218 /// 第一个空闲簇的位置(不一定准确,仅供加速查找) 219 next_free: u32, 220 /// 0xAA550000 221 trail_sig: u32, 222 /// Dirty flag to flush to disk 223 dirty: bool, 224 /// FsInfo Structure 在磁盘上的字节偏移量 225 /// Not present for FAT12 and FAT16 226 offset: Option<u64>, 227 } 228 229 impl FileSystem for FATFileSystem { 230 fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> { 231 return self.root_inode.clone(); 232 } 233 234 fn info(&self) -> crate::filesystem::vfs::FsInfo { 235 todo!() 236 } 237 238 /// @brief 本函数用于实现动态转换。 239 /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self 240 fn as_any_ref(&self) -> &dyn Any { 241 self 242 } 243 } 244 245 impl FATFileSystem { 246 /// FAT12允许的最大簇号 247 pub const FAT12_MAX_CLUSTER: u32 = 0xFF5; 248 /// FAT16允许的最大簇号 249 pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5; 250 /// FAT32允许的最大簇号 251 pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7; 252 253 pub fn new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, SystemError> { 254 let bpb = BiosParameterBlock::new(partition.clone())?; 255 256 // 从磁盘上读取FAT32文件系统的FsInfo结构体 257 let fs_info: FATFsInfo = match bpb.fat_type { 258 FATType::FAT32(bpb32) => { 259 let fs_info_in_disk_bytes_offset = partition.lba_start * LBA_SIZE as u64 260 + bpb32.fs_info as u64 * bpb.bytes_per_sector as u64; 261 FATFsInfo::new( 262 partition.clone(), 263 fs_info_in_disk_bytes_offset, 264 bpb.bytes_per_sector as usize, 265 )? 266 } 267 _ => FATFsInfo::default(), 268 }; 269 270 // 根目录项占用的扇区数(向上取整) 271 let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32) 272 + (bpb.bytes_per_sector as u64 - 1)) 273 / (bpb.bytes_per_sector as u64); 274 275 // FAT表大小(单位:扇区) 276 let fat_size = if bpb.fat_size_16 != 0 { 277 bpb.fat_size_16 as u64 278 } else { 279 match bpb.fat_type { 280 FATType::FAT32(x) => x.fat_size_32 as u64, 281 _ => { 282 kerror!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16"); 283 return Err(SystemError::EINVAL); 284 } 285 } 286 }; 287 288 let first_data_sector = 289 bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors; 290 291 // 创建文件系统的根节点 292 let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode { 293 parent: Weak::default(), 294 self_ref: Weak::default(), 295 children: BTreeMap::new(), 296 fs: Weak::default(), 297 inode_type: FATDirEntry::UnInit, 298 metadata: Metadata { 299 dev_id: 0, 300 inode_id: generate_inode_id(), 301 size: 0, 302 blk_size: bpb.bytes_per_sector as usize, 303 blocks: if let FATType::FAT32(_) = bpb.fat_type { 304 bpb.total_sectors_32 as usize 305 } else { 306 bpb.total_sectors_16 as usize 307 }, 308 atime: TimeSpec::default(), 309 mtime: TimeSpec::default(), 310 ctime: TimeSpec::default(), 311 file_type: FileType::Dir, 312 mode: ModeType::from_bits_truncate(0o777), 313 nlinks: 1, 314 uid: 0, 315 gid: 0, 316 raw_dev: 0, 317 }, 318 }))); 319 320 let result: Arc<FATFileSystem> = Arc::new(FATFileSystem { 321 partition: partition, 322 bpb, 323 first_data_sector, 324 fs_info: Arc::new(LockedFATFsInfo::new(fs_info)), 325 root_inode: root_inode, 326 }); 327 328 // 对root inode加锁,并继续完成初始化工作 329 let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock(); 330 root_guard.inode_type = FATDirEntry::Dir(result.root_dir()); 331 root_guard.parent = Arc::downgrade(&result.root_inode); 332 root_guard.self_ref = Arc::downgrade(&result.root_inode); 333 root_guard.fs = Arc::downgrade(&result); 334 // 释放锁 335 drop(root_guard); 336 337 return Ok(result); 338 } 339 340 /// @brief 计算每个簇有多少个字节 341 #[inline] 342 pub fn bytes_per_cluster(&self) -> u64 { 343 return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64); 344 } 345 346 /// @brief 读取当前簇在FAT表中存储的信息 347 /// 348 /// @param cluster 当前簇 349 /// 350 /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释) 351 /// @return Err(SystemError) 错误码 352 pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> { 353 let current_cluster = cluster.cluster_num; 354 if current_cluster < 2 { 355 // 0号簇和1号簇是保留簇,不允许用户使用 356 return Err(SystemError::EINVAL); 357 } 358 359 let fat_type: FATType = self.bpb.fat_type; 360 // 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 361 let fat_start_sector = self.fat_start_sector(); 362 let bytes_per_sec = self.bpb.bytes_per_sector as u64; 363 364 // cluster对应的FAT表项在分区内的字节偏移量 365 let fat_bytes_offset = 366 fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec); 367 368 // FAT表项所在的LBA地址 369 // let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset)); 370 let fat_ent_lba = self.partition.lba_start + fat_bytes_offset / LBA_SIZE as u64; 371 372 // FAT表项在逻辑块内的字节偏移量 373 let blk_offset = self.get_in_block_offset(fat_bytes_offset); 374 375 let mut v = Vec::<u8>::new(); 376 v.resize(self.bpb.bytes_per_sector as usize, 0); 377 self.partition 378 .disk() 379 .read_at(fat_ent_lba as usize, 1 * self.lba_per_sector(), &mut v)?; 380 381 let mut cursor = VecCursor::new(v); 382 cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?; 383 384 let res: FATEntry = match self.bpb.fat_type { 385 FATType::FAT12(_) => { 386 let mut entry = cursor.read_u16()?; 387 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。 388 if (current_cluster & 1) > 0 { 389 entry >>= 4; 390 } else { 391 entry &= 0x0fff; 392 } 393 394 if entry == 0 { 395 FATEntry::Unused 396 } else if entry == 0x0ff7 { 397 FATEntry::Bad 398 } else if entry >= 0x0ff8 { 399 FATEntry::EndOfChain 400 } else { 401 FATEntry::Next(Cluster { 402 cluster_num: entry as u64, 403 parent_cluster: current_cluster, 404 }) 405 } 406 } 407 FATType::FAT16(_) => { 408 let entry = cursor.read_u16()?; 409 410 if entry == 0 { 411 FATEntry::Unused 412 } else if entry == 0xfff7 { 413 FATEntry::Bad 414 } else if entry >= 0xfff8 { 415 FATEntry::EndOfChain 416 } else { 417 FATEntry::Next(Cluster { 418 cluster_num: entry as u64, 419 parent_cluster: current_cluster, 420 }) 421 } 422 } 423 FATType::FAT32(_) => { 424 let entry = cursor.read_u32()? & 0x0fffffff; 425 426 match entry { 427 _n if (current_cluster >= 0x0ffffff7 && current_cluster <= 0x0fffffff) => { 428 // 当前簇号不是一个能被获得的簇(可能是文件系统出错了) 429 kerror!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster); 430 FATEntry::Bad 431 } 432 0 => FATEntry::Unused, 433 0x0ffffff7 => FATEntry::Bad, 434 0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain, 435 _n => FATEntry::Next(Cluster { 436 cluster_num: entry as u64, 437 parent_cluster: current_cluster, 438 }), 439 } 440 } 441 }; 442 return Ok(res); 443 } 444 445 /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理) 446 /// 447 /// @param cluster 当前簇 448 /// 449 /// @return Ok(u64) 当前簇在FAT表中,存储的信息。 450 /// @return Err(SystemError) 错误码 451 pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> { 452 let current_cluster = cluster.cluster_num; 453 454 let fat_type: FATType = self.bpb.fat_type; 455 // 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 456 let fat_start_sector = self.fat_start_sector(); 457 let bytes_per_sec = self.bpb.bytes_per_sector as u64; 458 459 // cluster对应的FAT表项在分区内的字节偏移量 460 let fat_bytes_offset = 461 fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec); 462 463 // FAT表项所在的LBA地址 464 let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset)); 465 466 // FAT表项在逻辑块内的字节偏移量 467 let blk_offset = self.get_in_block_offset(fat_bytes_offset); 468 469 let mut v = Vec::<u8>::new(); 470 v.resize(self.bpb.bytes_per_sector as usize, 0); 471 self.partition 472 .disk() 473 .read_at(fat_ent_lba, 1 * self.lba_per_sector(), &mut v)?; 474 475 let mut cursor = VecCursor::new(v); 476 cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?; 477 478 let res = match self.bpb.fat_type { 479 FATType::FAT12(_) => { 480 let mut entry = cursor.read_u16()?; 481 entry = if (current_cluster & 0x0001) > 0 { 482 entry >> 4 483 } else { 484 entry & 0x0fff 485 }; 486 entry as u64 487 } 488 FATType::FAT16(_) => { 489 let entry = (cursor.read_u16()?) as u64; 490 entry 491 } 492 FATType::FAT32(_) => { 493 let entry = cursor.read_u32()? & 0x0fff_ffff; 494 entry as u64 495 } 496 }; 497 498 return Ok(res); 499 } 500 501 /// @brief 获取当前文件系统的root inode,在磁盘上的字节偏移量 502 pub fn root_dir_bytes_offset(&self) -> u64 { 503 match self.bpb.fat_type { 504 FATType::FAT32(s) => { 505 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2) 506 * (self.bpb.sector_per_cluster as u64) 507 + self.first_data_sector; 508 return (self.get_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64; 509 } 510 _ => { 511 let root_sec = (self.bpb.rsvd_sec_cnt as u64) 512 + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64); 513 return (self.get_lba_from_offset(root_sec) * LBA_SIZE) as u64; 514 } 515 } 516 } 517 518 /// @brief 获取当前文件系统的根目录项区域的结束位置,在磁盘上的字节偏移量。 519 /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None 520 pub fn root_dir_end_bytes_offset(&self) -> Option<u64> { 521 match self.bpb.fat_type { 522 FATType::FAT12(_) | FATType::FAT16(_) => { 523 return Some( 524 self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32, 525 ); 526 } 527 _ => { 528 return None; 529 } 530 } 531 } 532 533 /// @brief 获取簇在磁盘内的字节偏移量(相对磁盘起始位置。注意,不是分区内偏移量) 534 pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 { 535 if cluster.cluster_num >= 2 { 536 // 指定簇的第一个扇区号 537 let first_sec_of_cluster = (cluster.cluster_num - 2) 538 * (self.bpb.sector_per_cluster as u64) 539 + self.first_data_sector; 540 return (self.get_lba_from_offset(first_sec_of_cluster) * LBA_SIZE) as u64; 541 } else { 542 return 0; 543 } 544 } 545 546 /// @brief 获取一个空闲簇 547 /// 548 /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。 549 /// 550 /// @return Ok(Cluster) 新获取的空闲簇 551 /// @return Err(SystemError) 错误码 552 pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> { 553 let end_cluster: Cluster = self.max_cluster_number(); 554 let start_cluster: Cluster = match self.bpb.fat_type { 555 FATType::FAT32(_) => { 556 let next_free: u64 = match self.fs_info.0.lock().next_free() { 557 Some(x) => x, 558 None => 0xffffffff, 559 }; 560 if next_free < end_cluster.cluster_num { 561 Cluster::new(next_free) 562 } else { 563 Cluster::new(RESERVED_CLUSTERS as u64) 564 } 565 } 566 _ => Cluster::new(RESERVED_CLUSTERS as u64), 567 }; 568 569 // 寻找一个空的簇 570 let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) { 571 Ok(c) => c, 572 Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => { 573 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)? 574 } 575 Err(e) => return Err(e), 576 }; 577 578 self.set_entry(free_cluster, FATEntry::EndOfChain)?; 579 // 减少空闲簇计数 580 self.fs_info.0.lock().update_free_count_delta(-1); 581 // 更新搜索空闲簇的参考量 582 self.fs_info 583 .0 584 .lock() 585 .update_next_free((free_cluster.cluster_num + 1) as u32); 586 587 // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。 588 if let Some(prev_cluster) = prev_cluster { 589 // kdebug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}"); 590 self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?; 591 } 592 // 清空新获取的这个簇 593 self.zero_cluster(free_cluster)?; 594 return Ok(free_cluster); 595 } 596 597 /// @brief 释放簇链上的所有簇 598 /// 599 /// @param start_cluster 簇链的第一个簇 600 pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> { 601 let clusters: Vec<Cluster> = self.clusters(start_cluster); 602 for c in clusters { 603 self.deallocate_cluster(c)?; 604 } 605 return Ok(()); 606 } 607 608 /// @brief 释放簇 609 /// 610 /// @param 要释放的簇 611 pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> { 612 let entry: FATEntry = self.get_fat_entry(cluster)?; 613 // 如果不是坏簇 614 if entry != FATEntry::Bad { 615 self.set_entry(cluster, FATEntry::Unused)?; 616 self.fs_info.0.lock().update_free_count_delta(1); 617 // 安全选项:清空被释放的簇 618 #[cfg(feature = "secure")] 619 self.zero_cluster(cluster)?; 620 return Ok(()); 621 } else { 622 // 不能释放坏簇 623 kerror!("Bad clusters cannot be freed."); 624 return Err(SystemError::EFAULT); 625 } 626 } 627 628 /// @brief 获取文件系统的根目录项 629 pub fn root_dir(&self) -> FATDir { 630 match self.bpb.fat_type { 631 FATType::FAT32(s) => { 632 return FATDir { 633 first_cluster: Cluster::new(s.root_cluster as u64), 634 dir_name: String::from("/"), 635 root_offset: None, 636 short_dir_entry: None, 637 loc: None, 638 }; 639 } 640 _ => FATDir { 641 first_cluster: Cluster::new(0), 642 dir_name: String::from("/"), 643 root_offset: Some(self.root_dir_bytes_offset()), 644 short_dir_entry: None, 645 loc: None, 646 }, 647 } 648 } 649 650 /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 651 pub fn fat_start_sector(&self) -> u64 { 652 let active_fat = self.active_fat(); 653 let fat_size = self.fat_size(); 654 return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size; 655 } 656 657 /// @brief 获取当前活动的FAT表 658 pub fn active_fat(&self) -> u64 { 659 if self.mirroring_enabled() { 660 return 0; 661 } else { 662 match self.bpb.fat_type { 663 FATType::FAT32(bpb32) => { 664 return (bpb32.ext_flags & 0x0f) as u64; 665 } 666 _ => { 667 return 0; 668 } 669 } 670 } 671 } 672 673 /// @brief 获取当前文件系统的每个FAT表的大小 674 pub fn fat_size(&self) -> u64 { 675 if self.bpb.fat_size_16 != 0 { 676 return self.bpb.fat_size_16 as u64; 677 } else { 678 match self.bpb.fat_type { 679 FATType::FAT32(bpb32) => { 680 return bpb32.fat_size_32 as u64; 681 } 682 683 _ => { 684 panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16"); 685 } 686 } 687 } 688 } 689 690 /// @brief 判断当前文件系统是否启用了FAT表镜像 691 pub fn mirroring_enabled(&self) -> bool { 692 match self.bpb.fat_type { 693 FATType::FAT32(bpb32) => { 694 return (bpb32.ext_flags & 0x80) == 0; 695 } 696 _ => { 697 return false; 698 } 699 } 700 } 701 702 /// @brief 根据分区内的扇区偏移量,获得在磁盘上的LBA地址 703 #[inline] 704 pub fn get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize { 705 return (self.partition.lba_start 706 + in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64)) 707 as usize; 708 } 709 710 /// @brief 获取每个扇区占用多少个LBA 711 #[inline] 712 pub fn lba_per_sector(&self) -> usize { 713 return self.bpb.bytes_per_sector as usize / LBA_SIZE; 714 } 715 716 /// @brief 将分区内字节偏移量转换为扇区偏移量 717 #[inline] 718 pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 { 719 return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64); 720 } 721 722 /// @brief 根据磁盘上的字节偏移量,获取对应位置在分区内的字节偏移量 723 #[inline] 724 pub fn get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64 { 725 return disk_bytes_offset - (self.partition.lba_start * LBA_SIZE as u64); 726 } 727 728 /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量 729 #[inline] 730 pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 { 731 return bytes_offset % LBA_SIZE as u64; 732 } 733 734 /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息 735 /// 736 /// @param start_cluster 整个FAT链的起始簇号 737 pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> { 738 return self.cluster_iter(start_cluster).collect(); 739 } 740 741 /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇) 742 /// 743 /// @param start_cluster 整个FAT链的起始簇号 744 pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 { 745 return self 746 .cluster_iter(start_cluster) 747 .fold(0, |size, _cluster| size + 1); 748 } 749 /// @brief 获取一个簇迭代器对象 750 /// 751 /// @param start_cluster 整个FAT链的起始簇号 752 fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter { 753 return ClusterIter { 754 current_cluster: Some(start_cluster), 755 fs: self, 756 }; 757 } 758 759 /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始) 760 #[inline] 761 pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> { 762 return self.cluster_iter(start_cluster).skip(n).next(); 763 } 764 765 /// @brief 获取整个簇链的最后一个簇 766 #[inline] 767 pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> { 768 return self.cluster_iter(start_cluster).last(); 769 } 770 771 /// @brief 判断FAT文件系统的shut bit是否正常。 772 /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的” 773 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 774 /// 775 /// @return Ok(true) 正常 776 /// @return Ok(false) 不正常 777 /// @return Err(SystemError) 在判断时发生错误 778 pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> { 779 match self.bpb.fat_type { 780 FATType::FAT32(_) => { 781 // 对于FAT32, error bit位于第一个扇区的第8字节。 782 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000; 783 return Ok(bit > 0); 784 } 785 FATType::FAT16(_) => { 786 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000; 787 return Ok(bit > 0); 788 } 789 _ => return Ok(true), 790 } 791 } 792 793 /// @brief 判断FAT文件系统的hard error bit是否正常。 794 /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明 795 /// 卷上的某些扇区可能已损坏。 796 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 797 /// 798 /// @return Ok(true) 正常 799 /// @return Ok(false) 不正常 800 /// @return Err(SystemError) 在判断时发生错误 801 pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> { 802 match self.bpb.fat_type { 803 FATType::FAT32(_) => { 804 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000; 805 return Ok(bit > 0); 806 } 807 FATType::FAT16(_) => { 808 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000; 809 return Ok(bit > 0); 810 } 811 _ => return Ok(true), 812 } 813 } 814 815 /// @brief 设置文件系统的shut bit为正常状态 816 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 817 /// 818 /// @return Ok(()) 设置成功 819 /// @return Err(SystemError) 在设置过程中,出现错误 820 pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> { 821 match self.bpb.fat_type { 822 FATType::FAT32(_) => { 823 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000; 824 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 825 826 return Ok(()); 827 } 828 829 FATType::FAT16(_) => { 830 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000; 831 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 832 return Ok(()); 833 } 834 _ => return Ok(()), 835 } 836 } 837 838 /// @brief 设置文件系统的hard error bit为正常状态 839 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 840 /// 841 /// @return Ok(()) 设置成功 842 /// @return Err(SystemError) 在设置过程中,出现错误 843 pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> { 844 match self.bpb.fat_type { 845 FATType::FAT32(_) => { 846 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000; 847 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 848 return Ok(()); 849 } 850 851 FATType::FAT16(_) => { 852 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000; 853 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 854 return Ok(()); 855 } 856 _ => return Ok(()), 857 } 858 } 859 860 /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘 861 pub fn umount(&mut self) -> Result<(), SystemError> { 862 self.fs_info.0.lock().flush(&self.partition)?; 863 864 self.set_shut_bit_ok()?; 865 866 self.set_hard_error_bit_ok()?; 867 868 self.partition.disk().sync()?; 869 870 return Ok(()); 871 } 872 873 /// @brief 获取文件系统的最大簇号 874 pub fn max_cluster_number(&self) -> Cluster { 875 match self.bpb.fat_type { 876 FATType::FAT32(s) => { 877 // FAT32 878 879 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区) 880 let data_sec: u64 = self.bpb.total_sectors_32 as u64 881 - (self.bpb.rsvd_sec_cnt as u64 882 + self.bpb.num_fats as u64 * s.fat_size_32 as u64); 883 884 // 数据区的簇数量 885 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64; 886 887 // 返回最大的簇号 888 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1); 889 } 890 891 _ => { 892 // FAT12 / FAT16 893 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32) 894 + self.bpb.bytes_per_sector as u64 895 - 1) 896 / self.bpb.bytes_per_sector as u64; 897 // 数据区扇区数 898 let data_sec: u64 = self.bpb.total_sectors_16 as u64 899 - (self.bpb.rsvd_sec_cnt as u64 900 + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64) 901 + root_dir_sectors); 902 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64; 903 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1); 904 } 905 } 906 } 907 908 /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇 909 /// 910 /// @param start_cluster 起始簇号 911 /// @param end_cluster 终止簇号(不包含) 912 /// 913 /// @return Ok(Cluster) 寻找到的空闲簇 914 /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC. 915 pub fn get_free_cluster( 916 &self, 917 start_cluster: Cluster, 918 end_cluster: Cluster, 919 ) -> Result<Cluster, SystemError> { 920 let max_cluster: Cluster = self.max_cluster_number(); 921 let mut cluster: u64 = start_cluster.cluster_num; 922 923 let fat_type: FATType = self.bpb.fat_type; 924 let fat_start_sector: u64 = self.fat_start_sector(); 925 let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64; 926 927 match fat_type { 928 FATType::FAT12(_) => { 929 let part_bytes_offset: u64 = 930 fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec); 931 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 932 933 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 934 935 // 由于FAT12的FAT表不大于6K,因此直接读取6K 936 let num_lba = (6 * 1024) / LBA_SIZE; 937 let mut v: Vec<u8> = Vec::new(); 938 v.resize(num_lba * LBA_SIZE, 0); 939 self.partition.disk().read_at(lba, num_lba, &mut v)?; 940 941 let mut cursor: VecCursor = VecCursor::new(v); 942 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 943 944 let mut packed_val: u16 = cursor.read_u16()?; 945 loop { 946 let val = if (cluster & 0x1) > 0 { 947 packed_val >> 4 948 } else { 949 packed_val & 0x0fff 950 }; 951 if val == 0 { 952 return Ok(Cluster::new(cluster as u64)); 953 } 954 955 cluster += 1; 956 957 // 磁盘无剩余空间,或者簇号达到给定的最大值 958 if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num { 959 return Err(SystemError::ENOSPC); 960 } 961 962 packed_val = match cluster & 1 { 963 0 => cursor.read_u16()?, 964 _ => { 965 let next_byte = cursor.read_u8()? as u16; 966 (packed_val >> 8) | (next_byte << 8) 967 } 968 }; 969 } 970 } 971 FATType::FAT16(_) => { 972 // todo: 优化这里,减少读取磁盘的次数。 973 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num { 974 let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset( 975 Cluster::new(cluster), 976 fat_start_sector, 977 bytes_per_sec, 978 ); 979 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 980 981 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 982 983 let mut v: Vec<u8> = Vec::new(); 984 v.resize(self.lba_per_sector() * LBA_SIZE, 0); 985 self.partition 986 .disk() 987 .read_at(lba, self.lba_per_sector(), &mut v)?; 988 989 let mut cursor: VecCursor = VecCursor::new(v); 990 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 991 992 let val = cursor.read_u16()?; 993 // 找到空闲簇 994 if val == 0 { 995 return Ok(Cluster::new(val as u64)); 996 } 997 cluster += 1; 998 } 999 1000 // 磁盘无剩余空间,或者簇号达到给定的最大值 1001 return Err(SystemError::ENOSPC); 1002 } 1003 FATType::FAT32(_) => { 1004 // todo: 优化这里,减少读取磁盘的次数。 1005 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num { 1006 let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset( 1007 Cluster::new(cluster), 1008 fat_start_sector, 1009 bytes_per_sec, 1010 ); 1011 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 1012 1013 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 1014 1015 let mut v: Vec<u8> = Vec::new(); 1016 v.resize(self.lba_per_sector() * LBA_SIZE, 0); 1017 self.partition 1018 .disk() 1019 .read_at(lba, self.lba_per_sector(), &mut v)?; 1020 1021 let mut cursor: VecCursor = VecCursor::new(v); 1022 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1023 1024 let val = cursor.read_u32()? & 0x0fffffff; 1025 1026 if val == 0 { 1027 return Ok(Cluster::new(cluster)); 1028 } 1029 cluster += 1; 1030 } 1031 1032 // 磁盘无剩余空间,或者簇号达到给定的最大值 1033 return Err(SystemError::ENOSPC); 1034 } 1035 } 1036 } 1037 1038 /// @brief 在FAT表中,设置指定的簇的信息。 1039 /// 1040 /// @param cluster 目标簇 1041 /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号) 1042 pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> { 1043 // fat表项在分区上的字节偏移量 1044 let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset( 1045 cluster, 1046 self.fat_start_sector(), 1047 self.bpb.bytes_per_sector as u64, 1048 ); 1049 1050 match self.bpb.fat_type { 1051 FATType::FAT12(_) => { 1052 // 计算要写入的值 1053 let raw_val: u16 = match fat_entry { 1054 FATEntry::Unused => 0, 1055 FATEntry::Bad => 0xff7, 1056 FATEntry::EndOfChain => 0xfff, 1057 FATEntry::Next(c) => c.cluster_num as u16, 1058 }; 1059 1060 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset); 1061 1062 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset)); 1063 1064 let mut v: Vec<u8> = Vec::new(); 1065 v.resize(LBA_SIZE, 0); 1066 self.partition.disk().read_at(lba, 1, &mut v)?; 1067 1068 let mut cursor: VecCursor = VecCursor::new(v); 1069 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1070 1071 let old_val: u16 = cursor.read_u16()?; 1072 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 { 1073 (old_val & 0x000f) | (raw_val << 4) 1074 } else { 1075 (old_val & 0xf000) | raw_val 1076 }; 1077 1078 // 写回数据到磁盘上 1079 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1080 cursor.write_u16(new_val)?; 1081 self.partition.disk().write_at(lba, 1, cursor.as_slice())?; 1082 return Ok(()); 1083 } 1084 FATType::FAT16(_) => { 1085 // 计算要写入的值 1086 let raw_val: u16 = match fat_entry { 1087 FATEntry::Unused => 0, 1088 FATEntry::Bad => 0xfff7, 1089 FATEntry::EndOfChain => 0xfdff, 1090 FATEntry::Next(c) => c.cluster_num as u16, 1091 }; 1092 1093 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset); 1094 1095 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset)); 1096 1097 let mut v: Vec<u8> = Vec::new(); 1098 v.resize(LBA_SIZE, 0); 1099 self.partition.disk().read_at(lba, 1, &mut v)?; 1100 1101 let mut cursor: VecCursor = VecCursor::new(v); 1102 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1103 1104 cursor.write_u16(raw_val)?; 1105 self.partition.disk().write_at(lba, 1, cursor.as_slice())?; 1106 1107 return Ok(()); 1108 } 1109 FATType::FAT32(_) => { 1110 let fat_size: u64 = self.fat_size(); 1111 let bound: u64 = if self.mirroring_enabled() { 1112 1 1113 } else { 1114 self.bpb.num_fats as u64 1115 }; 1116 // kdebug!("set entry, bound={bound}, fat_size={fat_size}"); 1117 for i in 0..bound { 1118 // 当前操作的FAT表在磁盘上的字节偏移量 1119 let f_offset: u64 = fat_part_bytes_offset + i * fat_size; 1120 let in_block_offset: u64 = self.get_in_block_offset(f_offset); 1121 let lba = self.get_lba_from_offset(self.bytes_to_sector(f_offset)); 1122 1123 // kdebug!("set entry, lba={lba}, in_block_offset={in_block_offset}"); 1124 let mut v: Vec<u8> = Vec::new(); 1125 v.resize(LBA_SIZE, 0); 1126 self.partition.disk().read_at(lba, 1, &mut v)?; 1127 1128 let mut cursor: VecCursor = VecCursor::new(v); 1129 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1130 1131 // FAT32的高4位保留 1132 let old_bits = cursor.read_u32()? & 0xf0000000; 1133 1134 if fat_entry == FATEntry::Unused 1135 && cluster.cluster_num >= 0x0ffffff7 1136 && cluster.cluster_num <= 0x0fffffff 1137 { 1138 kerror!( 1139 "FAT32: Reserved Cluster {:?} cannot be marked as free", 1140 cluster 1141 ); 1142 return Err(SystemError::EPERM); 1143 } 1144 1145 // 计算要写入的值 1146 let mut raw_val: u32 = match fat_entry { 1147 FATEntry::Unused => 0, 1148 FATEntry::Bad => 0x0FFFFFF7, 1149 FATEntry::EndOfChain => 0x0FFFFFFF, 1150 FATEntry::Next(c) => c.cluster_num as u32, 1151 }; 1152 1153 // 恢复保留位 1154 raw_val |= old_bits; 1155 1156 // kdebug!("sent entry, raw_val={raw_val}"); 1157 1158 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1159 cursor.write_u32(raw_val)?; 1160 1161 self.partition.disk().write_at(lba, 1, cursor.as_slice())?; 1162 } 1163 1164 return Ok(()); 1165 } 1166 } 1167 } 1168 1169 /// @brief 清空指定的簇 1170 /// 1171 /// @param cluster 要被清空的簇 1172 pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> { 1173 // 准备数据,用于写入 1174 let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize]; 1175 let offset: usize = self.cluster_bytes_offset(cluster) as usize; 1176 self.partition 1177 .disk() 1178 .write_at_bytes(offset, zeros.len(), zeros.as_slice())?; 1179 return Ok(()); 1180 } 1181 } 1182 1183 impl Drop for FATFileSystem { 1184 fn drop(&mut self) { 1185 let r = self.umount(); 1186 if r.is_err() { 1187 kerror!( 1188 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}", 1189 r.unwrap_err() 1190 ); 1191 } 1192 } 1193 } 1194 1195 impl FATFsInfo { 1196 const LEAD_SIG: u32 = 0x41615252; 1197 const STRUC_SIG: u32 = 0x61417272; 1198 const TRAIL_SIG: u32 = 0xAA550000; 1199 const FS_INFO_SIZE: u64 = 512; 1200 1201 /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体 1202 /// 1203 /// @param partition 磁盘分区 1204 /// @param in_disk_fs_info_offset FSInfo扇区在磁盘内的字节偏移量(单位:字节) 1205 /// @param bytes_per_sec 每扇区字节数 1206 pub fn new( 1207 partition: Arc<Partition>, 1208 in_disk_fs_info_offset: u64, 1209 bytes_per_sec: usize, 1210 ) -> Result<Self, SystemError> { 1211 let mut v = Vec::<u8>::new(); 1212 v.resize(bytes_per_sec, 0); 1213 1214 // 计算fs_info扇区在磁盘上的字节偏移量,从磁盘读取数据 1215 partition 1216 .disk() 1217 .read_at(in_disk_fs_info_offset as usize / LBA_SIZE, 1, &mut v)?; 1218 let mut cursor = VecCursor::new(v); 1219 1220 let mut fsinfo = FATFsInfo::default(); 1221 1222 fsinfo.lead_sig = cursor.read_u32()?; 1223 cursor.seek(SeekFrom::SeekCurrent(480))?; 1224 fsinfo.struc_sig = cursor.read_u32()?; 1225 fsinfo.free_count = cursor.read_u32()?; 1226 fsinfo.next_free = cursor.read_u32()?; 1227 1228 cursor.seek(SeekFrom::SeekCurrent(12))?; 1229 1230 fsinfo.trail_sig = cursor.read_u32()?; 1231 fsinfo.dirty = false; 1232 fsinfo.offset = Some(in_disk_fs_info_offset); 1233 1234 if fsinfo.is_valid() { 1235 return Ok(fsinfo); 1236 } else { 1237 kerror!("Error occurred while parsing FATFsInfo."); 1238 return Err(SystemError::EINVAL); 1239 } 1240 } 1241 1242 /// @brief 判断是否为正确的FsInfo结构体 1243 fn is_valid(&self) -> bool { 1244 self.lead_sig == Self::LEAD_SIG 1245 && self.struc_sig == Self::STRUC_SIG 1246 && self.trail_sig == Self::TRAIL_SIG 1247 } 1248 1249 /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量 1250 /// 1251 /// @param 当前文件系统的最大簇号 1252 pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> { 1253 let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1; 1254 // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值 1255 if self.free_count as u64 > count_clusters { 1256 return None; 1257 } else { 1258 match self.free_count { 1259 // free count字段不可用 1260 0xffffffff => return None, 1261 // 返回FsInfo中存储的数据 1262 n => return Some(n as u64), 1263 } 1264 } 1265 } 1266 1267 /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count 1268 /// 1269 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 1270 pub fn update_free_count_abs(&mut self, new_count: u32) { 1271 self.free_count = new_count; 1272 } 1273 1274 /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta. 1275 /// 1276 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 1277 pub fn update_free_count_delta(&mut self, delta: i32) { 1278 self.free_count = (self.free_count as i32 + delta) as u32; 1279 } 1280 1281 /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free. 1282 /// 1283 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 1284 pub fn update_next_free(&mut self, next_free: u32) { 1285 // 这个值是参考量,不一定要准确,仅供加速查找 1286 self.next_free = next_free; 1287 } 1288 1289 /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考) 1290 pub fn next_free(&self) -> Option<u64> { 1291 match self.next_free { 1292 0xffffffff => return None, 1293 0 | 1 => return None, 1294 n => return Some(n as u64), 1295 }; 1296 } 1297 1298 /// @brief 把fs info刷入磁盘 1299 /// 1300 /// @param partition fs info所在的分区 1301 pub fn flush(&self, partition: &Arc<Partition>) -> Result<(), SystemError> { 1302 if let Some(off) = self.offset { 1303 let in_block_offset = off % LBA_SIZE as u64; 1304 1305 let lba = off as usize / LBA_SIZE; 1306 1307 let mut v: Vec<u8> = Vec::new(); 1308 v.resize(LBA_SIZE, 0); 1309 partition.disk().read_at(lba, 1, &mut v)?; 1310 1311 let mut cursor: VecCursor = VecCursor::new(v); 1312 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1313 1314 cursor.write_u32(self.lead_sig)?; 1315 cursor.seek(SeekFrom::SeekCurrent(480))?; 1316 cursor.write_u32(self.struc_sig)?; 1317 cursor.write_u32(self.free_count)?; 1318 cursor.write_u32(self.next_free)?; 1319 cursor.seek(SeekFrom::SeekCurrent(12))?; 1320 cursor.write_u32(self.trail_sig)?; 1321 1322 partition.disk().write_at(lba, 1, cursor.as_slice())?; 1323 } 1324 return Ok(()); 1325 } 1326 1327 /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中 1328 /// 1329 /// @param partition fs info所在的分区 1330 pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> { 1331 if let Some(off) = self.offset { 1332 let in_block_offset = off % LBA_SIZE as u64; 1333 1334 let lba = off as usize / LBA_SIZE; 1335 1336 let mut v: Vec<u8> = Vec::new(); 1337 v.resize(LBA_SIZE, 0); 1338 partition.disk().read_at(lba, 1, &mut v)?; 1339 let mut cursor: VecCursor = VecCursor::new(v); 1340 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1341 self.lead_sig = cursor.read_u32()?; 1342 1343 cursor.seek(SeekFrom::SeekCurrent(480))?; 1344 self.struc_sig = cursor.read_u32()?; 1345 self.free_count = cursor.read_u32()?; 1346 self.next_free = cursor.read_u32()?; 1347 cursor.seek(SeekFrom::SeekCurrent(12))?; 1348 self.trail_sig = cursor.read_u32()?; 1349 } 1350 return Ok(()); 1351 } 1352 } 1353 1354 impl IndexNode for LockedFATInode { 1355 fn read_at( 1356 &self, 1357 offset: usize, 1358 len: usize, 1359 buf: &mut [u8], 1360 _data: &mut FilePrivateData, 1361 ) -> Result<usize, SystemError> { 1362 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1363 match &guard.inode_type { 1364 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 1365 let r = f.read( 1366 &guard.fs.upgrade().unwrap(), 1367 &mut buf[0..len], 1368 offset as u64, 1369 ); 1370 guard.update_metadata(); 1371 return r; 1372 } 1373 FATDirEntry::Dir(_) => { 1374 return Err(SystemError::EISDIR); 1375 } 1376 FATDirEntry::UnInit => { 1377 kerror!("FATFS: param: Inode_type uninitialized."); 1378 return Err(SystemError::EROFS); 1379 } 1380 } 1381 } 1382 1383 fn write_at( 1384 &self, 1385 offset: usize, 1386 len: usize, 1387 buf: &[u8], 1388 _data: &mut FilePrivateData, 1389 ) -> Result<usize, SystemError> { 1390 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1391 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1392 1393 match &mut guard.inode_type { 1394 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 1395 let r = f.write(fs, &buf[0..len], offset as u64); 1396 guard.update_metadata(); 1397 return r; 1398 } 1399 FATDirEntry::Dir(_) => { 1400 return Err(SystemError::EISDIR); 1401 } 1402 FATDirEntry::UnInit => { 1403 kerror!("FATFS: param: Inode_type uninitialized."); 1404 return Err(SystemError::EROFS); 1405 } 1406 } 1407 } 1408 1409 fn poll(&self) -> Result<PollStatus, SystemError> { 1410 // 加锁 1411 let inode: SpinLockGuard<FATInode> = self.0.lock(); 1412 1413 // 检查当前inode是否为一个文件夹,如果是的话,就返回错误 1414 if inode.metadata.file_type == FileType::Dir { 1415 return Err(SystemError::EISDIR); 1416 } 1417 1418 return Ok(PollStatus::READ | PollStatus::WRITE); 1419 } 1420 1421 fn create( 1422 &self, 1423 name: &str, 1424 file_type: FileType, 1425 _mode: ModeType, 1426 ) -> Result<Arc<dyn IndexNode>, SystemError> { 1427 // 由于FAT32不支持文件权限的功能,因此忽略mode参数 1428 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1429 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1430 1431 match &mut guard.inode_type { 1432 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1433 return Err(SystemError::ENOTDIR); 1434 } 1435 FATDirEntry::Dir(d) => match file_type { 1436 FileType::File => { 1437 d.create_file(name, fs)?; 1438 return Ok(guard.find(name)?); 1439 } 1440 FileType::Dir => { 1441 d.create_dir(name, fs)?; 1442 return Ok(guard.find(name)?); 1443 } 1444 1445 FileType::SymLink => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP), 1446 _ => return Err(SystemError::EINVAL), 1447 }, 1448 FATDirEntry::UnInit => { 1449 kerror!("FATFS: param: Inode_type uninitialized."); 1450 return Err(SystemError::EROFS); 1451 } 1452 } 1453 } 1454 1455 fn fs(&self) -> Arc<dyn FileSystem> { 1456 return self.0.lock().fs.upgrade().unwrap(); 1457 } 1458 1459 fn as_any_ref(&self) -> &dyn core::any::Any { 1460 return self; 1461 } 1462 1463 fn metadata(&self) -> Result<Metadata, SystemError> { 1464 return Ok(self.0.lock().metadata.clone()); 1465 } 1466 fn resize(&self, len: usize) -> Result<(), SystemError> { 1467 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1468 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1469 let old_size = guard.metadata.size as usize; 1470 1471 match &mut guard.inode_type { 1472 FATDirEntry::File(file) | FATDirEntry::VolId(file) => { 1473 // 如果新的长度和旧的长度相同,那么就直接返回 1474 if len == old_size { 1475 return Ok(()); 1476 } else if len > old_size { 1477 // 如果新的长度比旧的长度大,那么就在文件末尾添加空白 1478 let mut buf: Vec<u8> = Vec::new(); 1479 let mut remain_size = len - old_size; 1480 let buf_size = remain_size; 1481 // let buf_size = core::cmp::min(remain_size, 512 * 1024); 1482 buf.resize(buf_size, 0); 1483 1484 let mut offset = old_size; 1485 while remain_size > 0 { 1486 let write_size = core::cmp::min(remain_size, buf_size); 1487 file.write(fs, &buf[0..write_size], offset as u64)?; 1488 remain_size -= write_size; 1489 offset += write_size; 1490 } 1491 } else { 1492 file.truncate(fs, len as u64)?; 1493 } 1494 guard.update_metadata(); 1495 return Ok(()); 1496 } 1497 FATDirEntry::Dir(_) => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP), 1498 FATDirEntry::UnInit => { 1499 kerror!("FATFS: param: Inode_type uninitialized."); 1500 return Err(SystemError::EROFS); 1501 } 1502 } 1503 } 1504 1505 fn list(&self) -> Result<Vec<String>, SystemError> { 1506 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1507 let fatent: &FATDirEntry = &guard.inode_type; 1508 match fatent { 1509 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1510 return Err(SystemError::ENOTDIR); 1511 } 1512 FATDirEntry::Dir(dir) => { 1513 // 获取当前目录下的所有目录项 1514 let mut ret: Vec<String> = Vec::new(); 1515 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap()); 1516 for ent in dir_iter { 1517 ret.push(ent.name()); 1518 1519 // ====== 生成inode缓存,存入B树 1520 let name: String = ent.name(); 1521 // kdebug!("name={name}"); 1522 1523 if guard.children.contains_key(&name.to_uppercase()) == false 1524 && name != "." 1525 && name != ".." 1526 { 1527 // 创建新的inode 1528 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new( 1529 guard.fs.upgrade().unwrap(), 1530 guard.self_ref.clone(), 1531 ent, 1532 ); 1533 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的 1534 guard 1535 .children 1536 .insert(name.to_uppercase(), entry_inode.clone()); 1537 } 1538 } 1539 return Ok(ret); 1540 } 1541 FATDirEntry::UnInit => { 1542 kerror!("FATFS: param: Inode_type uninitialized."); 1543 return Err(SystemError::EROFS); 1544 } 1545 } 1546 } 1547 1548 fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> { 1549 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1550 let target = guard.find(name)?; 1551 return Ok(target); 1552 } 1553 1554 fn open(&self, _data: &mut FilePrivateData, _mode: &FileMode) -> Result<(), SystemError> { 1555 return Ok(()); 1556 } 1557 1558 fn close(&self, _data: &mut FilePrivateData) -> Result<(), SystemError> { 1559 return Ok(()); 1560 } 1561 1562 fn unlink(&self, name: &str) -> Result<(), SystemError> { 1563 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1564 let target: Arc<LockedFATInode> = guard.find(name)?; 1565 // 对目标inode上锁,以防更改 1566 let target_guard: SpinLockGuard<FATInode> = target.0.lock(); 1567 // 先从缓存删除 1568 guard.children.remove(&name.to_uppercase()); 1569 1570 let dir = match &guard.inode_type { 1571 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1572 return Err(SystemError::ENOTDIR); 1573 } 1574 FATDirEntry::Dir(d) => d, 1575 FATDirEntry::UnInit => { 1576 kerror!("FATFS: param: Inode_type uninitialized."); 1577 return Err(SystemError::EROFS); 1578 } 1579 }; 1580 // 检查文件是否存在 1581 dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?; 1582 1583 // 再从磁盘删除 1584 let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true); 1585 drop(target_guard); 1586 return r; 1587 } 1588 1589 fn rmdir(&self, name: &str) -> Result<(), SystemError> { 1590 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1591 let target: Arc<LockedFATInode> = guard.find(name)?; 1592 // 对目标inode上锁,以防更改 1593 let target_guard: SpinLockGuard<FATInode> = target.0.lock(); 1594 // 先从缓存删除 1595 guard.children.remove(&name.to_uppercase()); 1596 1597 let dir = match &guard.inode_type { 1598 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1599 return Err(SystemError::ENOTDIR); 1600 } 1601 FATDirEntry::Dir(d) => d, 1602 FATDirEntry::UnInit => { 1603 kerror!("FATFS: param: Inode_type uninitialized."); 1604 return Err(SystemError::EROFS); 1605 } 1606 }; 1607 // 检查文件夹是否存在 1608 dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?; 1609 1610 // 再从磁盘删除 1611 let r: Result<(), SystemError> = 1612 dir.remove(guard.fs.upgrade().unwrap().clone(), name, true); 1613 if r.is_ok() { 1614 return r; 1615 } else { 1616 let r = r.unwrap_err(); 1617 if r == SystemError::ENOTEMPTY { 1618 // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存 1619 guard.children.insert(name.to_uppercase(), target.clone()); 1620 drop(target_guard); 1621 } 1622 return Err(r); 1623 } 1624 } 1625 1626 fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> { 1627 let guard: SpinLockGuard<FATInode> = self.0.lock(); 1628 if guard.metadata.file_type != FileType::Dir { 1629 return Err(SystemError::ENOTDIR); 1630 } 1631 match ino.into() { 1632 0 => { 1633 return Ok(String::from(".")); 1634 } 1635 1 => { 1636 return Ok(String::from("..")); 1637 } 1638 ino => { 1639 // 暴力遍历所有的children,判断inode id是否相同 1640 // TODO: 优化这里,这个地方性能很差! 1641 let mut key: Vec<String> = guard 1642 .children 1643 .keys() 1644 .filter(|k| { 1645 guard 1646 .children 1647 .get(*k) 1648 .unwrap() 1649 .metadata() 1650 .unwrap() 1651 .inode_id 1652 .into() 1653 == ino 1654 }) 1655 .cloned() 1656 .collect(); 1657 1658 match key.len() { 1659 0=>{return Err(SystemError::ENOENT);} 1660 1=>{return Ok(key.remove(0));} 1661 _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino) 1662 } 1663 } 1664 } 1665 } 1666 } 1667 1668 impl Default for FATFsInfo { 1669 fn default() -> Self { 1670 return FATFsInfo { 1671 lead_sig: FATFsInfo::LEAD_SIG, 1672 struc_sig: FATFsInfo::STRUC_SIG, 1673 free_count: 0xFFFFFFFF, 1674 next_free: RESERVED_CLUSTERS, 1675 trail_sig: FATFsInfo::TRAIL_SIG, 1676 dirty: false, 1677 offset: None, 1678 }; 1679 } 1680 } 1681 1682 impl Cluster { 1683 pub fn new(cluster: u64) -> Self { 1684 return Cluster { 1685 cluster_num: cluster, 1686 parent_cluster: 0, 1687 }; 1688 } 1689 } 1690 1691 /// @brief 用于迭代FAT表的内容的簇迭代器对象 1692 #[derive(Debug)] 1693 struct ClusterIter<'a> { 1694 /// 迭代器的next要返回的簇 1695 current_cluster: Option<Cluster>, 1696 /// 属于的文件系统 1697 fs: &'a FATFileSystem, 1698 } 1699 1700 impl<'a> Iterator for ClusterIter<'a> { 1701 type Item = Cluster; 1702 1703 fn next(&mut self) -> Option<Self::Item> { 1704 // 当前要返回的簇 1705 let ret: Option<Cluster> = self.current_cluster; 1706 1707 // 获得下一个要返回簇 1708 let new: Option<Cluster> = match self.current_cluster { 1709 Some(c) => { 1710 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok(); 1711 match entry { 1712 Some(FATEntry::Next(c)) => Some(c), 1713 _ => None, 1714 } 1715 } 1716 _ => None, 1717 }; 1718 1719 self.current_cluster = new; 1720 return ret; 1721 } 1722 } 1723