xref: /DragonOS/kernel/src/filesystem/fat/fs.rs (revision eb49bb993a39964f92494ec3effafed3fb9adfd8)
1 use core::cmp::Ordering;
2 use core::intrinsics::unlikely;
3 use core::{any::Any, fmt::Debug};
4 use system_error::SystemError;
5 
6 use alloc::{
7     collections::BTreeMap,
8     string::String,
9     sync::{Arc, Weak},
10     vec::Vec,
11 };
12 
13 use crate::driver::base::device::device_number::DeviceNumber;
14 use crate::filesystem::vfs::{Magic, SpecialNodeData, SuperBlock};
15 use crate::ipc::pipe::LockedPipeInode;
16 use crate::{
17     driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom},
18     filesystem::vfs::{
19         core::generate_inode_id,
20         file::{FileMode, FilePrivateData},
21         syscall::ModeType,
22         FileSystem, FileType, IndexNode, InodeId, Metadata,
23     },
24     kerror,
25     libs::{
26         spinlock::{SpinLock, SpinLockGuard},
27         vec_cursor::VecCursor,
28     },
29     time::TimeSpec,
30 };
31 
32 use super::entry::FATFile;
33 use super::{
34     bpb::{BiosParameterBlock, FATType},
35     entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
36     utils::RESERVED_CLUSTERS,
37 };
38 
39 const FAT_MAX_NAMELEN: u64 = 255;
40 
41 /// FAT32文件系统的最大的文件大小
42 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
43 
44 /// @brief 表示当前簇和上一个簇的关系的结构体
45 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
46 #[derive(Debug, Clone, Copy, Default)]
47 pub struct Cluster {
48     pub cluster_num: u64,
49     pub parent_cluster: u64,
50 }
51 
52 impl PartialOrd for Cluster {
53     /// @brief 根据当前簇号比较大小
54     fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
55         return self.cluster_num.partial_cmp(&other.cluster_num);
56     }
57 }
58 
59 impl PartialEq for Cluster {
60     /// @brief 根据当前簇号比较是否相等
61     fn eq(&self, other: &Self) -> bool {
62         self.cluster_num == other.cluster_num
63     }
64 }
65 
66 impl Eq for Cluster {}
67 
68 #[derive(Debug)]
69 pub struct FATFileSystem {
70     /// 当前文件系统所在的分区
71     pub partition: Arc<Partition>,
72     /// 当前文件系统的BOPB
73     pub bpb: BiosParameterBlock,
74     /// 当前文件系统的第一个数据扇区(相对分区开始位置)
75     pub first_data_sector: u64,
76     /// 文件系统信息结构体
77     pub fs_info: Arc<LockedFATFsInfo>,
78     /// 文件系统的根inode
79     root_inode: Arc<LockedFATInode>,
80 }
81 
82 /// FAT文件系统的Inode
83 #[derive(Debug)]
84 pub struct LockedFATInode(SpinLock<FATInode>);
85 
86 #[derive(Debug)]
87 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
88 
89 impl LockedFATFsInfo {
90     #[inline]
91     pub fn new(fs_info: FATFsInfo) -> Self {
92         return Self(SpinLock::new(fs_info));
93     }
94 }
95 
96 #[derive(Debug)]
97 pub struct FATInode {
98     /// 指向父Inode的弱引用
99     parent: Weak<LockedFATInode>,
100     /// 指向自身的弱引用
101     self_ref: Weak<LockedFATInode>,
102     /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。
103     /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
104     children: BTreeMap<String, Arc<LockedFATInode>>,
105     /// 当前inode的元数据
106     metadata: Metadata,
107     /// 指向inode所在的文件系统对象的指针
108     fs: Weak<FATFileSystem>,
109 
110     /// 根据不同的Inode类型,创建不同的私有字段
111     inode_type: FATDirEntry,
112 
113     /// 若该节点是特殊文件节点,该字段则为真正的文件节点
114     special_node: Option<SpecialNodeData>,
115 }
116 
117 impl FATInode {
118     /// @brief 更新当前inode的元数据
119     pub fn update_metadata(&mut self) {
120         // todo: 更新文件的访问时间等信息
121         match &self.inode_type {
122             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
123                 self.metadata.size = f.size() as i64;
124             }
125             FATDirEntry::Dir(d) => {
126                 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
127             }
128             FATDirEntry::UnInit => {
129                 kerror!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
130                 return;
131             }
132         };
133     }
134 
135     fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> {
136         match &self.inode_type {
137             FATDirEntry::Dir(d) => {
138                 // 尝试在缓存区查找
139                 if let Some(entry) = self.children.get(&name.to_uppercase()) {
140                     return Ok(entry.clone());
141                 }
142                 // 在缓存区找不到
143                 // 在磁盘查找
144                 let fat_entry: FATDirEntry =
145                     d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
146                 // 创建新的inode
147                 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
148                     self.fs.upgrade().unwrap(),
149                     self.self_ref.clone(),
150                     fat_entry,
151                 );
152                 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
153                 self.children
154                     .insert(name.to_uppercase(), entry_inode.clone());
155                 return Ok(entry_inode);
156             }
157             FATDirEntry::UnInit => {
158                 panic!(
159                     "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
160                     self.fs
161                 )
162             }
163             _ => {
164                 return Err(SystemError::ENOTDIR);
165             }
166         }
167     }
168 }
169 
170 impl LockedFATInode {
171     pub fn new(
172         fs: Arc<FATFileSystem>,
173         parent: Weak<LockedFATInode>,
174         inode_type: FATDirEntry,
175     ) -> Arc<LockedFATInode> {
176         let file_type = if let FATDirEntry::Dir(_) = inode_type {
177             FileType::Dir
178         } else {
179             FileType::File
180         };
181 
182         let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
183             parent,
184             self_ref: Weak::default(),
185             children: BTreeMap::new(),
186             fs: Arc::downgrade(&fs),
187             inode_type,
188             metadata: Metadata {
189                 dev_id: 0,
190                 inode_id: generate_inode_id(),
191                 size: 0,
192                 blk_size: fs.bpb.bytes_per_sector as usize,
193                 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
194                     fs.bpb.total_sectors_32 as usize
195                 } else {
196                     fs.bpb.total_sectors_16 as usize
197                 },
198                 atime: TimeSpec::default(),
199                 mtime: TimeSpec::default(),
200                 ctime: TimeSpec::default(),
201                 file_type,
202                 mode: ModeType::from_bits_truncate(0o777),
203                 nlinks: 1,
204                 uid: 0,
205                 gid: 0,
206                 raw_dev: DeviceNumber::default(),
207             },
208             special_node: None,
209         })));
210 
211         inode.0.lock().self_ref = Arc::downgrade(&inode);
212 
213         inode.0.lock().update_metadata();
214 
215         return inode;
216     }
217 }
218 
219 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
220 #[derive(Debug)]
221 pub struct FATFsInfo {
222     /// Lead Signature - must equal 0x41615252
223     lead_sig: u32,
224     /// Value must equal 0x61417272
225     struc_sig: u32,
226     /// 空闲簇数目
227     free_count: u32,
228     /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
229     next_free: u32,
230     /// 0xAA550000
231     trail_sig: u32,
232     /// Dirty flag to flush to disk
233     dirty: bool,
234     /// FsInfo Structure 在磁盘上的字节偏移量
235     /// Not present for FAT12 and FAT16
236     offset: Option<u64>,
237 }
238 
239 impl FileSystem for FATFileSystem {
240     fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
241         return self.root_inode.clone();
242     }
243 
244     fn info(&self) -> crate::filesystem::vfs::FsInfo {
245         todo!()
246     }
247 
248     /// @brief 本函数用于实现动态转换。
249     /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
250     fn as_any_ref(&self) -> &dyn Any {
251         self
252     }
253 
254     fn name(&self) -> &str {
255         "fat"
256     }
257 
258     fn super_block(&self) -> SuperBlock {
259         SuperBlock::new(
260             Magic::FAT_MAGIC,
261             self.bpb.bytes_per_sector.into(),
262             FAT_MAX_NAMELEN,
263         )
264     }
265 }
266 
267 impl FATFileSystem {
268     /// FAT12允许的最大簇号
269     pub const FAT12_MAX_CLUSTER: u32 = 0xFF5;
270     /// FAT16允许的最大簇号
271     pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5;
272     /// FAT32允许的最大簇号
273     pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7;
274 
275     pub fn new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, SystemError> {
276         let bpb = BiosParameterBlock::new(partition.clone())?;
277 
278         // 从磁盘上读取FAT32文件系统的FsInfo结构体
279         let fs_info: FATFsInfo = match bpb.fat_type {
280             FATType::FAT32(bpb32) => {
281                 let fs_info_in_disk_bytes_offset = partition.lba_start * LBA_SIZE as u64
282                     + bpb32.fs_info as u64 * bpb.bytes_per_sector as u64;
283                 FATFsInfo::new(
284                     partition.clone(),
285                     fs_info_in_disk_bytes_offset,
286                     bpb.bytes_per_sector as usize,
287                 )?
288             }
289             _ => FATFsInfo::default(),
290         };
291 
292         // 根目录项占用的扇区数(向上取整)
293         let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32)
294             + (bpb.bytes_per_sector as u64 - 1))
295             / (bpb.bytes_per_sector as u64);
296 
297         // FAT表大小(单位:扇区)
298         let fat_size = if bpb.fat_size_16 != 0 {
299             bpb.fat_size_16 as u64
300         } else {
301             match bpb.fat_type {
302                 FATType::FAT32(x) => x.fat_size_32 as u64,
303                 _ => {
304                     kerror!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
305                     return Err(SystemError::EINVAL);
306                 }
307             }
308         };
309 
310         let first_data_sector =
311             bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
312 
313         // 创建文件系统的根节点
314         let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
315             parent: Weak::default(),
316             self_ref: Weak::default(),
317             children: BTreeMap::new(),
318             fs: Weak::default(),
319             inode_type: FATDirEntry::UnInit,
320             metadata: Metadata {
321                 dev_id: 0,
322                 inode_id: generate_inode_id(),
323                 size: 0,
324                 blk_size: bpb.bytes_per_sector as usize,
325                 blocks: if let FATType::FAT32(_) = bpb.fat_type {
326                     bpb.total_sectors_32 as usize
327                 } else {
328                     bpb.total_sectors_16 as usize
329                 },
330                 atime: TimeSpec::default(),
331                 mtime: TimeSpec::default(),
332                 ctime: TimeSpec::default(),
333                 file_type: FileType::Dir,
334                 mode: ModeType::from_bits_truncate(0o777),
335                 nlinks: 1,
336                 uid: 0,
337                 gid: 0,
338                 raw_dev: DeviceNumber::default(),
339             },
340             special_node: None,
341         })));
342 
343         let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
344             partition,
345             bpb,
346             first_data_sector,
347             fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
348             root_inode,
349         });
350 
351         // 对root inode加锁,并继续完成初始化工作
352         let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
353         root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
354         root_guard.parent = Arc::downgrade(&result.root_inode);
355         root_guard.self_ref = Arc::downgrade(&result.root_inode);
356         root_guard.fs = Arc::downgrade(&result);
357         // 释放锁
358         drop(root_guard);
359 
360         return Ok(result);
361     }
362 
363     /// @brief 计算每个簇有多少个字节
364     #[inline]
365     pub fn bytes_per_cluster(&self) -> u64 {
366         return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
367     }
368 
369     /// @brief 读取当前簇在FAT表中存储的信息
370     ///
371     /// @param cluster 当前簇
372     ///
373     /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
374     /// @return Err(SystemError) 错误码
375     pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> {
376         let current_cluster = cluster.cluster_num;
377         if current_cluster < 2 {
378             // 0号簇和1号簇是保留簇,不允许用户使用
379             return Err(SystemError::EINVAL);
380         }
381 
382         let fat_type: FATType = self.bpb.fat_type;
383         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
384         let fat_start_sector = self.fat_start_sector();
385         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
386 
387         // cluster对应的FAT表项在分区内的字节偏移量
388         let fat_bytes_offset =
389             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
390 
391         // FAT表项所在的LBA地址
392         // let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
393         let fat_ent_lba = self.partition.lba_start + fat_bytes_offset / LBA_SIZE as u64;
394 
395         // FAT表项在逻辑块内的字节偏移量
396         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
397 
398         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
399         self.partition
400             .disk()
401             .read_at(fat_ent_lba as usize, self.lba_per_sector(), &mut v)?;
402 
403         let mut cursor = VecCursor::new(v);
404         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
405 
406         let res: FATEntry = match self.bpb.fat_type {
407             FATType::FAT12(_) => {
408                 let mut entry = cursor.read_u16()?;
409                 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
410                 if (current_cluster & 1) > 0 {
411                     entry >>= 4;
412                 } else {
413                     entry &= 0x0fff;
414                 }
415 
416                 if entry == 0 {
417                     FATEntry::Unused
418                 } else if entry == 0x0ff7 {
419                     FATEntry::Bad
420                 } else if entry >= 0x0ff8 {
421                     FATEntry::EndOfChain
422                 } else {
423                     FATEntry::Next(Cluster {
424                         cluster_num: entry as u64,
425                         parent_cluster: current_cluster,
426                     })
427                 }
428             }
429             FATType::FAT16(_) => {
430                 let entry = cursor.read_u16()?;
431 
432                 if entry == 0 {
433                     FATEntry::Unused
434                 } else if entry == 0xfff7 {
435                     FATEntry::Bad
436                 } else if entry >= 0xfff8 {
437                     FATEntry::EndOfChain
438                 } else {
439                     FATEntry::Next(Cluster {
440                         cluster_num: entry as u64,
441                         parent_cluster: current_cluster,
442                     })
443                 }
444             }
445             FATType::FAT32(_) => {
446                 let entry = cursor.read_u32()? & 0x0fffffff;
447 
448                 match entry {
449                     _n if (0x0ffffff7..=0x0fffffff).contains(&current_cluster) => {
450                         // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
451                         kerror!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
452                         FATEntry::Bad
453                     }
454                     0 => FATEntry::Unused,
455                     0x0ffffff7 => FATEntry::Bad,
456                     0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
457                     _n => FATEntry::Next(Cluster {
458                         cluster_num: entry as u64,
459                         parent_cluster: current_cluster,
460                     }),
461                 }
462             }
463         };
464         return Ok(res);
465     }
466 
467     /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
468     ///
469     /// @param cluster 当前簇
470     ///
471     /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
472     /// @return Err(SystemError) 错误码
473     pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> {
474         let current_cluster = cluster.cluster_num;
475 
476         let fat_type: FATType = self.bpb.fat_type;
477         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
478         let fat_start_sector = self.fat_start_sector();
479         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
480 
481         // cluster对应的FAT表项在分区内的字节偏移量
482         let fat_bytes_offset =
483             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
484 
485         // FAT表项所在的LBA地址
486         let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
487 
488         // FAT表项在逻辑块内的字节偏移量
489         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
490 
491         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
492         self.partition
493             .disk()
494             .read_at(fat_ent_lba, self.lba_per_sector(), &mut v)?;
495 
496         let mut cursor = VecCursor::new(v);
497         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
498 
499         let res = match self.bpb.fat_type {
500             FATType::FAT12(_) => {
501                 let mut entry = cursor.read_u16()?;
502                 entry = if (current_cluster & 0x0001) > 0 {
503                     entry >> 4
504                 } else {
505                     entry & 0x0fff
506                 };
507                 entry as u64
508             }
509             FATType::FAT16(_) => {
510                 let entry = (cursor.read_u16()?) as u64;
511                 entry
512             }
513             FATType::FAT32(_) => {
514                 let entry = cursor.read_u32()? & 0x0fff_ffff;
515                 entry as u64
516             }
517         };
518 
519         return Ok(res);
520     }
521 
522     /// @brief 获取当前文件系统的root inode,在磁盘上的字节偏移量
523     pub fn root_dir_bytes_offset(&self) -> u64 {
524         match self.bpb.fat_type {
525             FATType::FAT32(s) => {
526                 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
527                     * (self.bpb.sector_per_cluster as u64)
528                     + self.first_data_sector;
529                 return (self.get_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
530             }
531             _ => {
532                 let root_sec = (self.bpb.rsvd_sec_cnt as u64)
533                     + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
534                 return (self.get_lba_from_offset(root_sec) * LBA_SIZE) as u64;
535             }
536         }
537     }
538 
539     /// @brief 获取当前文件系统的根目录项区域的结束位置,在磁盘上的字节偏移量。
540     /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
541     pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
542         match self.bpb.fat_type {
543             FATType::FAT12(_) | FATType::FAT16(_) => {
544                 return Some(
545                     self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
546                 );
547             }
548             _ => {
549                 return None;
550             }
551         }
552     }
553 
554     /// @brief 获取簇在磁盘内的字节偏移量(相对磁盘起始位置。注意,不是分区内偏移量)
555     pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
556         if cluster.cluster_num >= 2 {
557             // 指定簇的第一个扇区号
558             let first_sec_of_cluster = (cluster.cluster_num - 2)
559                 * (self.bpb.sector_per_cluster as u64)
560                 + self.first_data_sector;
561             return (self.get_lba_from_offset(first_sec_of_cluster) * LBA_SIZE) as u64;
562         } else {
563             return 0;
564         }
565     }
566 
567     /// @brief 获取一个空闲簇
568     ///
569     /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
570     ///
571     /// @return Ok(Cluster) 新获取的空闲簇
572     /// @return Err(SystemError) 错误码
573     pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> {
574         let end_cluster: Cluster = self.max_cluster_number();
575         let start_cluster: Cluster = match self.bpb.fat_type {
576             FATType::FAT32(_) => {
577                 let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff);
578                 if next_free < end_cluster.cluster_num {
579                     Cluster::new(next_free)
580                 } else {
581                     Cluster::new(RESERVED_CLUSTERS as u64)
582                 }
583             }
584             _ => Cluster::new(RESERVED_CLUSTERS as u64),
585         };
586 
587         // 寻找一个空的簇
588         let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
589             Ok(c) => c,
590             Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
591                 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
592             }
593             Err(e) => return Err(e),
594         };
595 
596         self.set_entry(free_cluster, FATEntry::EndOfChain)?;
597         // 减少空闲簇计数
598         self.fs_info.0.lock().update_free_count_delta(-1);
599         // 更新搜索空闲簇的参考量
600         self.fs_info
601             .0
602             .lock()
603             .update_next_free((free_cluster.cluster_num + 1) as u32);
604 
605         // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
606         if let Some(prev_cluster) = prev_cluster {
607             // kdebug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
608             self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
609         }
610         // 清空新获取的这个簇
611         self.zero_cluster(free_cluster)?;
612         return Ok(free_cluster);
613     }
614 
615     /// @brief 释放簇链上的所有簇
616     ///
617     /// @param start_cluster 簇链的第一个簇
618     pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> {
619         let clusters: Vec<Cluster> = self.clusters(start_cluster);
620         for c in clusters {
621             self.deallocate_cluster(c)?;
622         }
623         return Ok(());
624     }
625 
626     /// @brief 释放簇
627     ///
628     /// @param 要释放的簇
629     pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
630         let entry: FATEntry = self.get_fat_entry(cluster)?;
631         // 如果不是坏簇
632         if entry != FATEntry::Bad {
633             self.set_entry(cluster, FATEntry::Unused)?;
634             self.fs_info.0.lock().update_free_count_delta(1);
635             // 安全选项:清空被释放的簇
636             #[cfg(feature = "secure")]
637             self.zero_cluster(cluster)?;
638             return Ok(());
639         } else {
640             // 不能释放坏簇
641             kerror!("Bad clusters cannot be freed.");
642             return Err(SystemError::EFAULT);
643         }
644     }
645 
646     /// @brief 获取文件系统的根目录项
647     pub fn root_dir(&self) -> FATDir {
648         match self.bpb.fat_type {
649             FATType::FAT32(s) => {
650                 return FATDir {
651                     first_cluster: Cluster::new(s.root_cluster as u64),
652                     dir_name: String::from("/"),
653                     root_offset: None,
654                     short_dir_entry: None,
655                     loc: None,
656                 };
657             }
658             _ => FATDir {
659                 first_cluster: Cluster::new(0),
660                 dir_name: String::from("/"),
661                 root_offset: Some(self.root_dir_bytes_offset()),
662                 short_dir_entry: None,
663                 loc: None,
664             },
665         }
666     }
667 
668     /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
669     pub fn fat_start_sector(&self) -> u64 {
670         let active_fat = self.active_fat();
671         let fat_size = self.fat_size();
672         return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
673     }
674 
675     /// @brief 获取当前活动的FAT表
676     pub fn active_fat(&self) -> u64 {
677         if self.mirroring_enabled() {
678             return 0;
679         } else {
680             match self.bpb.fat_type {
681                 FATType::FAT32(bpb32) => {
682                     return (bpb32.ext_flags & 0x0f) as u64;
683                 }
684                 _ => {
685                     return 0;
686                 }
687             }
688         }
689     }
690 
691     /// @brief 获取当前文件系统的每个FAT表的大小
692     pub fn fat_size(&self) -> u64 {
693         if self.bpb.fat_size_16 != 0 {
694             return self.bpb.fat_size_16 as u64;
695         } else {
696             match self.bpb.fat_type {
697                 FATType::FAT32(bpb32) => {
698                     return bpb32.fat_size_32 as u64;
699                 }
700 
701                 _ => {
702                     panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
703                 }
704             }
705         }
706     }
707 
708     /// @brief 判断当前文件系统是否启用了FAT表镜像
709     pub fn mirroring_enabled(&self) -> bool {
710         match self.bpb.fat_type {
711             FATType::FAT32(bpb32) => {
712                 return (bpb32.ext_flags & 0x80) == 0;
713             }
714             _ => {
715                 return false;
716             }
717         }
718     }
719 
720     /// @brief 根据分区内的扇区偏移量,获得在磁盘上的LBA地址
721     #[inline]
722     pub fn get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
723         return (self.partition.lba_start
724             + in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
725             as usize;
726     }
727 
728     /// @brief 获取每个扇区占用多少个LBA
729     #[inline]
730     pub fn lba_per_sector(&self) -> usize {
731         return self.bpb.bytes_per_sector as usize / LBA_SIZE;
732     }
733 
734     /// @brief 将分区内字节偏移量转换为扇区偏移量
735     #[inline]
736     pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
737         return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
738     }
739 
740     /// @brief 根据磁盘上的字节偏移量,获取对应位置在分区内的字节偏移量
741     #[inline]
742     pub fn get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64 {
743         return disk_bytes_offset - (self.partition.lba_start * LBA_SIZE as u64);
744     }
745 
746     /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
747     #[inline]
748     pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
749         return bytes_offset % LBA_SIZE as u64;
750     }
751 
752     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
753     ///
754     /// @param start_cluster 整个FAT链的起始簇号
755     pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
756         return self.cluster_iter(start_cluster).collect();
757     }
758 
759     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
760     ///
761     /// @param start_cluster 整个FAT链的起始簇号
762     pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
763         return self
764             .cluster_iter(start_cluster)
765             .fold(0, |size, _cluster| size + 1);
766     }
767     /// @brief 获取一个簇迭代器对象
768     ///
769     /// @param start_cluster 整个FAT链的起始簇号
770     fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
771         return ClusterIter {
772             current_cluster: Some(start_cluster),
773             fs: self,
774         };
775     }
776 
777     /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
778     #[inline]
779     pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
780         return self.cluster_iter(start_cluster).nth(n);
781     }
782 
783     /// @brief 获取整个簇链的最后一个簇
784     #[inline]
785     pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
786         return self.cluster_iter(start_cluster).last();
787     }
788 
789     /// @brief 判断FAT文件系统的shut bit是否正常。
790     /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
791     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
792     ///
793     /// @return Ok(true) 正常
794     /// @return Ok(false) 不正常
795     /// @return Err(SystemError) 在判断时发生错误
796     #[allow(dead_code)]
797     pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> {
798         match self.bpb.fat_type {
799             FATType::FAT32(_) => {
800                 // 对于FAT32, error bit位于第一个扇区的第8字节。
801                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
802                 return Ok(bit > 0);
803             }
804             FATType::FAT16(_) => {
805                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
806                 return Ok(bit > 0);
807             }
808             _ => return Ok(true),
809         }
810     }
811 
812     /// @brief 判断FAT文件系统的hard error bit是否正常。
813     /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
814     /// 卷上的某些扇区可能已损坏。
815     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
816     ///
817     /// @return Ok(true) 正常
818     /// @return Ok(false) 不正常
819     /// @return Err(SystemError) 在判断时发生错误
820     pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> {
821         match self.bpb.fat_type {
822             FATType::FAT32(_) => {
823                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
824                 return Ok(bit > 0);
825             }
826             FATType::FAT16(_) => {
827                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
828                 return Ok(bit > 0);
829             }
830             _ => return Ok(true),
831         }
832     }
833 
834     /// @brief 设置文件系统的shut bit为正常状态
835     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
836     ///
837     /// @return Ok(()) 设置成功
838     /// @return Err(SystemError) 在设置过程中,出现错误
839     pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> {
840         match self.bpb.fat_type {
841             FATType::FAT32(_) => {
842                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
843                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
844 
845                 return Ok(());
846             }
847 
848             FATType::FAT16(_) => {
849                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
850                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
851                 return Ok(());
852             }
853             _ => return Ok(()),
854         }
855     }
856 
857     /// @brief 设置文件系统的hard error bit为正常状态
858     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
859     ///
860     /// @return Ok(()) 设置成功
861     /// @return Err(SystemError) 在设置过程中,出现错误
862     pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> {
863         match self.bpb.fat_type {
864             FATType::FAT32(_) => {
865                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
866                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
867                 return Ok(());
868             }
869 
870             FATType::FAT16(_) => {
871                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
872                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
873                 return Ok(());
874             }
875             _ => return Ok(()),
876         }
877     }
878 
879     /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
880     pub fn umount(&mut self) -> Result<(), SystemError> {
881         self.fs_info.0.lock().flush(&self.partition)?;
882 
883         self.set_shut_bit_ok()?;
884 
885         self.set_hard_error_bit_ok()?;
886 
887         self.partition.disk().sync()?;
888 
889         return Ok(());
890     }
891 
892     /// @brief 获取文件系统的最大簇号
893     pub fn max_cluster_number(&self) -> Cluster {
894         match self.bpb.fat_type {
895             FATType::FAT32(s) => {
896                 // FAT32
897 
898                 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
899                 let data_sec: u64 = self.bpb.total_sectors_32 as u64
900                     - (self.bpb.rsvd_sec_cnt as u64
901                         + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
902 
903                 // 数据区的簇数量
904                 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
905 
906                 // 返回最大的簇号
907                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
908             }
909 
910             _ => {
911                 // FAT12 / FAT16
912                 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32)
913                     + self.bpb.bytes_per_sector as u64
914                     - 1)
915                     / self.bpb.bytes_per_sector as u64;
916                 // 数据区扇区数
917                 let data_sec: u64 = self.bpb.total_sectors_16 as u64
918                     - (self.bpb.rsvd_sec_cnt as u64
919                         + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
920                         + root_dir_sectors);
921                 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
922                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
923             }
924         }
925     }
926 
927     /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
928     ///
929     /// @param start_cluster 起始簇号
930     /// @param end_cluster 终止簇号(不包含)
931     ///
932     /// @return Ok(Cluster) 寻找到的空闲簇
933     /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
934     pub fn get_free_cluster(
935         &self,
936         start_cluster: Cluster,
937         end_cluster: Cluster,
938     ) -> Result<Cluster, SystemError> {
939         let max_cluster: Cluster = self.max_cluster_number();
940         let mut cluster: u64 = start_cluster.cluster_num;
941 
942         let fat_type: FATType = self.bpb.fat_type;
943         let fat_start_sector: u64 = self.fat_start_sector();
944         let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
945 
946         match fat_type {
947             FATType::FAT12(_) => {
948                 let part_bytes_offset: u64 =
949                     fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
950                 let in_block_offset = self.get_in_block_offset(part_bytes_offset);
951 
952                 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
953 
954                 // 由于FAT12的FAT表不大于6K,因此直接读取6K
955                 let num_lba = (6 * 1024) / LBA_SIZE;
956                 let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE];
957                 self.partition.disk().read_at(lba, num_lba, &mut v)?;
958 
959                 let mut cursor: VecCursor = VecCursor::new(v);
960                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
961 
962                 let mut packed_val: u16 = cursor.read_u16()?;
963                 loop {
964                     let val = if (cluster & 0x1) > 0 {
965                         packed_val >> 4
966                     } else {
967                         packed_val & 0x0fff
968                     };
969                     if val == 0 {
970                         return Ok(Cluster::new(cluster));
971                     }
972 
973                     cluster += 1;
974 
975                     // 磁盘无剩余空间,或者簇号达到给定的最大值
976                     if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
977                         return Err(SystemError::ENOSPC);
978                     }
979 
980                     packed_val = match cluster & 1 {
981                         0 => cursor.read_u16()?,
982                         _ => {
983                             let next_byte = cursor.read_u8()? as u16;
984                             (packed_val >> 8) | (next_byte << 8)
985                         }
986                     };
987                 }
988             }
989             FATType::FAT16(_) => {
990                 // todo: 优化这里,减少读取磁盘的次数。
991                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
992                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
993                         Cluster::new(cluster),
994                         fat_start_sector,
995                         bytes_per_sec,
996                     );
997                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
998 
999                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1000 
1001                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1002                     self.partition
1003                         .disk()
1004                         .read_at_sync(lba, self.lba_per_sector(), &mut v)?;
1005 
1006                     let mut cursor: VecCursor = VecCursor::new(v);
1007                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1008 
1009                     let val = cursor.read_u16()?;
1010                     // 找到空闲簇
1011                     if val == 0 {
1012                         return Ok(Cluster::new(val as u64));
1013                     }
1014                     cluster += 1;
1015                 }
1016 
1017                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1018                 return Err(SystemError::ENOSPC);
1019             }
1020             FATType::FAT32(_) => {
1021                 // todo: 优化这里,减少读取磁盘的次数。
1022                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
1023                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
1024                         Cluster::new(cluster),
1025                         fat_start_sector,
1026                         bytes_per_sec,
1027                     );
1028                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1029 
1030                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1031 
1032                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1033                     self.partition
1034                         .disk()
1035                         .read_at_sync(lba, self.lba_per_sector(), &mut v)?;
1036 
1037                     let mut cursor: VecCursor = VecCursor::new(v);
1038                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1039 
1040                     let val = cursor.read_u32()? & 0x0fffffff;
1041 
1042                     if val == 0 {
1043                         return Ok(Cluster::new(cluster));
1044                     }
1045                     cluster += 1;
1046                 }
1047 
1048                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1049                 return Err(SystemError::ENOSPC);
1050             }
1051         }
1052     }
1053 
1054     /// @brief 在FAT表中,设置指定的簇的信息。
1055     ///
1056     /// @param cluster 目标簇
1057     /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
1058     pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> {
1059         // fat表项在分区上的字节偏移量
1060         let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
1061             cluster,
1062             self.fat_start_sector(),
1063             self.bpb.bytes_per_sector as u64,
1064         );
1065 
1066         match self.bpb.fat_type {
1067             FATType::FAT12(_) => {
1068                 // 计算要写入的值
1069                 let raw_val: u16 = match fat_entry {
1070                     FATEntry::Unused => 0,
1071                     FATEntry::Bad => 0xff7,
1072                     FATEntry::EndOfChain => 0xfff,
1073                     FATEntry::Next(c) => c.cluster_num as u16,
1074                 };
1075 
1076                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1077 
1078                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1079 
1080                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1081                 self.partition.disk().read_at_sync(lba, 1, &mut v)?;
1082 
1083                 let mut cursor: VecCursor = VecCursor::new(v);
1084                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1085 
1086                 let old_val: u16 = cursor.read_u16()?;
1087                 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
1088                     (old_val & 0x000f) | (raw_val << 4)
1089                 } else {
1090                     (old_val & 0xf000) | raw_val
1091                 };
1092 
1093                 // 写回数据到磁盘上
1094                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1095                 cursor.write_u16(new_val)?;
1096                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1097                 return Ok(());
1098             }
1099             FATType::FAT16(_) => {
1100                 // 计算要写入的值
1101                 let raw_val: u16 = match fat_entry {
1102                     FATEntry::Unused => 0,
1103                     FATEntry::Bad => 0xfff7,
1104                     FATEntry::EndOfChain => 0xfdff,
1105                     FATEntry::Next(c) => c.cluster_num as u16,
1106                 };
1107 
1108                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1109 
1110                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1111 
1112                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1113                 self.partition.disk().read_at(lba, 1, &mut v)?;
1114 
1115                 let mut cursor: VecCursor = VecCursor::new(v);
1116                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1117 
1118                 cursor.write_u16(raw_val)?;
1119                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1120 
1121                 return Ok(());
1122             }
1123             FATType::FAT32(_) => {
1124                 let fat_size: u64 = self.fat_size();
1125                 let bound: u64 = if self.mirroring_enabled() {
1126                     1
1127                 } else {
1128                     self.bpb.num_fats as u64
1129                 };
1130                 // kdebug!("set entry, bound={bound}, fat_size={fat_size}");
1131                 for i in 0..bound {
1132                     // 当前操作的FAT表在磁盘上的字节偏移量
1133                     let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
1134                     let in_block_offset: u64 = self.get_in_block_offset(f_offset);
1135                     let lba = self.get_lba_from_offset(self.bytes_to_sector(f_offset));
1136 
1137                     // kdebug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
1138                     let mut v: Vec<u8> = vec![0; LBA_SIZE];
1139                     self.partition.disk().read_at(lba, 1, &mut v)?;
1140 
1141                     let mut cursor: VecCursor = VecCursor::new(v);
1142                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1143 
1144                     // FAT32的高4位保留
1145                     let old_bits = cursor.read_u32()? & 0xf0000000;
1146 
1147                     if fat_entry == FATEntry::Unused
1148                         && cluster.cluster_num >= 0x0ffffff7
1149                         && cluster.cluster_num <= 0x0fffffff
1150                     {
1151                         kerror!(
1152                             "FAT32: Reserved Cluster {:?} cannot be marked as free",
1153                             cluster
1154                         );
1155                         return Err(SystemError::EPERM);
1156                     }
1157 
1158                     // 计算要写入的值
1159                     let mut raw_val: u32 = match fat_entry {
1160                         FATEntry::Unused => 0,
1161                         FATEntry::Bad => 0x0FFFFFF7,
1162                         FATEntry::EndOfChain => 0x0FFFFFFF,
1163                         FATEntry::Next(c) => c.cluster_num as u32,
1164                     };
1165 
1166                     // 恢复保留位
1167                     raw_val |= old_bits;
1168 
1169                     // kdebug!("sent entry, raw_val={raw_val}");
1170 
1171                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1172                     cursor.write_u32(raw_val)?;
1173 
1174                     self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1175                 }
1176 
1177                 return Ok(());
1178             }
1179         }
1180     }
1181 
1182     /// @brief 清空指定的簇
1183     ///
1184     /// @param cluster 要被清空的簇
1185     pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
1186         // 准备数据,用于写入
1187         let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
1188         let offset: usize = self.cluster_bytes_offset(cluster) as usize;
1189         self.partition
1190             .disk()
1191             .write_at_bytes(offset, zeros.len(), zeros.as_slice())?;
1192         return Ok(());
1193     }
1194 }
1195 
1196 impl Drop for FATFileSystem {
1197     fn drop(&mut self) {
1198         let r = self.umount();
1199         if r.is_err() {
1200             kerror!(
1201                 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}",
1202                 r.as_ref().unwrap_err()
1203             );
1204         }
1205     }
1206 }
1207 
1208 impl FATFsInfo {
1209     const LEAD_SIG: u32 = 0x41615252;
1210     const STRUC_SIG: u32 = 0x61417272;
1211     const TRAIL_SIG: u32 = 0xAA550000;
1212     #[allow(dead_code)]
1213     const FS_INFO_SIZE: u64 = 512;
1214 
1215     /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
1216     ///
1217     /// @param partition 磁盘分区
1218     /// @param in_disk_fs_info_offset FSInfo扇区在磁盘内的字节偏移量(单位:字节)
1219     /// @param bytes_per_sec 每扇区字节数
1220     pub fn new(
1221         partition: Arc<Partition>,
1222         in_disk_fs_info_offset: u64,
1223         bytes_per_sec: usize,
1224     ) -> Result<Self, SystemError> {
1225         let mut v = vec![0; bytes_per_sec];
1226 
1227         // 计算fs_info扇区在磁盘上的字节偏移量,从磁盘读取数据
1228         partition
1229             .disk()
1230             .read_at_sync(in_disk_fs_info_offset as usize / LBA_SIZE, 1, &mut v)?;
1231         let mut cursor = VecCursor::new(v);
1232 
1233         let mut fsinfo = FATFsInfo {
1234             lead_sig: cursor.read_u32()?,
1235             ..Default::default()
1236         };
1237         cursor.seek(SeekFrom::SeekCurrent(480))?;
1238         fsinfo.struc_sig = cursor.read_u32()?;
1239         fsinfo.free_count = cursor.read_u32()?;
1240         fsinfo.next_free = cursor.read_u32()?;
1241 
1242         cursor.seek(SeekFrom::SeekCurrent(12))?;
1243 
1244         fsinfo.trail_sig = cursor.read_u32()?;
1245         fsinfo.dirty = false;
1246         fsinfo.offset = Some(in_disk_fs_info_offset);
1247 
1248         if fsinfo.is_valid() {
1249             return Ok(fsinfo);
1250         } else {
1251             kerror!("Error occurred while parsing FATFsInfo.");
1252             return Err(SystemError::EINVAL);
1253         }
1254     }
1255 
1256     /// @brief 判断是否为正确的FsInfo结构体
1257     fn is_valid(&self) -> bool {
1258         self.lead_sig == Self::LEAD_SIG
1259             && self.struc_sig == Self::STRUC_SIG
1260             && self.trail_sig == Self::TRAIL_SIG
1261     }
1262 
1263     /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
1264     ///
1265     /// @param 当前文件系统的最大簇号
1266     pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
1267         let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
1268         // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
1269         if self.free_count as u64 > count_clusters {
1270             return None;
1271         } else {
1272             match self.free_count {
1273                 // free count字段不可用
1274                 0xffffffff => return None,
1275                 // 返回FsInfo中存储的数据
1276                 n => return Some(n as u64),
1277             }
1278         }
1279     }
1280 
1281     /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
1282     ///
1283     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1284     pub fn update_free_count_abs(&mut self, new_count: u32) {
1285         self.free_count = new_count;
1286     }
1287 
1288     /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
1289     ///
1290     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1291     pub fn update_free_count_delta(&mut self, delta: i32) {
1292         self.free_count = (self.free_count as i32 + delta) as u32;
1293     }
1294 
1295     /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
1296     ///
1297     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1298     pub fn update_next_free(&mut self, next_free: u32) {
1299         // 这个值是参考量,不一定要准确,仅供加速查找
1300         self.next_free = next_free;
1301     }
1302 
1303     /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
1304     pub fn next_free(&self) -> Option<u64> {
1305         match self.next_free {
1306             0xffffffff => return None,
1307             0 | 1 => return None,
1308             n => return Some(n as u64),
1309         };
1310     }
1311 
1312     /// @brief 把fs info刷入磁盘
1313     ///
1314     /// @param partition fs info所在的分区
1315     pub fn flush(&self, partition: &Arc<Partition>) -> Result<(), SystemError> {
1316         if let Some(off) = self.offset {
1317             let in_block_offset = off % LBA_SIZE as u64;
1318 
1319             let lba = off as usize / LBA_SIZE;
1320 
1321             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1322             partition.disk().read_at(lba, 1, &mut v)?;
1323 
1324             let mut cursor: VecCursor = VecCursor::new(v);
1325             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1326 
1327             cursor.write_u32(self.lead_sig)?;
1328             cursor.seek(SeekFrom::SeekCurrent(480))?;
1329             cursor.write_u32(self.struc_sig)?;
1330             cursor.write_u32(self.free_count)?;
1331             cursor.write_u32(self.next_free)?;
1332             cursor.seek(SeekFrom::SeekCurrent(12))?;
1333             cursor.write_u32(self.trail_sig)?;
1334 
1335             partition.disk().write_at(lba, 1, cursor.as_slice())?;
1336         }
1337         return Ok(());
1338     }
1339 
1340     /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
1341     ///
1342     /// @param partition fs info所在的分区
1343     pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> {
1344         if let Some(off) = self.offset {
1345             let in_block_offset = off % LBA_SIZE as u64;
1346 
1347             let lba = off as usize / LBA_SIZE;
1348 
1349             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1350             partition.disk().read_at(lba, 1, &mut v)?;
1351             let mut cursor: VecCursor = VecCursor::new(v);
1352             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1353             self.lead_sig = cursor.read_u32()?;
1354 
1355             cursor.seek(SeekFrom::SeekCurrent(480))?;
1356             self.struc_sig = cursor.read_u32()?;
1357             self.free_count = cursor.read_u32()?;
1358             self.next_free = cursor.read_u32()?;
1359             cursor.seek(SeekFrom::SeekCurrent(12))?;
1360             self.trail_sig = cursor.read_u32()?;
1361         }
1362         return Ok(());
1363     }
1364 }
1365 
1366 impl IndexNode for LockedFATInode {
1367     fn read_at(
1368         &self,
1369         offset: usize,
1370         len: usize,
1371         buf: &mut [u8],
1372         _data: SpinLockGuard<FilePrivateData>,
1373     ) -> Result<usize, SystemError> {
1374         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1375         match &guard.inode_type {
1376             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1377                 let r = f.read(
1378                     &guard.fs.upgrade().unwrap(),
1379                     &mut buf[0..len],
1380                     offset as u64,
1381                 );
1382                 guard.update_metadata();
1383                 return r;
1384             }
1385             FATDirEntry::Dir(_) => {
1386                 return Err(SystemError::EISDIR);
1387             }
1388             FATDirEntry::UnInit => {
1389                 kerror!("FATFS: param: Inode_type uninitialized.");
1390                 return Err(SystemError::EROFS);
1391             }
1392         }
1393     }
1394 
1395     fn write_at(
1396         &self,
1397         offset: usize,
1398         len: usize,
1399         buf: &[u8],
1400         _data: SpinLockGuard<FilePrivateData>,
1401     ) -> Result<usize, SystemError> {
1402         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1403         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1404 
1405         match &mut guard.inode_type {
1406             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1407                 let r = f.write(fs, &buf[0..len], offset as u64);
1408                 guard.update_metadata();
1409                 return r;
1410             }
1411             FATDirEntry::Dir(_) => {
1412                 return Err(SystemError::EISDIR);
1413             }
1414             FATDirEntry::UnInit => {
1415                 kerror!("FATFS: param: Inode_type uninitialized.");
1416                 return Err(SystemError::EROFS);
1417             }
1418         }
1419     }
1420 
1421     fn create(
1422         &self,
1423         name: &str,
1424         file_type: FileType,
1425         _mode: ModeType,
1426     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1427         // 由于FAT32不支持文件权限的功能,因此忽略mode参数
1428         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1429         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1430 
1431         match &mut guard.inode_type {
1432             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1433                 return Err(SystemError::ENOTDIR);
1434             }
1435             FATDirEntry::Dir(d) => match file_type {
1436                 FileType::File => {
1437                     d.create_file(name, fs)?;
1438                     return Ok(guard.find(name)?);
1439                 }
1440                 FileType::Dir => {
1441                     d.create_dir(name, fs)?;
1442                     return Ok(guard.find(name)?);
1443                 }
1444 
1445                 FileType::SymLink => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP),
1446                 _ => return Err(SystemError::EINVAL),
1447             },
1448             FATDirEntry::UnInit => {
1449                 kerror!("FATFS: param: Inode_type uninitialized.");
1450                 return Err(SystemError::EROFS);
1451             }
1452         }
1453     }
1454 
1455     fn fs(&self) -> Arc<dyn FileSystem> {
1456         return self.0.lock().fs.upgrade().unwrap();
1457     }
1458 
1459     fn as_any_ref(&self) -> &dyn core::any::Any {
1460         return self;
1461     }
1462 
1463     fn metadata(&self) -> Result<Metadata, SystemError> {
1464         return Ok(self.0.lock().metadata.clone());
1465     }
1466     fn resize(&self, len: usize) -> Result<(), SystemError> {
1467         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1468         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1469         let old_size = guard.metadata.size as usize;
1470 
1471         match &mut guard.inode_type {
1472             FATDirEntry::File(file) | FATDirEntry::VolId(file) => {
1473                 // 如果新的长度和旧的长度相同,那么就直接返回
1474                 match len.cmp(&old_size) {
1475                     Ordering::Equal => {
1476                         return Ok(());
1477                     }
1478                     Ordering::Greater => {
1479                         // 如果新的长度比旧的长度大,那么就在文件末尾添加空白
1480                         let mut buf: Vec<u8> = Vec::new();
1481                         let mut remain_size = len - old_size;
1482                         let buf_size = remain_size;
1483                         // let buf_size = core::cmp::min(remain_size, 512 * 1024);
1484                         buf.resize(buf_size, 0);
1485 
1486                         let mut offset = old_size;
1487                         while remain_size > 0 {
1488                             let write_size = core::cmp::min(remain_size, buf_size);
1489                             file.write(fs, &buf[0..write_size], offset as u64)?;
1490                             remain_size -= write_size;
1491                             offset += write_size;
1492                         }
1493                     }
1494                     Ordering::Less => {
1495                         file.truncate(fs, len as u64)?;
1496                     }
1497                 }
1498                 guard.update_metadata();
1499                 return Ok(());
1500             }
1501             FATDirEntry::Dir(_) => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP),
1502             FATDirEntry::UnInit => {
1503                 kerror!("FATFS: param: Inode_type uninitialized.");
1504                 return Err(SystemError::EROFS);
1505             }
1506         }
1507     }
1508 
1509     fn truncate(&self, len: usize) -> Result<(), SystemError> {
1510         let guard: SpinLockGuard<FATInode> = self.0.lock();
1511         let old_size = guard.metadata.size as usize;
1512         if len < old_size {
1513             drop(guard);
1514             self.resize(len)
1515         } else {
1516             Ok(())
1517         }
1518     }
1519 
1520     fn list(&self) -> Result<Vec<String>, SystemError> {
1521         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1522         let fatent: &FATDirEntry = &guard.inode_type;
1523         match fatent {
1524             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1525                 return Err(SystemError::ENOTDIR);
1526             }
1527             FATDirEntry::Dir(dir) => {
1528                 // 获取当前目录下的所有目录项
1529                 let mut ret: Vec<String> = Vec::new();
1530                 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
1531                 for ent in dir_iter {
1532                     ret.push(ent.name());
1533 
1534                     // ====== 生成inode缓存,存入B树
1535                     let name: String = ent.name();
1536                     // kdebug!("name={name}");
1537 
1538                     if !guard.children.contains_key(&name.to_uppercase())
1539                         && name != "."
1540                         && name != ".."
1541                     {
1542                         // 创建新的inode
1543                         let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
1544                             guard.fs.upgrade().unwrap(),
1545                             guard.self_ref.clone(),
1546                             ent,
1547                         );
1548                         // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
1549                         guard
1550                             .children
1551                             .insert(name.to_uppercase(), entry_inode.clone());
1552                     }
1553                 }
1554                 return Ok(ret);
1555             }
1556             FATDirEntry::UnInit => {
1557                 kerror!("FATFS: param: Inode_type uninitialized.");
1558                 return Err(SystemError::EROFS);
1559             }
1560         }
1561     }
1562 
1563     fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
1564         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1565         let target = guard.find(name)?;
1566         return Ok(target);
1567     }
1568 
1569     fn open(
1570         &self,
1571         _data: SpinLockGuard<FilePrivateData>,
1572         _mode: &FileMode,
1573     ) -> Result<(), SystemError> {
1574         return Ok(());
1575     }
1576 
1577     fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> {
1578         return Ok(());
1579     }
1580 
1581     fn unlink(&self, name: &str) -> Result<(), SystemError> {
1582         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1583         let target: Arc<LockedFATInode> = guard.find(name)?;
1584         // 对目标inode上锁,以防更改
1585         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1586         // 先从缓存删除
1587         let nod = guard.children.remove(&name.to_uppercase());
1588 
1589         // 若删除缓存中为管道的文件,则不需要再到磁盘删除
1590         if nod.is_some() {
1591             let file_type = target_guard.metadata.file_type;
1592             if file_type == FileType::Pipe {
1593                 return Ok(());
1594             }
1595         }
1596 
1597         let dir = match &guard.inode_type {
1598             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1599                 return Err(SystemError::ENOTDIR);
1600             }
1601             FATDirEntry::Dir(d) => d,
1602             FATDirEntry::UnInit => {
1603                 kerror!("FATFS: param: Inode_type uninitialized.");
1604                 return Err(SystemError::EROFS);
1605             }
1606         };
1607         // 检查文件是否存在
1608         dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
1609 
1610         // 再从磁盘删除
1611         let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1612         drop(target_guard);
1613         return r;
1614     }
1615 
1616     fn rmdir(&self, name: &str) -> Result<(), SystemError> {
1617         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1618         let target: Arc<LockedFATInode> = guard.find(name)?;
1619         // 对目标inode上锁,以防更改
1620         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1621         // 先从缓存删除
1622         guard.children.remove(&name.to_uppercase());
1623 
1624         let dir = match &guard.inode_type {
1625             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1626                 return Err(SystemError::ENOTDIR);
1627             }
1628             FATDirEntry::Dir(d) => d,
1629             FATDirEntry::UnInit => {
1630                 kerror!("FATFS: param: Inode_type uninitialized.");
1631                 return Err(SystemError::EROFS);
1632             }
1633         };
1634         // 检查文件夹是否存在
1635         dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
1636 
1637         // 再从磁盘删除
1638         let r: Result<(), SystemError> =
1639             dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1640         match r {
1641             Ok(_) => return r,
1642             Err(r) => {
1643                 if r == SystemError::ENOTEMPTY {
1644                     // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
1645                     guard.children.insert(name.to_uppercase(), target.clone());
1646                     drop(target_guard);
1647                 }
1648                 return Err(r);
1649             }
1650         }
1651     }
1652 
1653     fn move_to(
1654         &self,
1655         old_name: &str,
1656         target: &Arc<dyn IndexNode>,
1657         new_name: &str,
1658     ) -> Result<(), SystemError> {
1659         let old_id = self.metadata().unwrap().inode_id;
1660         let new_id = target.metadata().unwrap().inode_id;
1661         // 若在同一父目录下
1662         if old_id == new_id {
1663             let mut guard = self.0.lock();
1664             let old_inode: Arc<LockedFATInode> = guard.find(old_name)?;
1665             // 对目标inode上锁,以防更改
1666             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1667             let fs = old_inode_guard.fs.upgrade().unwrap();
1668             // 从缓存删除
1669             let _nod = guard.children.remove(&old_name.to_uppercase());
1670             let old_dir = match &guard.inode_type {
1671                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1672                     return Err(SystemError::ENOTDIR);
1673                 }
1674                 FATDirEntry::Dir(d) => d,
1675                 FATDirEntry::UnInit => {
1676                     kerror!("FATFS: param: Inode_type uninitialized.");
1677                     return Err(SystemError::EROFS);
1678                 }
1679             };
1680             // 检查文件是否存在
1681             // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?;
1682 
1683             old_dir.rename(fs, old_name, new_name)?;
1684         } else {
1685             let mut old_guard = self.0.lock();
1686             let other: &LockedFATInode = target
1687                 .downcast_ref::<LockedFATInode>()
1688                 .ok_or(SystemError::EPERM)?;
1689 
1690             let new_guard = other.0.lock();
1691             let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?;
1692             // 对目标inode上锁,以防更改
1693             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1694             let fs = old_inode_guard.fs.upgrade().unwrap();
1695             // 从缓存删除
1696             let _nod = old_guard.children.remove(&old_name.to_uppercase());
1697             let old_dir = match &old_guard.inode_type {
1698                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1699                     return Err(SystemError::ENOTDIR);
1700                 }
1701                 FATDirEntry::Dir(d) => d,
1702                 FATDirEntry::UnInit => {
1703                     kerror!("FATFS: param: Inode_type uninitialized.");
1704                     return Err(SystemError::EROFS);
1705                 }
1706             };
1707             let new_dir = match &new_guard.inode_type {
1708                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1709                     return Err(SystemError::ENOTDIR);
1710                 }
1711                 FATDirEntry::Dir(d) => d,
1712                 FATDirEntry::UnInit => {
1713                     kerror!("FATFA: param: Inode_type uninitialized.");
1714                     return Err(SystemError::EROFS);
1715                 }
1716             };
1717             // 检查文件是否存在
1718             old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?;
1719             old_dir.rename_across(fs, new_dir, old_name, new_name)?;
1720         }
1721 
1722         return Ok(());
1723     }
1724 
1725     fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> {
1726         let guard: SpinLockGuard<FATInode> = self.0.lock();
1727         if guard.metadata.file_type != FileType::Dir {
1728             return Err(SystemError::ENOTDIR);
1729         }
1730         match ino.into() {
1731             0 => {
1732                 return Ok(String::from("."));
1733             }
1734             1 => {
1735                 return Ok(String::from(".."));
1736             }
1737             ino => {
1738                 // 暴力遍历所有的children,判断inode id是否相同
1739                 // TODO: 优化这里,这个地方性能很差!
1740                 let mut key: Vec<String> = guard
1741                     .children
1742                     .keys()
1743                     .filter(|k| {
1744                         guard
1745                             .children
1746                             .get(*k)
1747                             .unwrap()
1748                             .metadata()
1749                             .unwrap()
1750                             .inode_id
1751                             .into()
1752                             == ino
1753                     })
1754                     .cloned()
1755                     .collect();
1756 
1757                 match key.len() {
1758                     0=>{return Err(SystemError::ENOENT);}
1759                     1=>{return Ok(key.remove(0));}
1760                     _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
1761                 }
1762             }
1763         }
1764     }
1765 
1766     fn mknod(
1767         &self,
1768         filename: &str,
1769         mode: ModeType,
1770         _dev_t: DeviceNumber,
1771     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1772         let mut inode = self.0.lock();
1773         if inode.metadata.file_type != FileType::Dir {
1774             return Err(SystemError::ENOTDIR);
1775         }
1776 
1777         // 判断需要创建的类型
1778         if unlikely(mode.contains(ModeType::S_IFREG)) {
1779             // 普通文件
1780             return self.create(filename, FileType::File, mode);
1781         }
1782 
1783         let nod = LockedFATInode::new(
1784             inode.fs.upgrade().unwrap(),
1785             inode.self_ref.clone(),
1786             FATDirEntry::File(FATFile::default()),
1787         );
1788 
1789         if mode.contains(ModeType::S_IFIFO) {
1790             nod.0.lock().metadata.file_type = FileType::Pipe;
1791             // 创建pipe文件
1792             let pipe_inode = LockedPipeInode::new();
1793             // 设置special_node
1794             nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode));
1795         } else if mode.contains(ModeType::S_IFBLK) {
1796             nod.0.lock().metadata.file_type = FileType::BlockDevice;
1797             unimplemented!()
1798         } else if mode.contains(ModeType::S_IFCHR) {
1799             nod.0.lock().metadata.file_type = FileType::CharDevice;
1800             unimplemented!()
1801         } else {
1802             return Err(SystemError::EINVAL);
1803         }
1804 
1805         inode
1806             .children
1807             .insert(String::from(filename).to_uppercase(), nod.clone());
1808         Ok(nod)
1809     }
1810 
1811     fn special_node(&self) -> Option<SpecialNodeData> {
1812         self.0.lock().special_node.clone()
1813     }
1814 }
1815 
1816 impl Default for FATFsInfo {
1817     fn default() -> Self {
1818         return FATFsInfo {
1819             lead_sig: FATFsInfo::LEAD_SIG,
1820             struc_sig: FATFsInfo::STRUC_SIG,
1821             free_count: 0xFFFFFFFF,
1822             next_free: RESERVED_CLUSTERS,
1823             trail_sig: FATFsInfo::TRAIL_SIG,
1824             dirty: false,
1825             offset: None,
1826         };
1827     }
1828 }
1829 
1830 impl Cluster {
1831     pub fn new(cluster: u64) -> Self {
1832         return Cluster {
1833             cluster_num: cluster,
1834             parent_cluster: 0,
1835         };
1836     }
1837 }
1838 
1839 /// @brief 用于迭代FAT表的内容的簇迭代器对象
1840 #[derive(Debug)]
1841 struct ClusterIter<'a> {
1842     /// 迭代器的next要返回的簇
1843     current_cluster: Option<Cluster>,
1844     /// 属于的文件系统
1845     fs: &'a FATFileSystem,
1846 }
1847 
1848 impl<'a> Iterator for ClusterIter<'a> {
1849     type Item = Cluster;
1850 
1851     fn next(&mut self) -> Option<Self::Item> {
1852         // 当前要返回的簇
1853         let ret: Option<Cluster> = self.current_cluster;
1854 
1855         // 获得下一个要返回簇
1856         let new: Option<Cluster> = match self.current_cluster {
1857             Some(c) => {
1858                 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
1859                 match entry {
1860                     Some(FATEntry::Next(c)) => Some(c),
1861                     _ => None,
1862                 }
1863             }
1864             _ => None,
1865         };
1866 
1867         self.current_cluster = new;
1868         return ret;
1869     }
1870 }
1871