xref: /DragonOS/kernel/src/filesystem/fat/fs.rs (revision b5b571e02693d91eb6918d3b7561e088c3e7ee81)
1 use core::cmp::Ordering;
2 use core::intrinsics::unlikely;
3 use core::{any::Any, fmt::Debug};
4 use system_error::SystemError;
5 
6 use alloc::{
7     collections::BTreeMap,
8     string::String,
9     sync::{Arc, Weak},
10     vec::Vec,
11 };
12 
13 use crate::driver::base::device::device_number::DeviceNumber;
14 use crate::filesystem::vfs::SpecialNodeData;
15 use crate::ipc::pipe::LockedPipeInode;
16 use crate::{
17     driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom},
18     filesystem::vfs::{
19         core::generate_inode_id,
20         file::{FileMode, FilePrivateData},
21         syscall::ModeType,
22         FileSystem, FileType, IndexNode, InodeId, Metadata,
23     },
24     kerror,
25     libs::{
26         spinlock::{SpinLock, SpinLockGuard},
27         vec_cursor::VecCursor,
28     },
29     time::TimeSpec,
30 };
31 
32 use super::entry::FATFile;
33 use super::{
34     bpb::{BiosParameterBlock, FATType},
35     entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
36     utils::RESERVED_CLUSTERS,
37 };
38 
39 /// FAT32文件系统的最大的文件大小
40 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
41 
42 /// @brief 表示当前簇和上一个簇的关系的结构体
43 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
44 #[derive(Debug, Clone, Copy, Default)]
45 pub struct Cluster {
46     pub cluster_num: u64,
47     pub parent_cluster: u64,
48 }
49 
50 impl PartialOrd for Cluster {
51     /// @brief 根据当前簇号比较大小
52     fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
53         return self.cluster_num.partial_cmp(&other.cluster_num);
54     }
55 }
56 
57 impl PartialEq for Cluster {
58     /// @brief 根据当前簇号比较是否相等
59     fn eq(&self, other: &Self) -> bool {
60         self.cluster_num == other.cluster_num
61     }
62 }
63 
64 impl Eq for Cluster {}
65 
66 #[derive(Debug)]
67 pub struct FATFileSystem {
68     /// 当前文件系统所在的分区
69     pub partition: Arc<Partition>,
70     /// 当前文件系统的BOPB
71     pub bpb: BiosParameterBlock,
72     /// 当前文件系统的第一个数据扇区(相对分区开始位置)
73     pub first_data_sector: u64,
74     /// 文件系统信息结构体
75     pub fs_info: Arc<LockedFATFsInfo>,
76     /// 文件系统的根inode
77     root_inode: Arc<LockedFATInode>,
78 }
79 
80 /// FAT文件系统的Inode
81 #[derive(Debug)]
82 pub struct LockedFATInode(SpinLock<FATInode>);
83 
84 #[derive(Debug)]
85 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
86 
87 impl LockedFATFsInfo {
88     #[inline]
89     pub fn new(fs_info: FATFsInfo) -> Self {
90         return Self(SpinLock::new(fs_info));
91     }
92 }
93 
94 #[derive(Debug)]
95 pub struct FATInode {
96     /// 指向父Inode的弱引用
97     parent: Weak<LockedFATInode>,
98     /// 指向自身的弱引用
99     self_ref: Weak<LockedFATInode>,
100     /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。
101     /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
102     children: BTreeMap<String, Arc<LockedFATInode>>,
103     /// 当前inode的元数据
104     metadata: Metadata,
105     /// 指向inode所在的文件系统对象的指针
106     fs: Weak<FATFileSystem>,
107 
108     /// 根据不同的Inode类型,创建不同的私有字段
109     inode_type: FATDirEntry,
110 
111     /// 若该节点是特殊文件节点,该字段则为真正的文件节点
112     special_node: Option<SpecialNodeData>,
113 }
114 
115 impl FATInode {
116     /// @brief 更新当前inode的元数据
117     pub fn update_metadata(&mut self) {
118         // todo: 更新文件的访问时间等信息
119         match &self.inode_type {
120             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
121                 self.metadata.size = f.size() as i64;
122             }
123             FATDirEntry::Dir(d) => {
124                 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
125             }
126             FATDirEntry::UnInit => {
127                 kerror!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
128                 return;
129             }
130         };
131     }
132 
133     fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> {
134         match &self.inode_type {
135             FATDirEntry::Dir(d) => {
136                 // 尝试在缓存区查找
137                 if let Some(entry) = self.children.get(&name.to_uppercase()) {
138                     return Ok(entry.clone());
139                 }
140                 // 在缓存区找不到
141                 // 在磁盘查找
142                 let fat_entry: FATDirEntry =
143                     d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
144                 // 创建新的inode
145                 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
146                     self.fs.upgrade().unwrap(),
147                     self.self_ref.clone(),
148                     fat_entry,
149                 );
150                 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
151                 self.children
152                     .insert(name.to_uppercase(), entry_inode.clone());
153                 return Ok(entry_inode);
154             }
155             FATDirEntry::UnInit => {
156                 panic!(
157                     "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
158                     self.fs
159                 )
160             }
161             _ => {
162                 return Err(SystemError::ENOTDIR);
163             }
164         }
165     }
166 }
167 
168 impl LockedFATInode {
169     pub fn new(
170         fs: Arc<FATFileSystem>,
171         parent: Weak<LockedFATInode>,
172         inode_type: FATDirEntry,
173     ) -> Arc<LockedFATInode> {
174         let file_type = if let FATDirEntry::Dir(_) = inode_type {
175             FileType::Dir
176         } else {
177             FileType::File
178         };
179 
180         let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
181             parent,
182             self_ref: Weak::default(),
183             children: BTreeMap::new(),
184             fs: Arc::downgrade(&fs),
185             inode_type,
186             metadata: Metadata {
187                 dev_id: 0,
188                 inode_id: generate_inode_id(),
189                 size: 0,
190                 blk_size: fs.bpb.bytes_per_sector as usize,
191                 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
192                     fs.bpb.total_sectors_32 as usize
193                 } else {
194                     fs.bpb.total_sectors_16 as usize
195                 },
196                 atime: TimeSpec::default(),
197                 mtime: TimeSpec::default(),
198                 ctime: TimeSpec::default(),
199                 file_type,
200                 mode: ModeType::from_bits_truncate(0o777),
201                 nlinks: 1,
202                 uid: 0,
203                 gid: 0,
204                 raw_dev: DeviceNumber::default(),
205             },
206             special_node: None,
207         })));
208 
209         inode.0.lock().self_ref = Arc::downgrade(&inode);
210 
211         inode.0.lock().update_metadata();
212 
213         return inode;
214     }
215 }
216 
217 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
218 #[derive(Debug)]
219 pub struct FATFsInfo {
220     /// Lead Signature - must equal 0x41615252
221     lead_sig: u32,
222     /// Value must equal 0x61417272
223     struc_sig: u32,
224     /// 空闲簇数目
225     free_count: u32,
226     /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
227     next_free: u32,
228     /// 0xAA550000
229     trail_sig: u32,
230     /// Dirty flag to flush to disk
231     dirty: bool,
232     /// FsInfo Structure 在磁盘上的字节偏移量
233     /// Not present for FAT12 and FAT16
234     offset: Option<u64>,
235 }
236 
237 impl FileSystem for FATFileSystem {
238     fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
239         return self.root_inode.clone();
240     }
241 
242     fn info(&self) -> crate::filesystem::vfs::FsInfo {
243         todo!()
244     }
245 
246     /// @brief 本函数用于实现动态转换。
247     /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
248     fn as_any_ref(&self) -> &dyn Any {
249         self
250     }
251 
252     fn name(&self) -> &str {
253         "fat"
254     }
255 }
256 
257 impl FATFileSystem {
258     /// FAT12允许的最大簇号
259     pub const FAT12_MAX_CLUSTER: u32 = 0xFF5;
260     /// FAT16允许的最大簇号
261     pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5;
262     /// FAT32允许的最大簇号
263     pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7;
264 
265     pub fn new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, SystemError> {
266         let bpb = BiosParameterBlock::new(partition.clone())?;
267 
268         // 从磁盘上读取FAT32文件系统的FsInfo结构体
269         let fs_info: FATFsInfo = match bpb.fat_type {
270             FATType::FAT32(bpb32) => {
271                 let fs_info_in_disk_bytes_offset = partition.lba_start * LBA_SIZE as u64
272                     + bpb32.fs_info as u64 * bpb.bytes_per_sector as u64;
273                 FATFsInfo::new(
274                     partition.clone(),
275                     fs_info_in_disk_bytes_offset,
276                     bpb.bytes_per_sector as usize,
277                 )?
278             }
279             _ => FATFsInfo::default(),
280         };
281 
282         // 根目录项占用的扇区数(向上取整)
283         let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32)
284             + (bpb.bytes_per_sector as u64 - 1))
285             / (bpb.bytes_per_sector as u64);
286 
287         // FAT表大小(单位:扇区)
288         let fat_size = if bpb.fat_size_16 != 0 {
289             bpb.fat_size_16 as u64
290         } else {
291             match bpb.fat_type {
292                 FATType::FAT32(x) => x.fat_size_32 as u64,
293                 _ => {
294                     kerror!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
295                     return Err(SystemError::EINVAL);
296                 }
297             }
298         };
299 
300         let first_data_sector =
301             bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
302 
303         // 创建文件系统的根节点
304         let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
305             parent: Weak::default(),
306             self_ref: Weak::default(),
307             children: BTreeMap::new(),
308             fs: Weak::default(),
309             inode_type: FATDirEntry::UnInit,
310             metadata: Metadata {
311                 dev_id: 0,
312                 inode_id: generate_inode_id(),
313                 size: 0,
314                 blk_size: bpb.bytes_per_sector as usize,
315                 blocks: if let FATType::FAT32(_) = bpb.fat_type {
316                     bpb.total_sectors_32 as usize
317                 } else {
318                     bpb.total_sectors_16 as usize
319                 },
320                 atime: TimeSpec::default(),
321                 mtime: TimeSpec::default(),
322                 ctime: TimeSpec::default(),
323                 file_type: FileType::Dir,
324                 mode: ModeType::from_bits_truncate(0o777),
325                 nlinks: 1,
326                 uid: 0,
327                 gid: 0,
328                 raw_dev: DeviceNumber::default(),
329             },
330             special_node: None,
331         })));
332 
333         let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
334             partition,
335             bpb,
336             first_data_sector,
337             fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
338             root_inode,
339         });
340 
341         // 对root inode加锁,并继续完成初始化工作
342         let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
343         root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
344         root_guard.parent = Arc::downgrade(&result.root_inode);
345         root_guard.self_ref = Arc::downgrade(&result.root_inode);
346         root_guard.fs = Arc::downgrade(&result);
347         // 释放锁
348         drop(root_guard);
349 
350         return Ok(result);
351     }
352 
353     /// @brief 计算每个簇有多少个字节
354     #[inline]
355     pub fn bytes_per_cluster(&self) -> u64 {
356         return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
357     }
358 
359     /// @brief 读取当前簇在FAT表中存储的信息
360     ///
361     /// @param cluster 当前簇
362     ///
363     /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
364     /// @return Err(SystemError) 错误码
365     pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> {
366         let current_cluster = cluster.cluster_num;
367         if current_cluster < 2 {
368             // 0号簇和1号簇是保留簇,不允许用户使用
369             return Err(SystemError::EINVAL);
370         }
371 
372         let fat_type: FATType = self.bpb.fat_type;
373         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
374         let fat_start_sector = self.fat_start_sector();
375         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
376 
377         // cluster对应的FAT表项在分区内的字节偏移量
378         let fat_bytes_offset =
379             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
380 
381         // FAT表项所在的LBA地址
382         // let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
383         let fat_ent_lba = self.partition.lba_start + fat_bytes_offset / LBA_SIZE as u64;
384 
385         // FAT表项在逻辑块内的字节偏移量
386         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
387 
388         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
389         self.partition
390             .disk()
391             .read_at(fat_ent_lba as usize, self.lba_per_sector(), &mut v)?;
392 
393         let mut cursor = VecCursor::new(v);
394         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
395 
396         let res: FATEntry = match self.bpb.fat_type {
397             FATType::FAT12(_) => {
398                 let mut entry = cursor.read_u16()?;
399                 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
400                 if (current_cluster & 1) > 0 {
401                     entry >>= 4;
402                 } else {
403                     entry &= 0x0fff;
404                 }
405 
406                 if entry == 0 {
407                     FATEntry::Unused
408                 } else if entry == 0x0ff7 {
409                     FATEntry::Bad
410                 } else if entry >= 0x0ff8 {
411                     FATEntry::EndOfChain
412                 } else {
413                     FATEntry::Next(Cluster {
414                         cluster_num: entry as u64,
415                         parent_cluster: current_cluster,
416                     })
417                 }
418             }
419             FATType::FAT16(_) => {
420                 let entry = cursor.read_u16()?;
421 
422                 if entry == 0 {
423                     FATEntry::Unused
424                 } else if entry == 0xfff7 {
425                     FATEntry::Bad
426                 } else if entry >= 0xfff8 {
427                     FATEntry::EndOfChain
428                 } else {
429                     FATEntry::Next(Cluster {
430                         cluster_num: entry as u64,
431                         parent_cluster: current_cluster,
432                     })
433                 }
434             }
435             FATType::FAT32(_) => {
436                 let entry = cursor.read_u32()? & 0x0fffffff;
437 
438                 match entry {
439                     _n if (0x0ffffff7..=0x0fffffff).contains(&current_cluster) => {
440                         // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
441                         kerror!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
442                         FATEntry::Bad
443                     }
444                     0 => FATEntry::Unused,
445                     0x0ffffff7 => FATEntry::Bad,
446                     0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
447                     _n => FATEntry::Next(Cluster {
448                         cluster_num: entry as u64,
449                         parent_cluster: current_cluster,
450                     }),
451                 }
452             }
453         };
454         return Ok(res);
455     }
456 
457     /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
458     ///
459     /// @param cluster 当前簇
460     ///
461     /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
462     /// @return Err(SystemError) 错误码
463     pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> {
464         let current_cluster = cluster.cluster_num;
465 
466         let fat_type: FATType = self.bpb.fat_type;
467         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
468         let fat_start_sector = self.fat_start_sector();
469         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
470 
471         // cluster对应的FAT表项在分区内的字节偏移量
472         let fat_bytes_offset =
473             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
474 
475         // FAT表项所在的LBA地址
476         let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
477 
478         // FAT表项在逻辑块内的字节偏移量
479         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
480 
481         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
482         self.partition
483             .disk()
484             .read_at(fat_ent_lba, self.lba_per_sector(), &mut v)?;
485 
486         let mut cursor = VecCursor::new(v);
487         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
488 
489         let res = match self.bpb.fat_type {
490             FATType::FAT12(_) => {
491                 let mut entry = cursor.read_u16()?;
492                 entry = if (current_cluster & 0x0001) > 0 {
493                     entry >> 4
494                 } else {
495                     entry & 0x0fff
496                 };
497                 entry as u64
498             }
499             FATType::FAT16(_) => {
500                 let entry = (cursor.read_u16()?) as u64;
501                 entry
502             }
503             FATType::FAT32(_) => {
504                 let entry = cursor.read_u32()? & 0x0fff_ffff;
505                 entry as u64
506             }
507         };
508 
509         return Ok(res);
510     }
511 
512     /// @brief 获取当前文件系统的root inode,在磁盘上的字节偏移量
513     pub fn root_dir_bytes_offset(&self) -> u64 {
514         match self.bpb.fat_type {
515             FATType::FAT32(s) => {
516                 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
517                     * (self.bpb.sector_per_cluster as u64)
518                     + self.first_data_sector;
519                 return (self.get_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
520             }
521             _ => {
522                 let root_sec = (self.bpb.rsvd_sec_cnt as u64)
523                     + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
524                 return (self.get_lba_from_offset(root_sec) * LBA_SIZE) as u64;
525             }
526         }
527     }
528 
529     /// @brief 获取当前文件系统的根目录项区域的结束位置,在磁盘上的字节偏移量。
530     /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
531     pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
532         match self.bpb.fat_type {
533             FATType::FAT12(_) | FATType::FAT16(_) => {
534                 return Some(
535                     self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
536                 );
537             }
538             _ => {
539                 return None;
540             }
541         }
542     }
543 
544     /// @brief 获取簇在磁盘内的字节偏移量(相对磁盘起始位置。注意,不是分区内偏移量)
545     pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
546         if cluster.cluster_num >= 2 {
547             // 指定簇的第一个扇区号
548             let first_sec_of_cluster = (cluster.cluster_num - 2)
549                 * (self.bpb.sector_per_cluster as u64)
550                 + self.first_data_sector;
551             return (self.get_lba_from_offset(first_sec_of_cluster) * LBA_SIZE) as u64;
552         } else {
553             return 0;
554         }
555     }
556 
557     /// @brief 获取一个空闲簇
558     ///
559     /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
560     ///
561     /// @return Ok(Cluster) 新获取的空闲簇
562     /// @return Err(SystemError) 错误码
563     pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> {
564         let end_cluster: Cluster = self.max_cluster_number();
565         let start_cluster: Cluster = match self.bpb.fat_type {
566             FATType::FAT32(_) => {
567                 let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff);
568                 if next_free < end_cluster.cluster_num {
569                     Cluster::new(next_free)
570                 } else {
571                     Cluster::new(RESERVED_CLUSTERS as u64)
572                 }
573             }
574             _ => Cluster::new(RESERVED_CLUSTERS as u64),
575         };
576 
577         // 寻找一个空的簇
578         let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
579             Ok(c) => c,
580             Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
581                 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
582             }
583             Err(e) => return Err(e),
584         };
585 
586         self.set_entry(free_cluster, FATEntry::EndOfChain)?;
587         // 减少空闲簇计数
588         self.fs_info.0.lock().update_free_count_delta(-1);
589         // 更新搜索空闲簇的参考量
590         self.fs_info
591             .0
592             .lock()
593             .update_next_free((free_cluster.cluster_num + 1) as u32);
594 
595         // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
596         if let Some(prev_cluster) = prev_cluster {
597             // kdebug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
598             self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
599         }
600         // 清空新获取的这个簇
601         self.zero_cluster(free_cluster)?;
602         return Ok(free_cluster);
603     }
604 
605     /// @brief 释放簇链上的所有簇
606     ///
607     /// @param start_cluster 簇链的第一个簇
608     pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> {
609         let clusters: Vec<Cluster> = self.clusters(start_cluster);
610         for c in clusters {
611             self.deallocate_cluster(c)?;
612         }
613         return Ok(());
614     }
615 
616     /// @brief 释放簇
617     ///
618     /// @param 要释放的簇
619     pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
620         let entry: FATEntry = self.get_fat_entry(cluster)?;
621         // 如果不是坏簇
622         if entry != FATEntry::Bad {
623             self.set_entry(cluster, FATEntry::Unused)?;
624             self.fs_info.0.lock().update_free_count_delta(1);
625             // 安全选项:清空被释放的簇
626             #[cfg(feature = "secure")]
627             self.zero_cluster(cluster)?;
628             return Ok(());
629         } else {
630             // 不能释放坏簇
631             kerror!("Bad clusters cannot be freed.");
632             return Err(SystemError::EFAULT);
633         }
634     }
635 
636     /// @brief 获取文件系统的根目录项
637     pub fn root_dir(&self) -> FATDir {
638         match self.bpb.fat_type {
639             FATType::FAT32(s) => {
640                 return FATDir {
641                     first_cluster: Cluster::new(s.root_cluster as u64),
642                     dir_name: String::from("/"),
643                     root_offset: None,
644                     short_dir_entry: None,
645                     loc: None,
646                 };
647             }
648             _ => FATDir {
649                 first_cluster: Cluster::new(0),
650                 dir_name: String::from("/"),
651                 root_offset: Some(self.root_dir_bytes_offset()),
652                 short_dir_entry: None,
653                 loc: None,
654             },
655         }
656     }
657 
658     /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
659     pub fn fat_start_sector(&self) -> u64 {
660         let active_fat = self.active_fat();
661         let fat_size = self.fat_size();
662         return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
663     }
664 
665     /// @brief 获取当前活动的FAT表
666     pub fn active_fat(&self) -> u64 {
667         if self.mirroring_enabled() {
668             return 0;
669         } else {
670             match self.bpb.fat_type {
671                 FATType::FAT32(bpb32) => {
672                     return (bpb32.ext_flags & 0x0f) as u64;
673                 }
674                 _ => {
675                     return 0;
676                 }
677             }
678         }
679     }
680 
681     /// @brief 获取当前文件系统的每个FAT表的大小
682     pub fn fat_size(&self) -> u64 {
683         if self.bpb.fat_size_16 != 0 {
684             return self.bpb.fat_size_16 as u64;
685         } else {
686             match self.bpb.fat_type {
687                 FATType::FAT32(bpb32) => {
688                     return bpb32.fat_size_32 as u64;
689                 }
690 
691                 _ => {
692                     panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
693                 }
694             }
695         }
696     }
697 
698     /// @brief 判断当前文件系统是否启用了FAT表镜像
699     pub fn mirroring_enabled(&self) -> bool {
700         match self.bpb.fat_type {
701             FATType::FAT32(bpb32) => {
702                 return (bpb32.ext_flags & 0x80) == 0;
703             }
704             _ => {
705                 return false;
706             }
707         }
708     }
709 
710     /// @brief 根据分区内的扇区偏移量,获得在磁盘上的LBA地址
711     #[inline]
712     pub fn get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
713         return (self.partition.lba_start
714             + in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
715             as usize;
716     }
717 
718     /// @brief 获取每个扇区占用多少个LBA
719     #[inline]
720     pub fn lba_per_sector(&self) -> usize {
721         return self.bpb.bytes_per_sector as usize / LBA_SIZE;
722     }
723 
724     /// @brief 将分区内字节偏移量转换为扇区偏移量
725     #[inline]
726     pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
727         return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
728     }
729 
730     /// @brief 根据磁盘上的字节偏移量,获取对应位置在分区内的字节偏移量
731     #[inline]
732     pub fn get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64 {
733         return disk_bytes_offset - (self.partition.lba_start * LBA_SIZE as u64);
734     }
735 
736     /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
737     #[inline]
738     pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
739         return bytes_offset % LBA_SIZE as u64;
740     }
741 
742     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
743     ///
744     /// @param start_cluster 整个FAT链的起始簇号
745     pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
746         return self.cluster_iter(start_cluster).collect();
747     }
748 
749     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
750     ///
751     /// @param start_cluster 整个FAT链的起始簇号
752     pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
753         return self
754             .cluster_iter(start_cluster)
755             .fold(0, |size, _cluster| size + 1);
756     }
757     /// @brief 获取一个簇迭代器对象
758     ///
759     /// @param start_cluster 整个FAT链的起始簇号
760     fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
761         return ClusterIter {
762             current_cluster: Some(start_cluster),
763             fs: self,
764         };
765     }
766 
767     /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
768     #[inline]
769     pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
770         return self.cluster_iter(start_cluster).nth(n);
771     }
772 
773     /// @brief 获取整个簇链的最后一个簇
774     #[inline]
775     pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
776         return self.cluster_iter(start_cluster).last();
777     }
778 
779     /// @brief 判断FAT文件系统的shut bit是否正常。
780     /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
781     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
782     ///
783     /// @return Ok(true) 正常
784     /// @return Ok(false) 不正常
785     /// @return Err(SystemError) 在判断时发生错误
786     #[allow(dead_code)]
787     pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> {
788         match self.bpb.fat_type {
789             FATType::FAT32(_) => {
790                 // 对于FAT32, error bit位于第一个扇区的第8字节。
791                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
792                 return Ok(bit > 0);
793             }
794             FATType::FAT16(_) => {
795                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
796                 return Ok(bit > 0);
797             }
798             _ => return Ok(true),
799         }
800     }
801 
802     /// @brief 判断FAT文件系统的hard error bit是否正常。
803     /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
804     /// 卷上的某些扇区可能已损坏。
805     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
806     ///
807     /// @return Ok(true) 正常
808     /// @return Ok(false) 不正常
809     /// @return Err(SystemError) 在判断时发生错误
810     pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> {
811         match self.bpb.fat_type {
812             FATType::FAT32(_) => {
813                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
814                 return Ok(bit > 0);
815             }
816             FATType::FAT16(_) => {
817                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
818                 return Ok(bit > 0);
819             }
820             _ => return Ok(true),
821         }
822     }
823 
824     /// @brief 设置文件系统的shut bit为正常状态
825     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
826     ///
827     /// @return Ok(()) 设置成功
828     /// @return Err(SystemError) 在设置过程中,出现错误
829     pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> {
830         match self.bpb.fat_type {
831             FATType::FAT32(_) => {
832                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
833                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
834 
835                 return Ok(());
836             }
837 
838             FATType::FAT16(_) => {
839                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
840                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
841                 return Ok(());
842             }
843             _ => return Ok(()),
844         }
845     }
846 
847     /// @brief 设置文件系统的hard error bit为正常状态
848     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
849     ///
850     /// @return Ok(()) 设置成功
851     /// @return Err(SystemError) 在设置过程中,出现错误
852     pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> {
853         match self.bpb.fat_type {
854             FATType::FAT32(_) => {
855                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
856                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
857                 return Ok(());
858             }
859 
860             FATType::FAT16(_) => {
861                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
862                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
863                 return Ok(());
864             }
865             _ => return Ok(()),
866         }
867     }
868 
869     /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
870     pub fn umount(&mut self) -> Result<(), SystemError> {
871         self.fs_info.0.lock().flush(&self.partition)?;
872 
873         self.set_shut_bit_ok()?;
874 
875         self.set_hard_error_bit_ok()?;
876 
877         self.partition.disk().sync()?;
878 
879         return Ok(());
880     }
881 
882     /// @brief 获取文件系统的最大簇号
883     pub fn max_cluster_number(&self) -> Cluster {
884         match self.bpb.fat_type {
885             FATType::FAT32(s) => {
886                 // FAT32
887 
888                 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
889                 let data_sec: u64 = self.bpb.total_sectors_32 as u64
890                     - (self.bpb.rsvd_sec_cnt as u64
891                         + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
892 
893                 // 数据区的簇数量
894                 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
895 
896                 // 返回最大的簇号
897                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
898             }
899 
900             _ => {
901                 // FAT12 / FAT16
902                 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32)
903                     + self.bpb.bytes_per_sector as u64
904                     - 1)
905                     / self.bpb.bytes_per_sector as u64;
906                 // 数据区扇区数
907                 let data_sec: u64 = self.bpb.total_sectors_16 as u64
908                     - (self.bpb.rsvd_sec_cnt as u64
909                         + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
910                         + root_dir_sectors);
911                 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
912                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
913             }
914         }
915     }
916 
917     /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
918     ///
919     /// @param start_cluster 起始簇号
920     /// @param end_cluster 终止簇号(不包含)
921     ///
922     /// @return Ok(Cluster) 寻找到的空闲簇
923     /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
924     pub fn get_free_cluster(
925         &self,
926         start_cluster: Cluster,
927         end_cluster: Cluster,
928     ) -> Result<Cluster, SystemError> {
929         let max_cluster: Cluster = self.max_cluster_number();
930         let mut cluster: u64 = start_cluster.cluster_num;
931 
932         let fat_type: FATType = self.bpb.fat_type;
933         let fat_start_sector: u64 = self.fat_start_sector();
934         let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
935 
936         match fat_type {
937             FATType::FAT12(_) => {
938                 let part_bytes_offset: u64 =
939                     fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
940                 let in_block_offset = self.get_in_block_offset(part_bytes_offset);
941 
942                 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
943 
944                 // 由于FAT12的FAT表不大于6K,因此直接读取6K
945                 let num_lba = (6 * 1024) / LBA_SIZE;
946                 let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE];
947                 self.partition.disk().read_at(lba, num_lba, &mut v)?;
948 
949                 let mut cursor: VecCursor = VecCursor::new(v);
950                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
951 
952                 let mut packed_val: u16 = cursor.read_u16()?;
953                 loop {
954                     let val = if (cluster & 0x1) > 0 {
955                         packed_val >> 4
956                     } else {
957                         packed_val & 0x0fff
958                     };
959                     if val == 0 {
960                         return Ok(Cluster::new(cluster));
961                     }
962 
963                     cluster += 1;
964 
965                     // 磁盘无剩余空间,或者簇号达到给定的最大值
966                     if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
967                         return Err(SystemError::ENOSPC);
968                     }
969 
970                     packed_val = match cluster & 1 {
971                         0 => cursor.read_u16()?,
972                         _ => {
973                             let next_byte = cursor.read_u8()? as u16;
974                             (packed_val >> 8) | (next_byte << 8)
975                         }
976                     };
977                 }
978             }
979             FATType::FAT16(_) => {
980                 // todo: 优化这里,减少读取磁盘的次数。
981                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
982                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
983                         Cluster::new(cluster),
984                         fat_start_sector,
985                         bytes_per_sec,
986                     );
987                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
988 
989                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
990 
991                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
992                     self.partition
993                         .disk()
994                         .read_at(lba, self.lba_per_sector(), &mut v)?;
995 
996                     let mut cursor: VecCursor = VecCursor::new(v);
997                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
998 
999                     let val = cursor.read_u16()?;
1000                     // 找到空闲簇
1001                     if val == 0 {
1002                         return Ok(Cluster::new(val as u64));
1003                     }
1004                     cluster += 1;
1005                 }
1006 
1007                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1008                 return Err(SystemError::ENOSPC);
1009             }
1010             FATType::FAT32(_) => {
1011                 // todo: 优化这里,减少读取磁盘的次数。
1012                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
1013                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
1014                         Cluster::new(cluster),
1015                         fat_start_sector,
1016                         bytes_per_sec,
1017                     );
1018                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1019 
1020                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1021 
1022                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1023                     self.partition
1024                         .disk()
1025                         .read_at(lba, self.lba_per_sector(), &mut v)?;
1026 
1027                     let mut cursor: VecCursor = VecCursor::new(v);
1028                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1029 
1030                     let val = cursor.read_u32()? & 0x0fffffff;
1031 
1032                     if val == 0 {
1033                         return Ok(Cluster::new(cluster));
1034                     }
1035                     cluster += 1;
1036                 }
1037 
1038                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1039                 return Err(SystemError::ENOSPC);
1040             }
1041         }
1042     }
1043 
1044     /// @brief 在FAT表中,设置指定的簇的信息。
1045     ///
1046     /// @param cluster 目标簇
1047     /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
1048     pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> {
1049         // fat表项在分区上的字节偏移量
1050         let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
1051             cluster,
1052             self.fat_start_sector(),
1053             self.bpb.bytes_per_sector as u64,
1054         );
1055 
1056         match self.bpb.fat_type {
1057             FATType::FAT12(_) => {
1058                 // 计算要写入的值
1059                 let raw_val: u16 = match fat_entry {
1060                     FATEntry::Unused => 0,
1061                     FATEntry::Bad => 0xff7,
1062                     FATEntry::EndOfChain => 0xfff,
1063                     FATEntry::Next(c) => c.cluster_num as u16,
1064                 };
1065 
1066                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1067 
1068                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1069 
1070                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1071                 self.partition.disk().read_at(lba, 1, &mut v)?;
1072 
1073                 let mut cursor: VecCursor = VecCursor::new(v);
1074                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1075 
1076                 let old_val: u16 = cursor.read_u16()?;
1077                 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
1078                     (old_val & 0x000f) | (raw_val << 4)
1079                 } else {
1080                     (old_val & 0xf000) | raw_val
1081                 };
1082 
1083                 // 写回数据到磁盘上
1084                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1085                 cursor.write_u16(new_val)?;
1086                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1087                 return Ok(());
1088             }
1089             FATType::FAT16(_) => {
1090                 // 计算要写入的值
1091                 let raw_val: u16 = match fat_entry {
1092                     FATEntry::Unused => 0,
1093                     FATEntry::Bad => 0xfff7,
1094                     FATEntry::EndOfChain => 0xfdff,
1095                     FATEntry::Next(c) => c.cluster_num as u16,
1096                 };
1097 
1098                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1099 
1100                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1101 
1102                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1103                 self.partition.disk().read_at(lba, 1, &mut v)?;
1104 
1105                 let mut cursor: VecCursor = VecCursor::new(v);
1106                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1107 
1108                 cursor.write_u16(raw_val)?;
1109                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1110 
1111                 return Ok(());
1112             }
1113             FATType::FAT32(_) => {
1114                 let fat_size: u64 = self.fat_size();
1115                 let bound: u64 = if self.mirroring_enabled() {
1116                     1
1117                 } else {
1118                     self.bpb.num_fats as u64
1119                 };
1120                 // kdebug!("set entry, bound={bound}, fat_size={fat_size}");
1121                 for i in 0..bound {
1122                     // 当前操作的FAT表在磁盘上的字节偏移量
1123                     let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
1124                     let in_block_offset: u64 = self.get_in_block_offset(f_offset);
1125                     let lba = self.get_lba_from_offset(self.bytes_to_sector(f_offset));
1126 
1127                     // kdebug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
1128                     let mut v: Vec<u8> = vec![0; LBA_SIZE];
1129                     self.partition.disk().read_at(lba, 1, &mut v)?;
1130 
1131                     let mut cursor: VecCursor = VecCursor::new(v);
1132                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1133 
1134                     // FAT32的高4位保留
1135                     let old_bits = cursor.read_u32()? & 0xf0000000;
1136 
1137                     if fat_entry == FATEntry::Unused
1138                         && cluster.cluster_num >= 0x0ffffff7
1139                         && cluster.cluster_num <= 0x0fffffff
1140                     {
1141                         kerror!(
1142                             "FAT32: Reserved Cluster {:?} cannot be marked as free",
1143                             cluster
1144                         );
1145                         return Err(SystemError::EPERM);
1146                     }
1147 
1148                     // 计算要写入的值
1149                     let mut raw_val: u32 = match fat_entry {
1150                         FATEntry::Unused => 0,
1151                         FATEntry::Bad => 0x0FFFFFF7,
1152                         FATEntry::EndOfChain => 0x0FFFFFFF,
1153                         FATEntry::Next(c) => c.cluster_num as u32,
1154                     };
1155 
1156                     // 恢复保留位
1157                     raw_val |= old_bits;
1158 
1159                     // kdebug!("sent entry, raw_val={raw_val}");
1160 
1161                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1162                     cursor.write_u32(raw_val)?;
1163 
1164                     self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1165                 }
1166 
1167                 return Ok(());
1168             }
1169         }
1170     }
1171 
1172     /// @brief 清空指定的簇
1173     ///
1174     /// @param cluster 要被清空的簇
1175     pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
1176         // 准备数据,用于写入
1177         let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
1178         let offset: usize = self.cluster_bytes_offset(cluster) as usize;
1179         self.partition
1180             .disk()
1181             .write_at_bytes(offset, zeros.len(), zeros.as_slice())?;
1182         return Ok(());
1183     }
1184 }
1185 
1186 impl Drop for FATFileSystem {
1187     fn drop(&mut self) {
1188         let r = self.umount();
1189         if r.is_err() {
1190             kerror!(
1191                 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}",
1192                 r.as_ref().unwrap_err()
1193             );
1194         }
1195     }
1196 }
1197 
1198 impl FATFsInfo {
1199     const LEAD_SIG: u32 = 0x41615252;
1200     const STRUC_SIG: u32 = 0x61417272;
1201     const TRAIL_SIG: u32 = 0xAA550000;
1202     #[allow(dead_code)]
1203     const FS_INFO_SIZE: u64 = 512;
1204 
1205     /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
1206     ///
1207     /// @param partition 磁盘分区
1208     /// @param in_disk_fs_info_offset FSInfo扇区在磁盘内的字节偏移量(单位:字节)
1209     /// @param bytes_per_sec 每扇区字节数
1210     pub fn new(
1211         partition: Arc<Partition>,
1212         in_disk_fs_info_offset: u64,
1213         bytes_per_sec: usize,
1214     ) -> Result<Self, SystemError> {
1215         let mut v = vec![0; bytes_per_sec];
1216 
1217         // 计算fs_info扇区在磁盘上的字节偏移量,从磁盘读取数据
1218         partition
1219             .disk()
1220             .read_at(in_disk_fs_info_offset as usize / LBA_SIZE, 1, &mut v)?;
1221         let mut cursor = VecCursor::new(v);
1222 
1223         let mut fsinfo = FATFsInfo {
1224             lead_sig: cursor.read_u32()?,
1225             ..Default::default()
1226         };
1227         cursor.seek(SeekFrom::SeekCurrent(480))?;
1228         fsinfo.struc_sig = cursor.read_u32()?;
1229         fsinfo.free_count = cursor.read_u32()?;
1230         fsinfo.next_free = cursor.read_u32()?;
1231 
1232         cursor.seek(SeekFrom::SeekCurrent(12))?;
1233 
1234         fsinfo.trail_sig = cursor.read_u32()?;
1235         fsinfo.dirty = false;
1236         fsinfo.offset = Some(in_disk_fs_info_offset);
1237 
1238         if fsinfo.is_valid() {
1239             return Ok(fsinfo);
1240         } else {
1241             kerror!("Error occurred while parsing FATFsInfo.");
1242             return Err(SystemError::EINVAL);
1243         }
1244     }
1245 
1246     /// @brief 判断是否为正确的FsInfo结构体
1247     fn is_valid(&self) -> bool {
1248         self.lead_sig == Self::LEAD_SIG
1249             && self.struc_sig == Self::STRUC_SIG
1250             && self.trail_sig == Self::TRAIL_SIG
1251     }
1252 
1253     /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
1254     ///
1255     /// @param 当前文件系统的最大簇号
1256     pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
1257         let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
1258         // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
1259         if self.free_count as u64 > count_clusters {
1260             return None;
1261         } else {
1262             match self.free_count {
1263                 // free count字段不可用
1264                 0xffffffff => return None,
1265                 // 返回FsInfo中存储的数据
1266                 n => return Some(n as u64),
1267             }
1268         }
1269     }
1270 
1271     /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
1272     ///
1273     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1274     pub fn update_free_count_abs(&mut self, new_count: u32) {
1275         self.free_count = new_count;
1276     }
1277 
1278     /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
1279     ///
1280     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1281     pub fn update_free_count_delta(&mut self, delta: i32) {
1282         self.free_count = (self.free_count as i32 + delta) as u32;
1283     }
1284 
1285     /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
1286     ///
1287     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1288     pub fn update_next_free(&mut self, next_free: u32) {
1289         // 这个值是参考量,不一定要准确,仅供加速查找
1290         self.next_free = next_free;
1291     }
1292 
1293     /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
1294     pub fn next_free(&self) -> Option<u64> {
1295         match self.next_free {
1296             0xffffffff => return None,
1297             0 | 1 => return None,
1298             n => return Some(n as u64),
1299         };
1300     }
1301 
1302     /// @brief 把fs info刷入磁盘
1303     ///
1304     /// @param partition fs info所在的分区
1305     pub fn flush(&self, partition: &Arc<Partition>) -> Result<(), SystemError> {
1306         if let Some(off) = self.offset {
1307             let in_block_offset = off % LBA_SIZE as u64;
1308 
1309             let lba = off as usize / LBA_SIZE;
1310 
1311             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1312             partition.disk().read_at(lba, 1, &mut v)?;
1313 
1314             let mut cursor: VecCursor = VecCursor::new(v);
1315             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1316 
1317             cursor.write_u32(self.lead_sig)?;
1318             cursor.seek(SeekFrom::SeekCurrent(480))?;
1319             cursor.write_u32(self.struc_sig)?;
1320             cursor.write_u32(self.free_count)?;
1321             cursor.write_u32(self.next_free)?;
1322             cursor.seek(SeekFrom::SeekCurrent(12))?;
1323             cursor.write_u32(self.trail_sig)?;
1324 
1325             partition.disk().write_at(lba, 1, cursor.as_slice())?;
1326         }
1327         return Ok(());
1328     }
1329 
1330     /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
1331     ///
1332     /// @param partition fs info所在的分区
1333     pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> {
1334         if let Some(off) = self.offset {
1335             let in_block_offset = off % LBA_SIZE as u64;
1336 
1337             let lba = off as usize / LBA_SIZE;
1338 
1339             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1340             partition.disk().read_at(lba, 1, &mut v)?;
1341             let mut cursor: VecCursor = VecCursor::new(v);
1342             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1343             self.lead_sig = cursor.read_u32()?;
1344 
1345             cursor.seek(SeekFrom::SeekCurrent(480))?;
1346             self.struc_sig = cursor.read_u32()?;
1347             self.free_count = cursor.read_u32()?;
1348             self.next_free = cursor.read_u32()?;
1349             cursor.seek(SeekFrom::SeekCurrent(12))?;
1350             self.trail_sig = cursor.read_u32()?;
1351         }
1352         return Ok(());
1353     }
1354 }
1355 
1356 impl IndexNode for LockedFATInode {
1357     fn read_at(
1358         &self,
1359         offset: usize,
1360         len: usize,
1361         buf: &mut [u8],
1362         _data: &mut FilePrivateData,
1363     ) -> Result<usize, SystemError> {
1364         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1365         match &guard.inode_type {
1366             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1367                 let r = f.read(
1368                     &guard.fs.upgrade().unwrap(),
1369                     &mut buf[0..len],
1370                     offset as u64,
1371                 );
1372                 guard.update_metadata();
1373                 return r;
1374             }
1375             FATDirEntry::Dir(_) => {
1376                 return Err(SystemError::EISDIR);
1377             }
1378             FATDirEntry::UnInit => {
1379                 kerror!("FATFS: param: Inode_type uninitialized.");
1380                 return Err(SystemError::EROFS);
1381             }
1382         }
1383     }
1384 
1385     fn write_at(
1386         &self,
1387         offset: usize,
1388         len: usize,
1389         buf: &[u8],
1390         _data: &mut FilePrivateData,
1391     ) -> Result<usize, SystemError> {
1392         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1393         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1394 
1395         match &mut guard.inode_type {
1396             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1397                 let r = f.write(fs, &buf[0..len], offset as u64);
1398                 guard.update_metadata();
1399                 return r;
1400             }
1401             FATDirEntry::Dir(_) => {
1402                 return Err(SystemError::EISDIR);
1403             }
1404             FATDirEntry::UnInit => {
1405                 kerror!("FATFS: param: Inode_type uninitialized.");
1406                 return Err(SystemError::EROFS);
1407             }
1408         }
1409     }
1410 
1411     fn create(
1412         &self,
1413         name: &str,
1414         file_type: FileType,
1415         _mode: ModeType,
1416     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1417         // 由于FAT32不支持文件权限的功能,因此忽略mode参数
1418         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1419         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1420 
1421         match &mut guard.inode_type {
1422             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1423                 return Err(SystemError::ENOTDIR);
1424             }
1425             FATDirEntry::Dir(d) => match file_type {
1426                 FileType::File => {
1427                     d.create_file(name, fs)?;
1428                     return Ok(guard.find(name)?);
1429                 }
1430                 FileType::Dir => {
1431                     d.create_dir(name, fs)?;
1432                     return Ok(guard.find(name)?);
1433                 }
1434 
1435                 FileType::SymLink => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP),
1436                 _ => return Err(SystemError::EINVAL),
1437             },
1438             FATDirEntry::UnInit => {
1439                 kerror!("FATFS: param: Inode_type uninitialized.");
1440                 return Err(SystemError::EROFS);
1441             }
1442         }
1443     }
1444 
1445     fn fs(&self) -> Arc<dyn FileSystem> {
1446         return self.0.lock().fs.upgrade().unwrap();
1447     }
1448 
1449     fn as_any_ref(&self) -> &dyn core::any::Any {
1450         return self;
1451     }
1452 
1453     fn metadata(&self) -> Result<Metadata, SystemError> {
1454         return Ok(self.0.lock().metadata.clone());
1455     }
1456     fn resize(&self, len: usize) -> Result<(), SystemError> {
1457         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1458         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1459         let old_size = guard.metadata.size as usize;
1460 
1461         match &mut guard.inode_type {
1462             FATDirEntry::File(file) | FATDirEntry::VolId(file) => {
1463                 // 如果新的长度和旧的长度相同,那么就直接返回
1464                 match len.cmp(&old_size) {
1465                     Ordering::Equal => {
1466                         return Ok(());
1467                     }
1468                     Ordering::Greater => {
1469                         // 如果新的长度比旧的长度大,那么就在文件末尾添加空白
1470                         let mut buf: Vec<u8> = Vec::new();
1471                         let mut remain_size = len - old_size;
1472                         let buf_size = remain_size;
1473                         // let buf_size = core::cmp::min(remain_size, 512 * 1024);
1474                         buf.resize(buf_size, 0);
1475 
1476                         let mut offset = old_size;
1477                         while remain_size > 0 {
1478                             let write_size = core::cmp::min(remain_size, buf_size);
1479                             file.write(fs, &buf[0..write_size], offset as u64)?;
1480                             remain_size -= write_size;
1481                             offset += write_size;
1482                         }
1483                     }
1484                     Ordering::Less => {
1485                         file.truncate(fs, len as u64)?;
1486                     }
1487                 }
1488                 guard.update_metadata();
1489                 return Ok(());
1490             }
1491             FATDirEntry::Dir(_) => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP),
1492             FATDirEntry::UnInit => {
1493                 kerror!("FATFS: param: Inode_type uninitialized.");
1494                 return Err(SystemError::EROFS);
1495             }
1496         }
1497     }
1498 
1499     fn truncate(&self, len: usize) -> Result<(), SystemError> {
1500         let guard: SpinLockGuard<FATInode> = self.0.lock();
1501         let old_size = guard.metadata.size as usize;
1502         if len < old_size {
1503             drop(guard);
1504             self.resize(len)
1505         } else {
1506             Ok(())
1507         }
1508     }
1509 
1510     fn list(&self) -> Result<Vec<String>, SystemError> {
1511         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1512         let fatent: &FATDirEntry = &guard.inode_type;
1513         match fatent {
1514             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1515                 return Err(SystemError::ENOTDIR);
1516             }
1517             FATDirEntry::Dir(dir) => {
1518                 // 获取当前目录下的所有目录项
1519                 let mut ret: Vec<String> = Vec::new();
1520                 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
1521                 for ent in dir_iter {
1522                     ret.push(ent.name());
1523 
1524                     // ====== 生成inode缓存,存入B树
1525                     let name: String = ent.name();
1526                     // kdebug!("name={name}");
1527 
1528                     if !guard.children.contains_key(&name.to_uppercase())
1529                         && name != "."
1530                         && name != ".."
1531                     {
1532                         // 创建新的inode
1533                         let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
1534                             guard.fs.upgrade().unwrap(),
1535                             guard.self_ref.clone(),
1536                             ent,
1537                         );
1538                         // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
1539                         guard
1540                             .children
1541                             .insert(name.to_uppercase(), entry_inode.clone());
1542                     }
1543                 }
1544                 return Ok(ret);
1545             }
1546             FATDirEntry::UnInit => {
1547                 kerror!("FATFS: param: Inode_type uninitialized.");
1548                 return Err(SystemError::EROFS);
1549             }
1550         }
1551     }
1552 
1553     fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
1554         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1555         let target = guard.find(name)?;
1556         return Ok(target);
1557     }
1558 
1559     fn open(&self, _data: &mut FilePrivateData, _mode: &FileMode) -> Result<(), SystemError> {
1560         return Ok(());
1561     }
1562 
1563     fn close(&self, _data: &mut FilePrivateData) -> Result<(), SystemError> {
1564         return Ok(());
1565     }
1566 
1567     fn unlink(&self, name: &str) -> Result<(), SystemError> {
1568         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1569         let target: Arc<LockedFATInode> = guard.find(name)?;
1570         // 对目标inode上锁,以防更改
1571         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1572         // 先从缓存删除
1573         let nod = guard.children.remove(&name.to_uppercase());
1574 
1575         // 若删除缓存中为管道的文件,则不需要再到磁盘删除
1576         if nod.is_some() {
1577             let file_type = target_guard.metadata.file_type;
1578             if file_type == FileType::Pipe {
1579                 return Ok(());
1580             }
1581         }
1582 
1583         let dir = match &guard.inode_type {
1584             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1585                 return Err(SystemError::ENOTDIR);
1586             }
1587             FATDirEntry::Dir(d) => d,
1588             FATDirEntry::UnInit => {
1589                 kerror!("FATFS: param: Inode_type uninitialized.");
1590                 return Err(SystemError::EROFS);
1591             }
1592         };
1593         // 检查文件是否存在
1594         dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
1595 
1596         // 再从磁盘删除
1597         let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1598         drop(target_guard);
1599         return r;
1600     }
1601 
1602     fn rmdir(&self, name: &str) -> Result<(), SystemError> {
1603         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1604         let target: Arc<LockedFATInode> = guard.find(name)?;
1605         // 对目标inode上锁,以防更改
1606         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1607         // 先从缓存删除
1608         guard.children.remove(&name.to_uppercase());
1609 
1610         let dir = match &guard.inode_type {
1611             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1612                 return Err(SystemError::ENOTDIR);
1613             }
1614             FATDirEntry::Dir(d) => d,
1615             FATDirEntry::UnInit => {
1616                 kerror!("FATFS: param: Inode_type uninitialized.");
1617                 return Err(SystemError::EROFS);
1618             }
1619         };
1620         // 检查文件夹是否存在
1621         dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
1622 
1623         // 再从磁盘删除
1624         let r: Result<(), SystemError> =
1625             dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1626         match r {
1627             Ok(_) => return r,
1628             Err(r) => {
1629                 if r == SystemError::ENOTEMPTY {
1630                     // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
1631                     guard.children.insert(name.to_uppercase(), target.clone());
1632                     drop(target_guard);
1633                 }
1634                 return Err(r);
1635             }
1636         }
1637     }
1638 
1639     fn move_to(
1640         &self,
1641         old_name: &str,
1642         target: &Arc<dyn IndexNode>,
1643         new_name: &str,
1644     ) -> Result<(), SystemError> {
1645         let old_id = self.metadata().unwrap().inode_id;
1646         let new_id = target.metadata().unwrap().inode_id;
1647         // 若在同一父目录下
1648         if old_id == new_id {
1649             let mut guard = self.0.lock();
1650             let old_inode: Arc<LockedFATInode> = guard.find(old_name)?;
1651             // 对目标inode上锁,以防更改
1652             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1653             let fs = old_inode_guard.fs.upgrade().unwrap();
1654             // 从缓存删除
1655             let _nod = guard.children.remove(&old_name.to_uppercase());
1656             let old_dir = match &guard.inode_type {
1657                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1658                     return Err(SystemError::ENOTDIR);
1659                 }
1660                 FATDirEntry::Dir(d) => d,
1661                 FATDirEntry::UnInit => {
1662                     kerror!("FATFS: param: Inode_type uninitialized.");
1663                     return Err(SystemError::EROFS);
1664                 }
1665             };
1666             // 检查文件是否存在
1667             // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?;
1668 
1669             old_dir.rename(fs, old_name, new_name)?;
1670         } else {
1671             let mut old_guard = self.0.lock();
1672             let other: &LockedFATInode = target
1673                 .downcast_ref::<LockedFATInode>()
1674                 .ok_or(SystemError::EPERM)?;
1675 
1676             let new_guard = other.0.lock();
1677             let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?;
1678             // 对目标inode上锁,以防更改
1679             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1680             let fs = old_inode_guard.fs.upgrade().unwrap();
1681             // 从缓存删除
1682             let _nod = old_guard.children.remove(&old_name.to_uppercase());
1683             let old_dir = match &old_guard.inode_type {
1684                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1685                     return Err(SystemError::ENOTDIR);
1686                 }
1687                 FATDirEntry::Dir(d) => d,
1688                 FATDirEntry::UnInit => {
1689                     kerror!("FATFS: param: Inode_type uninitialized.");
1690                     return Err(SystemError::EROFS);
1691                 }
1692             };
1693             let new_dir = match &new_guard.inode_type {
1694                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1695                     return Err(SystemError::ENOTDIR);
1696                 }
1697                 FATDirEntry::Dir(d) => d,
1698                 FATDirEntry::UnInit => {
1699                     kerror!("FATFA: param: Inode_type uninitialized.");
1700                     return Err(SystemError::EROFS);
1701                 }
1702             };
1703             // 检查文件是否存在
1704             old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?;
1705             old_dir.rename_across(fs, new_dir, old_name, new_name)?;
1706         }
1707 
1708         return Ok(());
1709     }
1710 
1711     fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> {
1712         let guard: SpinLockGuard<FATInode> = self.0.lock();
1713         if guard.metadata.file_type != FileType::Dir {
1714             return Err(SystemError::ENOTDIR);
1715         }
1716         match ino.into() {
1717             0 => {
1718                 return Ok(String::from("."));
1719             }
1720             1 => {
1721                 return Ok(String::from(".."));
1722             }
1723             ino => {
1724                 // 暴力遍历所有的children,判断inode id是否相同
1725                 // TODO: 优化这里,这个地方性能很差!
1726                 let mut key: Vec<String> = guard
1727                     .children
1728                     .keys()
1729                     .filter(|k| {
1730                         guard
1731                             .children
1732                             .get(*k)
1733                             .unwrap()
1734                             .metadata()
1735                             .unwrap()
1736                             .inode_id
1737                             .into()
1738                             == ino
1739                     })
1740                     .cloned()
1741                     .collect();
1742 
1743                 match key.len() {
1744                     0=>{return Err(SystemError::ENOENT);}
1745                     1=>{return Ok(key.remove(0));}
1746                     _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
1747                 }
1748             }
1749         }
1750     }
1751 
1752     fn mknod(
1753         &self,
1754         filename: &str,
1755         mode: ModeType,
1756         _dev_t: DeviceNumber,
1757     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1758         let mut inode = self.0.lock();
1759         if inode.metadata.file_type != FileType::Dir {
1760             return Err(SystemError::ENOTDIR);
1761         }
1762 
1763         // 判断需要创建的类型
1764         if unlikely(mode.contains(ModeType::S_IFREG)) {
1765             // 普通文件
1766             return self.create(filename, FileType::File, mode);
1767         }
1768 
1769         let nod = LockedFATInode::new(
1770             inode.fs.upgrade().unwrap(),
1771             inode.self_ref.clone(),
1772             FATDirEntry::File(FATFile::default()),
1773         );
1774 
1775         if mode.contains(ModeType::S_IFIFO) {
1776             nod.0.lock().metadata.file_type = FileType::Pipe;
1777             // 创建pipe文件
1778             let pipe_inode = LockedPipeInode::new();
1779             // 设置special_node
1780             nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode));
1781         } else if mode.contains(ModeType::S_IFBLK) {
1782             nod.0.lock().metadata.file_type = FileType::BlockDevice;
1783             unimplemented!()
1784         } else if mode.contains(ModeType::S_IFCHR) {
1785             nod.0.lock().metadata.file_type = FileType::CharDevice;
1786             unimplemented!()
1787         } else {
1788             return Err(SystemError::EINVAL);
1789         }
1790 
1791         inode
1792             .children
1793             .insert(String::from(filename).to_uppercase(), nod.clone());
1794         Ok(nod)
1795     }
1796 
1797     fn special_node(&self) -> Option<SpecialNodeData> {
1798         self.0.lock().special_node.clone()
1799     }
1800 }
1801 
1802 impl Default for FATFsInfo {
1803     fn default() -> Self {
1804         return FATFsInfo {
1805             lead_sig: FATFsInfo::LEAD_SIG,
1806             struc_sig: FATFsInfo::STRUC_SIG,
1807             free_count: 0xFFFFFFFF,
1808             next_free: RESERVED_CLUSTERS,
1809             trail_sig: FATFsInfo::TRAIL_SIG,
1810             dirty: false,
1811             offset: None,
1812         };
1813     }
1814 }
1815 
1816 impl Cluster {
1817     pub fn new(cluster: u64) -> Self {
1818         return Cluster {
1819             cluster_num: cluster,
1820             parent_cluster: 0,
1821         };
1822     }
1823 }
1824 
1825 /// @brief 用于迭代FAT表的内容的簇迭代器对象
1826 #[derive(Debug)]
1827 struct ClusterIter<'a> {
1828     /// 迭代器的next要返回的簇
1829     current_cluster: Option<Cluster>,
1830     /// 属于的文件系统
1831     fs: &'a FATFileSystem,
1832 }
1833 
1834 impl<'a> Iterator for ClusterIter<'a> {
1835     type Item = Cluster;
1836 
1837     fn next(&mut self) -> Option<Self::Item> {
1838         // 当前要返回的簇
1839         let ret: Option<Cluster> = self.current_cluster;
1840 
1841         // 获得下一个要返回簇
1842         let new: Option<Cluster> = match self.current_cluster {
1843             Some(c) => {
1844                 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
1845                 match entry {
1846                     Some(FATEntry::Next(c)) => Some(c),
1847                     _ => None,
1848                 }
1849             }
1850             _ => None,
1851         };
1852 
1853         self.current_cluster = new;
1854         return ret;
1855     }
1856 }
1857