xref: /DragonOS/kernel/src/filesystem/fat/fs.rs (revision 9fa0e95eeed8630a8a69c874090af2f10e8eee02)
1 use alloc::string::ToString;
2 use core::cmp::Ordering;
3 use core::intrinsics::unlikely;
4 use core::{any::Any, fmt::Debug};
5 use log::error;
6 use system_error::SystemError;
7 
8 use alloc::{
9     collections::BTreeMap,
10     string::String,
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 
15 use crate::driver::base::block::gendisk::GenDisk;
16 use crate::driver::base::device::device_number::DeviceNumber;
17 use crate::filesystem::vfs::utils::DName;
18 use crate::filesystem::vfs::{Magic, SpecialNodeData, SuperBlock};
19 use crate::ipc::pipe::LockedPipeInode;
20 use crate::{
21     driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom},
22     filesystem::vfs::{
23         core::generate_inode_id,
24         file::{FileMode, FilePrivateData},
25         syscall::ModeType,
26         FileSystem, FileType, IndexNode, InodeId, Metadata,
27     },
28     libs::{
29         spinlock::{SpinLock, SpinLockGuard},
30         vec_cursor::VecCursor,
31     },
32     time::PosixTimeSpec,
33 };
34 
35 use super::entry::FATFile;
36 use super::{
37     bpb::{BiosParameterBlock, FATType},
38     entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
39     utils::RESERVED_CLUSTERS,
40 };
41 
42 const FAT_MAX_NAMELEN: u64 = 255;
43 
44 /// FAT32文件系统的最大的文件大小
45 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
46 
47 /// @brief 表示当前簇和上一个簇的关系的结构体
48 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
49 #[allow(dead_code)]
50 #[derive(Debug, Clone, Copy, Default)]
51 pub struct Cluster {
52     pub cluster_num: u64,
53     pub parent_cluster: u64,
54 }
55 
56 impl PartialOrd for Cluster {
57     /// @brief 根据当前簇号比较大小
58     fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
59         return self.cluster_num.partial_cmp(&other.cluster_num);
60     }
61 }
62 
63 impl PartialEq for Cluster {
64     /// @brief 根据当前簇号比较是否相等
65     fn eq(&self, other: &Self) -> bool {
66         self.cluster_num == other.cluster_num
67     }
68 }
69 
70 impl Eq for Cluster {}
71 
72 #[derive(Debug)]
73 pub struct FATFileSystem {
74     /// 当前文件系统所在的分区
75     pub gendisk: Arc<GenDisk>,
76     /// 当前文件系统的BOPB
77     pub bpb: BiosParameterBlock,
78     /// 当前文件系统的第一个数据扇区(相对分区开始位置)
79     pub first_data_sector: u64,
80     /// 文件系统信息结构体
81     pub fs_info: Arc<LockedFATFsInfo>,
82     /// 文件系统的根inode
83     root_inode: Arc<LockedFATInode>,
84 }
85 
86 /// FAT文件系统的Inode
87 #[derive(Debug)]
88 pub struct LockedFATInode(SpinLock<FATInode>);
89 
90 #[derive(Debug)]
91 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
92 
93 impl LockedFATFsInfo {
94     #[inline]
95     pub fn new(fs_info: FATFsInfo) -> Self {
96         return Self(SpinLock::new(fs_info));
97     }
98 }
99 
100 #[derive(Debug)]
101 pub struct FATInode {
102     /// 指向父Inode的弱引用
103     parent: Weak<LockedFATInode>,
104     /// 指向自身的弱引用
105     self_ref: Weak<LockedFATInode>,
106     /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。
107     /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
108     children: BTreeMap<DName, Arc<LockedFATInode>>,
109     /// 当前inode的元数据
110     metadata: Metadata,
111     /// 指向inode所在的文件系统对象的指针
112     fs: Weak<FATFileSystem>,
113 
114     /// 根据不同的Inode类型,创建不同的私有字段
115     inode_type: FATDirEntry,
116 
117     /// 若该节点是特殊文件节点,该字段则为真正的文件节点
118     special_node: Option<SpecialNodeData>,
119 
120     /// 目录名
121     dname: DName,
122 }
123 
124 impl FATInode {
125     /// @brief 更新当前inode的元数据
126     pub fn update_metadata(&mut self) {
127         // todo: 更新文件的访问时间等信息
128         match &self.inode_type {
129             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
130                 self.metadata.size = f.size() as i64;
131             }
132             FATDirEntry::Dir(d) => {
133                 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
134             }
135             FATDirEntry::UnInit => {
136                 error!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
137                 return;
138             }
139         };
140     }
141 
142     fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> {
143         match &self.inode_type {
144             FATDirEntry::Dir(d) => {
145                 let dname = DName::from(name.to_uppercase());
146                 // 尝试在缓存区查找
147                 if let Some(entry) = self.children.get(&dname) {
148                     return Ok(entry.clone());
149                 }
150                 // 在缓存区找不到
151                 // 在磁盘查找
152                 let fat_entry: FATDirEntry =
153                     d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
154                 // 创建新的inode
155                 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
156                     dname.clone(),
157                     self.fs.upgrade().unwrap(),
158                     self.self_ref.clone(),
159                     fat_entry,
160                 );
161                 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
162                 self.children.insert(dname, entry_inode.clone());
163                 return Ok(entry_inode);
164             }
165             FATDirEntry::UnInit => {
166                 panic!(
167                     "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
168                     self.fs
169                 )
170             }
171             _ => {
172                 return Err(SystemError::ENOTDIR);
173             }
174         }
175     }
176 }
177 
178 impl LockedFATInode {
179     pub fn new(
180         dname: DName,
181         fs: Arc<FATFileSystem>,
182         parent: Weak<LockedFATInode>,
183         inode_type: FATDirEntry,
184     ) -> Arc<LockedFATInode> {
185         let file_type = if let FATDirEntry::Dir(_) = inode_type {
186             FileType::Dir
187         } else {
188             FileType::File
189         };
190 
191         let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
192             parent,
193             self_ref: Weak::default(),
194             children: BTreeMap::new(),
195             fs: Arc::downgrade(&fs),
196             inode_type,
197             metadata: Metadata {
198                 dev_id: 0,
199                 inode_id: generate_inode_id(),
200                 size: 0,
201                 blk_size: fs.bpb.bytes_per_sector as usize,
202                 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
203                     fs.bpb.total_sectors_32 as usize
204                 } else {
205                     fs.bpb.total_sectors_16 as usize
206                 },
207                 atime: PosixTimeSpec::default(),
208                 mtime: PosixTimeSpec::default(),
209                 ctime: PosixTimeSpec::default(),
210                 file_type,
211                 mode: ModeType::from_bits_truncate(0o777),
212                 nlinks: 1,
213                 uid: 0,
214                 gid: 0,
215                 raw_dev: DeviceNumber::default(),
216             },
217             special_node: None,
218             dname,
219         })));
220 
221         inode.0.lock().self_ref = Arc::downgrade(&inode);
222 
223         inode.0.lock().update_metadata();
224 
225         return inode;
226     }
227 }
228 
229 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
230 #[derive(Debug)]
231 pub struct FATFsInfo {
232     /// Lead Signature - must equal 0x41615252
233     lead_sig: u32,
234     /// Value must equal 0x61417272
235     struc_sig: u32,
236     /// 空闲簇数目
237     free_count: u32,
238     /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
239     next_free: u32,
240     /// 0xAA550000
241     trail_sig: u32,
242     /// Dirty flag to flush to disk
243     dirty: bool,
244     /// FsInfo Structure 在磁盘上的字节偏移量
245     /// Not present for FAT12 and FAT16
246     offset: Option<u64>,
247 }
248 
249 impl FileSystem for FATFileSystem {
250     fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
251         return self.root_inode.clone();
252     }
253 
254     fn info(&self) -> crate::filesystem::vfs::FsInfo {
255         todo!()
256     }
257 
258     /// @brief 本函数用于实现动态转换。
259     /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
260     fn as_any_ref(&self) -> &dyn Any {
261         self
262     }
263 
264     fn name(&self) -> &str {
265         "fat"
266     }
267 
268     fn super_block(&self) -> SuperBlock {
269         SuperBlock::new(
270             Magic::FAT_MAGIC,
271             self.bpb.bytes_per_sector.into(),
272             FAT_MAX_NAMELEN,
273         )
274     }
275 }
276 
277 impl FATFileSystem {
278     /// FAT12允许的最大簇号
279     pub const FAT12_MAX_CLUSTER: u32 = 0xFF5;
280     /// FAT16允许的最大簇号
281     pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5;
282     /// FAT32允许的最大簇号
283     pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7;
284 
285     pub fn new(gendisk: Arc<GenDisk>) -> Result<Arc<FATFileSystem>, SystemError> {
286         let bpb = BiosParameterBlock::new(&gendisk)?;
287         // 从磁盘上读取FAT32文件系统的FsInfo结构体
288         let fs_info: FATFsInfo = match bpb.fat_type {
289             FATType::FAT32(bpb32) => {
290                 let fs_info_in_gendisk_bytes_offset =
291                     bpb32.fs_info as usize * bpb.bytes_per_sector as usize;
292                 FATFsInfo::new(
293                     &gendisk,
294                     fs_info_in_gendisk_bytes_offset,
295                     bpb.bytes_per_sector as usize,
296                 )?
297             }
298             _ => FATFsInfo::default(),
299         };
300 
301         // 根目录项占用的扇区数(向上取整)
302         let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32)
303             + (bpb.bytes_per_sector as u64 - 1))
304             / (bpb.bytes_per_sector as u64);
305 
306         // FAT表大小(单位:扇区)
307         let fat_size = if bpb.fat_size_16 != 0 {
308             bpb.fat_size_16 as u64
309         } else {
310             match bpb.fat_type {
311                 FATType::FAT32(x) => x.fat_size_32 as u64,
312                 _ => {
313                     error!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
314                     return Err(SystemError::EINVAL);
315                 }
316             }
317         };
318 
319         let first_data_sector =
320             bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
321 
322         // 创建文件系统的根节点
323         let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
324             parent: Weak::default(),
325             self_ref: Weak::default(),
326             children: BTreeMap::new(),
327             fs: Weak::default(),
328             inode_type: FATDirEntry::UnInit,
329             metadata: Metadata {
330                 dev_id: 0,
331                 inode_id: generate_inode_id(),
332                 size: 0,
333                 blk_size: bpb.bytes_per_sector as usize,
334                 blocks: if let FATType::FAT32(_) = bpb.fat_type {
335                     bpb.total_sectors_32 as usize
336                 } else {
337                     bpb.total_sectors_16 as usize
338                 },
339                 atime: PosixTimeSpec::default(),
340                 mtime: PosixTimeSpec::default(),
341                 ctime: PosixTimeSpec::default(),
342                 file_type: FileType::Dir,
343                 mode: ModeType::from_bits_truncate(0o777),
344                 nlinks: 1,
345                 uid: 0,
346                 gid: 0,
347                 raw_dev: DeviceNumber::default(),
348             },
349             special_node: None,
350             dname: DName::default(),
351         })));
352 
353         let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
354             gendisk,
355             bpb,
356             first_data_sector,
357             fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
358             root_inode,
359         });
360 
361         // 对root inode加锁,并继续完成初始化工作
362         let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
363         root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
364         root_guard.parent = Arc::downgrade(&result.root_inode);
365         root_guard.self_ref = Arc::downgrade(&result.root_inode);
366         root_guard.fs = Arc::downgrade(&result);
367         // 释放锁
368         drop(root_guard);
369 
370         return Ok(result);
371     }
372 
373     /// @brief 计算每个簇有多少个字节
374     #[inline]
375     pub fn bytes_per_cluster(&self) -> u64 {
376         return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
377     }
378 
379     /// @brief 读取当前簇在FAT表中存储的信息
380     ///
381     /// @param cluster 当前簇
382     ///
383     /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
384     /// @return Err(SystemError) 错误码
385     pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> {
386         let current_cluster = cluster.cluster_num;
387         if current_cluster < 2 {
388             // 0号簇和1号簇是保留簇,不允许用户使用
389             return Err(SystemError::EINVAL);
390         }
391 
392         let fat_type: FATType = self.bpb.fat_type;
393         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
394         let fat_start_sector = self.fat_start_sector();
395         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
396 
397         // cluster对应的FAT表项在分区内的字节偏移量
398         let fat_bytes_offset =
399             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
400 
401         // FAT表项所在的分区内LBA地址
402         let fat_ent_lba = fat_bytes_offset / LBA_SIZE as u64;
403 
404         // FAT表项在逻辑块内的字节偏移量
405         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
406 
407         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
408         self.gendisk.read_at(&mut v, fat_ent_lba as usize)?;
409 
410         let mut cursor = VecCursor::new(v);
411         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
412 
413         let res: FATEntry = match self.bpb.fat_type {
414             FATType::FAT12(_) => {
415                 let mut entry = cursor.read_u16()?;
416                 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
417                 if (current_cluster & 1) > 0 {
418                     entry >>= 4;
419                 } else {
420                     entry &= 0x0fff;
421                 }
422 
423                 if entry == 0 {
424                     FATEntry::Unused
425                 } else if entry == 0x0ff7 {
426                     FATEntry::Bad
427                 } else if entry >= 0x0ff8 {
428                     FATEntry::EndOfChain
429                 } else {
430                     FATEntry::Next(Cluster {
431                         cluster_num: entry as u64,
432                         parent_cluster: current_cluster,
433                     })
434                 }
435             }
436             FATType::FAT16(_) => {
437                 let entry = cursor.read_u16()?;
438 
439                 if entry == 0 {
440                     FATEntry::Unused
441                 } else if entry == 0xfff7 {
442                     FATEntry::Bad
443                 } else if entry >= 0xfff8 {
444                     FATEntry::EndOfChain
445                 } else {
446                     FATEntry::Next(Cluster {
447                         cluster_num: entry as u64,
448                         parent_cluster: current_cluster,
449                     })
450                 }
451             }
452             FATType::FAT32(_) => {
453                 let entry = cursor.read_u32()? & 0x0fffffff;
454 
455                 match entry {
456                     _n if (0x0ffffff7..=0x0fffffff).contains(&current_cluster) => {
457                         // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
458                         error!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
459                         FATEntry::Bad
460                     }
461                     0 => FATEntry::Unused,
462                     0x0ffffff7 => FATEntry::Bad,
463                     0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
464                     _n => FATEntry::Next(Cluster {
465                         cluster_num: entry as u64,
466                         parent_cluster: current_cluster,
467                     }),
468                 }
469             }
470         };
471         return Ok(res);
472     }
473 
474     /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
475     ///
476     /// @param cluster 当前簇
477     ///
478     /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
479     /// @return Err(SystemError) 错误码
480     pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> {
481         let current_cluster = cluster.cluster_num;
482 
483         let fat_type: FATType = self.bpb.fat_type;
484         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
485         let fat_start_sector = self.fat_start_sector();
486         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
487 
488         // cluster对应的FAT表项在分区内的字节偏移量
489         let fat_bytes_offset =
490             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
491 
492         // FAT表项所在的分区内LBA地址
493         let fat_ent_lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
494 
495         // FAT表项在逻辑块内的字节偏移量
496         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
497 
498         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
499         self.gendisk.read_at(&mut v, fat_ent_lba)?;
500 
501         let mut cursor = VecCursor::new(v);
502         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
503 
504         let res = match self.bpb.fat_type {
505             FATType::FAT12(_) => {
506                 let mut entry = cursor.read_u16()?;
507                 entry = if (current_cluster & 0x0001) > 0 {
508                     entry >> 4
509                 } else {
510                     entry & 0x0fff
511                 };
512                 entry as u64
513             }
514             FATType::FAT16(_) => {
515                 let entry = (cursor.read_u16()?) as u64;
516                 entry
517             }
518             FATType::FAT32(_) => {
519                 let entry = cursor.read_u32()? & 0x0fff_ffff;
520                 entry as u64
521             }
522         };
523 
524         return Ok(res);
525     }
526 
527     /// @brief 获取当前文件系统的root inode,在分区内的字节偏移量
528     pub fn root_dir_bytes_offset(&self) -> u64 {
529         match self.bpb.fat_type {
530             FATType::FAT32(s) => {
531                 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
532                     * (self.bpb.sector_per_cluster as u64)
533                     + self.first_data_sector;
534                 return (self.gendisk_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
535             }
536             _ => {
537                 let root_sec = (self.bpb.rsvd_sec_cnt as u64)
538                     + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
539                 return (self.gendisk_lba_from_offset(root_sec) * LBA_SIZE) as u64;
540             }
541         }
542     }
543 
544     /// @brief 获取当前文件系统的根目录项区域的结束位置,在分区内的字节偏移量。
545     /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
546     pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
547         match self.bpb.fat_type {
548             FATType::FAT12(_) | FATType::FAT16(_) => {
549                 return Some(
550                     self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
551                 );
552             }
553             _ => {
554                 return None;
555             }
556         }
557     }
558 
559     /// 获取簇在分区内的字节偏移量
560     pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
561         if cluster.cluster_num >= 2 {
562             // 指定簇的第一个扇区号
563             let first_sec_of_cluster = (cluster.cluster_num - 2)
564                 * (self.bpb.sector_per_cluster as u64)
565                 + self.first_data_sector;
566             return first_sec_of_cluster * (self.bpb.bytes_per_sector as u64);
567         } else {
568             return 0;
569         }
570     }
571 
572     /// @brief 获取一个空闲簇
573     ///
574     /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
575     ///
576     /// @return Ok(Cluster) 新获取的空闲簇
577     /// @return Err(SystemError) 错误码
578     pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> {
579         let end_cluster: Cluster = self.max_cluster_number();
580         let start_cluster: Cluster = match self.bpb.fat_type {
581             FATType::FAT32(_) => {
582                 let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff);
583                 if next_free < end_cluster.cluster_num {
584                     Cluster::new(next_free)
585                 } else {
586                     Cluster::new(RESERVED_CLUSTERS as u64)
587                 }
588             }
589             _ => Cluster::new(RESERVED_CLUSTERS as u64),
590         };
591 
592         // 寻找一个空的簇
593         let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
594             Ok(c) => c,
595             Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
596                 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
597             }
598             Err(e) => return Err(e),
599         };
600 
601         self.set_entry(free_cluster, FATEntry::EndOfChain)?;
602         // 减少空闲簇计数
603         self.fs_info.0.lock().update_free_count_delta(-1);
604         // 更新搜索空闲簇的参考量
605         self.fs_info
606             .0
607             .lock()
608             .update_next_free((free_cluster.cluster_num + 1) as u32);
609 
610         // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
611         if let Some(prev_cluster) = prev_cluster {
612             // debug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
613             self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
614         }
615         // 清空新获取的这个簇
616         self.zero_cluster(free_cluster)?;
617         return Ok(free_cluster);
618     }
619 
620     /// @brief 释放簇链上的所有簇
621     ///
622     /// @param start_cluster 簇链的第一个簇
623     pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> {
624         let clusters: Vec<Cluster> = self.clusters(start_cluster);
625         for c in clusters {
626             self.deallocate_cluster(c)?;
627         }
628         return Ok(());
629     }
630 
631     /// @brief 释放簇
632     ///
633     /// @param 要释放的簇
634     pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
635         let entry: FATEntry = self.get_fat_entry(cluster)?;
636         // 如果不是坏簇
637         if entry != FATEntry::Bad {
638             self.set_entry(cluster, FATEntry::Unused)?;
639             self.fs_info.0.lock().update_free_count_delta(1);
640             // 安全选项:清空被释放的簇
641             #[cfg(feature = "fatfs-secure")]
642             self.zero_cluster(cluster)?;
643             return Ok(());
644         } else {
645             // 不能释放坏簇
646             error!("Bad clusters cannot be freed.");
647             return Err(SystemError::EFAULT);
648         }
649     }
650 
651     /// @brief 获取文件系统的根目录项
652     pub fn root_dir(&self) -> FATDir {
653         match self.bpb.fat_type {
654             FATType::FAT32(s) => {
655                 return FATDir {
656                     first_cluster: Cluster::new(s.root_cluster as u64),
657                     dir_name: String::from("/"),
658                     root_offset: None,
659                     short_dir_entry: None,
660                     loc: None,
661                 };
662             }
663             _ => FATDir {
664                 first_cluster: Cluster::new(0),
665                 dir_name: String::from("/"),
666                 root_offset: Some(self.root_dir_bytes_offset()),
667                 short_dir_entry: None,
668                 loc: None,
669             },
670         }
671     }
672 
673     /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
674     pub fn fat_start_sector(&self) -> u64 {
675         let active_fat = self.active_fat();
676         let fat_size = self.fat_size();
677         return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
678     }
679 
680     /// @brief 获取当前活动的FAT表
681     pub fn active_fat(&self) -> u64 {
682         if self.mirroring_enabled() {
683             return 0;
684         } else {
685             match self.bpb.fat_type {
686                 FATType::FAT32(bpb32) => {
687                     return (bpb32.ext_flags & 0x0f) as u64;
688                 }
689                 _ => {
690                     return 0;
691                 }
692             }
693         }
694     }
695 
696     /// @brief 获取当前文件系统的每个FAT表的大小
697     pub fn fat_size(&self) -> u64 {
698         if self.bpb.fat_size_16 != 0 {
699             return self.bpb.fat_size_16 as u64;
700         } else {
701             match self.bpb.fat_type {
702                 FATType::FAT32(bpb32) => {
703                     return bpb32.fat_size_32 as u64;
704                 }
705 
706                 _ => {
707                     panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
708                 }
709             }
710         }
711     }
712 
713     /// @brief 判断当前文件系统是否启用了FAT表镜像
714     pub fn mirroring_enabled(&self) -> bool {
715         match self.bpb.fat_type {
716             FATType::FAT32(bpb32) => {
717                 return (bpb32.ext_flags & 0x80) == 0;
718             }
719             _ => {
720                 return false;
721             }
722         }
723     }
724 
725     /// 获取分区内的扇区偏移量
726     #[inline]
727     pub fn gendisk_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
728         return (in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
729             as usize;
730     }
731 
732     /// @brief 获取每个扇区占用多少个LBA
733     #[inline]
734     pub fn lba_per_sector(&self) -> usize {
735         return self.bpb.bytes_per_sector as usize / LBA_SIZE;
736     }
737 
738     /// @brief 将分区内字节偏移量转换为扇区偏移量
739     #[inline]
740     pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
741         return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
742     }
743 
744     /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
745     #[inline]
746     pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
747         return bytes_offset % LBA_SIZE as u64;
748     }
749 
750     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
751     ///
752     /// @param start_cluster 整个FAT链的起始簇号
753     pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
754         return self.cluster_iter(start_cluster).collect();
755     }
756 
757     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
758     ///
759     /// @param start_cluster 整个FAT链的起始簇号
760     pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
761         return self
762             .cluster_iter(start_cluster)
763             .fold(0, |size, _cluster| size + 1);
764     }
765     /// @brief 获取一个簇迭代器对象
766     ///
767     /// @param start_cluster 整个FAT链的起始簇号
768     fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
769         return ClusterIter {
770             current_cluster: Some(start_cluster),
771             fs: self,
772         };
773     }
774 
775     /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
776     #[inline]
777     pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
778         return self.cluster_iter(start_cluster).nth(n);
779     }
780 
781     /// @brief 获取整个簇链的最后一个簇
782     #[inline]
783     pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
784         return self.cluster_iter(start_cluster).last();
785     }
786 
787     /// @brief 判断FAT文件系统的shut bit是否正常。
788     /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
789     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
790     ///
791     /// @return Ok(true) 正常
792     /// @return Ok(false) 不正常
793     /// @return Err(SystemError) 在判断时发生错误
794     #[allow(dead_code)]
795     pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> {
796         match self.bpb.fat_type {
797             FATType::FAT32(_) => {
798                 // 对于FAT32, error bit位于第一个扇区的第8字节。
799                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
800                 return Ok(bit > 0);
801             }
802             FATType::FAT16(_) => {
803                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
804                 return Ok(bit > 0);
805             }
806             _ => return Ok(true),
807         }
808     }
809 
810     /// @brief 判断FAT文件系统的hard error bit是否正常。
811     /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
812     /// 卷上的某些扇区可能已损坏。
813     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
814     ///
815     /// @return Ok(true) 正常
816     /// @return Ok(false) 不正常
817     /// @return Err(SystemError) 在判断时发生错误
818     pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> {
819         match self.bpb.fat_type {
820             FATType::FAT32(_) => {
821                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
822                 return Ok(bit > 0);
823             }
824             FATType::FAT16(_) => {
825                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
826                 return Ok(bit > 0);
827             }
828             _ => return Ok(true),
829         }
830     }
831 
832     /// @brief 设置文件系统的shut bit为正常状态
833     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
834     ///
835     /// @return Ok(()) 设置成功
836     /// @return Err(SystemError) 在设置过程中,出现错误
837     pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> {
838         match self.bpb.fat_type {
839             FATType::FAT32(_) => {
840                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
841                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
842 
843                 return Ok(());
844             }
845 
846             FATType::FAT16(_) => {
847                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
848                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
849                 return Ok(());
850             }
851             _ => return Ok(()),
852         }
853     }
854 
855     /// @brief 设置文件系统的hard error bit为正常状态
856     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
857     ///
858     /// @return Ok(()) 设置成功
859     /// @return Err(SystemError) 在设置过程中,出现错误
860     pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> {
861         match self.bpb.fat_type {
862             FATType::FAT32(_) => {
863                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
864                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
865                 return Ok(());
866             }
867 
868             FATType::FAT16(_) => {
869                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
870                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
871                 return Ok(());
872             }
873             _ => return Ok(()),
874         }
875     }
876 
877     /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
878     pub fn umount(&mut self) -> Result<(), SystemError> {
879         self.fs_info.0.lock().flush(&self.gendisk)?;
880 
881         self.set_shut_bit_ok()?;
882 
883         self.set_hard_error_bit_ok()?;
884 
885         self.gendisk.sync()?;
886 
887         return Ok(());
888     }
889 
890     /// @brief 获取文件系统的最大簇号
891     pub fn max_cluster_number(&self) -> Cluster {
892         match self.bpb.fat_type {
893             FATType::FAT32(s) => {
894                 // FAT32
895 
896                 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
897                 let data_sec: u64 = self.bpb.total_sectors_32 as u64
898                     - (self.bpb.rsvd_sec_cnt as u64
899                         + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
900 
901                 // 数据区的簇数量
902                 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
903 
904                 // 返回最大的簇号
905                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
906             }
907 
908             _ => {
909                 // FAT12 / FAT16
910                 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32)
911                     + self.bpb.bytes_per_sector as u64
912                     - 1)
913                     / self.bpb.bytes_per_sector as u64;
914                 // 数据区扇区数
915                 let data_sec: u64 = self.bpb.total_sectors_16 as u64
916                     - (self.bpb.rsvd_sec_cnt as u64
917                         + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
918                         + root_dir_sectors);
919                 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
920                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
921             }
922         }
923     }
924 
925     /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
926     ///
927     /// @param start_cluster 起始簇号
928     /// @param end_cluster 终止簇号(不包含)
929     ///
930     /// @return Ok(Cluster) 寻找到的空闲簇
931     /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
932     pub fn get_free_cluster(
933         &self,
934         start_cluster: Cluster,
935         end_cluster: Cluster,
936     ) -> Result<Cluster, SystemError> {
937         let max_cluster: Cluster = self.max_cluster_number();
938         let mut cluster: u64 = start_cluster.cluster_num;
939 
940         let fat_type: FATType = self.bpb.fat_type;
941         let fat_start_sector: u64 = self.fat_start_sector();
942         let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
943 
944         match fat_type {
945             FATType::FAT12(_) => {
946                 let part_bytes_offset: u64 =
947                     fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
948                 let in_block_offset = self.get_in_block_offset(part_bytes_offset);
949 
950                 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
951 
952                 // 由于FAT12的FAT表不大于6K,因此直接读取6K
953                 let num_lba = (6 * 1024) / LBA_SIZE;
954                 let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE];
955                 self.gendisk.read_at(&mut v, lba)?;
956 
957                 let mut cursor: VecCursor = VecCursor::new(v);
958                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
959 
960                 let mut packed_val: u16 = cursor.read_u16()?;
961                 loop {
962                     let val = if (cluster & 0x1) > 0 {
963                         packed_val >> 4
964                     } else {
965                         packed_val & 0x0fff
966                     };
967                     if val == 0 {
968                         return Ok(Cluster::new(cluster));
969                     }
970 
971                     cluster += 1;
972 
973                     // 磁盘无剩余空间,或者簇号达到给定的最大值
974                     if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
975                         return Err(SystemError::ENOSPC);
976                     }
977 
978                     packed_val = match cluster & 1 {
979                         0 => cursor.read_u16()?,
980                         _ => {
981                             let next_byte = cursor.read_u8()? as u16;
982                             (packed_val >> 8) | (next_byte << 8)
983                         }
984                     };
985                 }
986             }
987             FATType::FAT16(_) => {
988                 // todo: 优化这里,减少读取磁盘的次数。
989                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
990                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
991                         Cluster::new(cluster),
992                         fat_start_sector,
993                         bytes_per_sec,
994                     );
995                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
996 
997                     let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
998 
999                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1000                     self.gendisk.read_at(&mut v, lba)?;
1001 
1002                     let mut cursor: VecCursor = VecCursor::new(v);
1003                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1004 
1005                     let val = cursor.read_u16()?;
1006                     // 找到空闲簇
1007                     if val == 0 {
1008                         return Ok(Cluster::new(val as u64));
1009                     }
1010                     cluster += 1;
1011                 }
1012 
1013                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1014                 return Err(SystemError::ENOSPC);
1015             }
1016             FATType::FAT32(_) => {
1017                 // todo: 优化这里,减少读取磁盘的次数。
1018                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
1019                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
1020                         Cluster::new(cluster),
1021                         fat_start_sector,
1022                         bytes_per_sec,
1023                     );
1024                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1025 
1026                     let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1027 
1028                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1029                     self.gendisk.read_at(&mut v, lba)?;
1030 
1031                     let mut cursor: VecCursor = VecCursor::new(v);
1032                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1033 
1034                     let val = cursor.read_u32()? & 0x0fffffff;
1035 
1036                     if val == 0 {
1037                         return Ok(Cluster::new(cluster));
1038                     }
1039                     cluster += 1;
1040                 }
1041 
1042                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1043                 return Err(SystemError::ENOSPC);
1044             }
1045         }
1046     }
1047 
1048     /// @brief 在FAT表中,设置指定的簇的信息。
1049     ///
1050     /// @param cluster 目标簇
1051     /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
1052     pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> {
1053         // fat表项在分区上的字节偏移量
1054         let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
1055             cluster,
1056             self.fat_start_sector(),
1057             self.bpb.bytes_per_sector as u64,
1058         );
1059 
1060         match self.bpb.fat_type {
1061             FATType::FAT12(_) => {
1062                 // 计算要写入的值
1063                 let raw_val: u16 = match fat_entry {
1064                     FATEntry::Unused => 0,
1065                     FATEntry::Bad => 0xff7,
1066                     FATEntry::EndOfChain => 0xfff,
1067                     FATEntry::Next(c) => c.cluster_num as u16,
1068                 };
1069 
1070                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1071 
1072                 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1073 
1074                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1075                 self.gendisk.read_at(&mut v, lba)?;
1076 
1077                 let mut cursor: VecCursor = VecCursor::new(v);
1078                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1079 
1080                 let old_val: u16 = cursor.read_u16()?;
1081                 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
1082                     (old_val & 0x000f) | (raw_val << 4)
1083                 } else {
1084                     (old_val & 0xf000) | raw_val
1085                 };
1086 
1087                 // 写回数据到磁盘上
1088                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1089                 cursor.write_u16(new_val)?;
1090                 self.gendisk.write_at(cursor.as_slice(), lba)?;
1091                 return Ok(());
1092             }
1093             FATType::FAT16(_) => {
1094                 // 计算要写入的值
1095                 let raw_val: u16 = match fat_entry {
1096                     FATEntry::Unused => 0,
1097                     FATEntry::Bad => 0xfff7,
1098                     FATEntry::EndOfChain => 0xfdff,
1099                     FATEntry::Next(c) => c.cluster_num as u16,
1100                 };
1101 
1102                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1103 
1104                 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1105 
1106                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1107                 self.gendisk.read_at(&mut v, lba)?;
1108 
1109                 let mut cursor: VecCursor = VecCursor::new(v);
1110                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1111 
1112                 cursor.write_u16(raw_val)?;
1113                 self.gendisk.write_at(cursor.as_slice(), lba)?;
1114 
1115                 return Ok(());
1116             }
1117             FATType::FAT32(_) => {
1118                 let fat_size: u64 = self.fat_size();
1119                 let bound: u64 = if self.mirroring_enabled() {
1120                     1
1121                 } else {
1122                     self.bpb.num_fats as u64
1123                 };
1124                 // debug!("set entry, bound={bound}, fat_size={fat_size}");
1125                 for i in 0..bound {
1126                     // 当前操作的FAT表在磁盘上的字节偏移量
1127                     let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
1128                     let in_block_offset: u64 = self.get_in_block_offset(f_offset);
1129                     let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(f_offset));
1130 
1131                     // debug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
1132                     let mut v: Vec<u8> = vec![0; LBA_SIZE];
1133                     self.gendisk.read_at(&mut v, lba)?;
1134 
1135                     let mut cursor: VecCursor = VecCursor::new(v);
1136                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1137 
1138                     // FAT32的高4位保留
1139                     let old_bits = cursor.read_u32()? & 0xf0000000;
1140 
1141                     if fat_entry == FATEntry::Unused
1142                         && cluster.cluster_num >= 0x0ffffff7
1143                         && cluster.cluster_num <= 0x0fffffff
1144                     {
1145                         error!(
1146                             "FAT32: Reserved Cluster {:?} cannot be marked as free",
1147                             cluster
1148                         );
1149                         return Err(SystemError::EPERM);
1150                     }
1151 
1152                     // 计算要写入的值
1153                     let mut raw_val: u32 = match fat_entry {
1154                         FATEntry::Unused => 0,
1155                         FATEntry::Bad => 0x0FFFFFF7,
1156                         FATEntry::EndOfChain => 0x0FFFFFFF,
1157                         FATEntry::Next(c) => c.cluster_num as u32,
1158                     };
1159 
1160                     // 恢复保留位
1161                     raw_val |= old_bits;
1162 
1163                     // debug!("sent entry, raw_val={raw_val}");
1164 
1165                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1166                     cursor.write_u32(raw_val)?;
1167 
1168                     self.gendisk.write_at(cursor.as_slice(), lba)?;
1169                 }
1170 
1171                 return Ok(());
1172             }
1173         }
1174     }
1175 
1176     /// # 清空指定的簇
1177     ///
1178     /// # 参数
1179     /// - cluster 要被清空的簇
1180     pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
1181         // 准备数据,用于写入
1182         let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
1183         let offset = self.cluster_bytes_offset(cluster) as usize;
1184         self.gendisk.write_at_bytes(&zeros, offset)?;
1185         return Ok(());
1186     }
1187 }
1188 
1189 impl Drop for FATFileSystem {
1190     fn drop(&mut self) {
1191         let r = self.umount();
1192         if r.is_err() {
1193             error!(
1194                 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}",
1195                 r.as_ref().unwrap_err()
1196             );
1197         }
1198     }
1199 }
1200 
1201 impl FATFsInfo {
1202     const LEAD_SIG: u32 = 0x41615252;
1203     const STRUC_SIG: u32 = 0x61417272;
1204     const TRAIL_SIG: u32 = 0xAA550000;
1205     #[allow(dead_code)]
1206     const FS_INFO_SIZE: u64 = 512;
1207 
1208     /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
1209     ///
1210     /// @param partition 磁盘分区
1211     /// @param in_gendisk_fs_info_offset FSInfo扇区在gendisk内的字节偏移量(单位:字节)
1212     /// @param bytes_per_sec 每扇区字节数
1213     pub fn new(
1214         gendisk: &Arc<GenDisk>,
1215         in_gendisk_fs_info_offset: usize,
1216         bytes_per_sec: usize,
1217     ) -> Result<Self, SystemError> {
1218         let mut v = vec![0; bytes_per_sec];
1219 
1220         // 读取磁盘上的FsInfo扇区
1221         gendisk.read_at_bytes(&mut v, in_gendisk_fs_info_offset)?;
1222 
1223         let mut cursor = VecCursor::new(v);
1224 
1225         let mut fsinfo = FATFsInfo {
1226             lead_sig: cursor.read_u32()?,
1227             ..Default::default()
1228         };
1229         cursor.seek(SeekFrom::SeekCurrent(480))?;
1230         fsinfo.struc_sig = cursor.read_u32()?;
1231         fsinfo.free_count = cursor.read_u32()?;
1232         fsinfo.next_free = cursor.read_u32()?;
1233 
1234         cursor.seek(SeekFrom::SeekCurrent(12))?;
1235 
1236         fsinfo.trail_sig = cursor.read_u32()?;
1237         fsinfo.dirty = false;
1238         fsinfo.offset = Some(gendisk.disk_bytes_offset(in_gendisk_fs_info_offset) as u64);
1239 
1240         if fsinfo.is_valid() {
1241             return Ok(fsinfo);
1242         } else {
1243             error!("Error occurred while parsing FATFsInfo.");
1244             return Err(SystemError::EINVAL);
1245         }
1246     }
1247 
1248     /// @brief 判断是否为正确的FsInfo结构体
1249     fn is_valid(&self) -> bool {
1250         self.lead_sig == Self::LEAD_SIG
1251             && self.struc_sig == Self::STRUC_SIG
1252             && self.trail_sig == Self::TRAIL_SIG
1253     }
1254 
1255     /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
1256     ///
1257     /// @param 当前文件系统的最大簇号
1258     pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
1259         let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
1260         // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
1261         if self.free_count as u64 > count_clusters {
1262             return None;
1263         } else {
1264             match self.free_count {
1265                 // free count字段不可用
1266                 0xffffffff => return None,
1267                 // 返回FsInfo中存储的数据
1268                 n => return Some(n as u64),
1269             }
1270         }
1271     }
1272 
1273     /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
1274     ///
1275     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1276     pub fn update_free_count_abs(&mut self, new_count: u32) {
1277         self.free_count = new_count;
1278     }
1279 
1280     /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
1281     ///
1282     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1283     pub fn update_free_count_delta(&mut self, delta: i32) {
1284         self.free_count = (self.free_count as i32 + delta) as u32;
1285     }
1286 
1287     /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
1288     ///
1289     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1290     pub fn update_next_free(&mut self, next_free: u32) {
1291         // 这个值是参考量,不一定要准确,仅供加速查找
1292         self.next_free = next_free;
1293     }
1294 
1295     /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
1296     pub fn next_free(&self) -> Option<u64> {
1297         match self.next_free {
1298             0xffffffff => return None,
1299             0 | 1 => return None,
1300             n => return Some(n as u64),
1301         };
1302     }
1303 
1304     /// @brief 把fs info刷入磁盘
1305     ///
1306     /// @param partition fs info所在的分区
1307     pub fn flush(&self, gendisk: &Arc<GenDisk>) -> Result<(), SystemError> {
1308         if let Some(off) = self.offset {
1309             let in_block_offset = off % LBA_SIZE as u64;
1310 
1311             let lba = off as usize / LBA_SIZE;
1312 
1313             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1314             gendisk.read_at(&mut v, lba)?;
1315 
1316             let mut cursor: VecCursor = VecCursor::new(v);
1317             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1318 
1319             cursor.write_u32(self.lead_sig)?;
1320             cursor.seek(SeekFrom::SeekCurrent(480))?;
1321             cursor.write_u32(self.struc_sig)?;
1322             cursor.write_u32(self.free_count)?;
1323             cursor.write_u32(self.next_free)?;
1324             cursor.seek(SeekFrom::SeekCurrent(12))?;
1325             cursor.write_u32(self.trail_sig)?;
1326 
1327             gendisk.write_at(cursor.as_slice(), lba)?;
1328         }
1329         return Ok(());
1330     }
1331 
1332     /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
1333     ///
1334     /// @param partition fs info所在的分区
1335     pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> {
1336         if let Some(off) = self.offset {
1337             let in_block_offset = off % LBA_SIZE as u64;
1338 
1339             let lba = off as usize / LBA_SIZE;
1340 
1341             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1342             partition.disk().read_at(lba, 1, &mut v)?;
1343             let mut cursor: VecCursor = VecCursor::new(v);
1344             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1345             self.lead_sig = cursor.read_u32()?;
1346 
1347             cursor.seek(SeekFrom::SeekCurrent(480))?;
1348             self.struc_sig = cursor.read_u32()?;
1349             self.free_count = cursor.read_u32()?;
1350             self.next_free = cursor.read_u32()?;
1351             cursor.seek(SeekFrom::SeekCurrent(12))?;
1352             self.trail_sig = cursor.read_u32()?;
1353         }
1354         return Ok(());
1355     }
1356 }
1357 
1358 impl IndexNode for LockedFATInode {
1359     fn read_at(
1360         &self,
1361         offset: usize,
1362         len: usize,
1363         buf: &mut [u8],
1364         _data: SpinLockGuard<FilePrivateData>,
1365     ) -> Result<usize, SystemError> {
1366         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1367         match &guard.inode_type {
1368             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1369                 let r = f.read(
1370                     &guard.fs.upgrade().unwrap(),
1371                     &mut buf[0..len],
1372                     offset as u64,
1373                 );
1374                 guard.update_metadata();
1375                 return r;
1376             }
1377             FATDirEntry::Dir(_) => {
1378                 return Err(SystemError::EISDIR);
1379             }
1380             FATDirEntry::UnInit => {
1381                 error!("FATFS: param: Inode_type uninitialized.");
1382                 return Err(SystemError::EROFS);
1383             }
1384         }
1385     }
1386 
1387     fn write_at(
1388         &self,
1389         offset: usize,
1390         len: usize,
1391         buf: &[u8],
1392         _data: SpinLockGuard<FilePrivateData>,
1393     ) -> Result<usize, SystemError> {
1394         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1395         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1396 
1397         match &mut guard.inode_type {
1398             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1399                 let r = f.write(fs, &buf[0..len], offset as u64);
1400                 guard.update_metadata();
1401                 return r;
1402             }
1403             FATDirEntry::Dir(_) => {
1404                 return Err(SystemError::EISDIR);
1405             }
1406             FATDirEntry::UnInit => {
1407                 error!("FATFS: param: Inode_type uninitialized.");
1408                 return Err(SystemError::EROFS);
1409             }
1410         }
1411     }
1412 
1413     fn create(
1414         &self,
1415         name: &str,
1416         file_type: FileType,
1417         _mode: ModeType,
1418     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1419         // 由于FAT32不支持文件权限的功能,因此忽略mode参数
1420         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1421         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1422 
1423         match &mut guard.inode_type {
1424             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1425                 return Err(SystemError::ENOTDIR);
1426             }
1427             FATDirEntry::Dir(d) => match file_type {
1428                 FileType::File => {
1429                     d.create_file(name, fs)?;
1430                     return Ok(guard.find(name)?);
1431                 }
1432                 FileType::Dir => {
1433                     d.create_dir(name, fs)?;
1434                     return Ok(guard.find(name)?);
1435                 }
1436 
1437                 FileType::SymLink => return Err(SystemError::ENOSYS),
1438                 _ => return Err(SystemError::EINVAL),
1439             },
1440             FATDirEntry::UnInit => {
1441                 error!("FATFS: param: Inode_type uninitialized.");
1442                 return Err(SystemError::EROFS);
1443             }
1444         }
1445     }
1446 
1447     fn fs(&self) -> Arc<dyn FileSystem> {
1448         return self.0.lock().fs.upgrade().unwrap();
1449     }
1450 
1451     fn as_any_ref(&self) -> &dyn core::any::Any {
1452         return self;
1453     }
1454 
1455     fn metadata(&self) -> Result<Metadata, SystemError> {
1456         return Ok(self.0.lock().metadata.clone());
1457     }
1458     fn set_metadata(&self, metadata: &Metadata) -> Result<(), SystemError> {
1459         let inode = &mut self.0.lock();
1460         inode.metadata.atime = metadata.atime;
1461         inode.metadata.mtime = metadata.mtime;
1462         inode.metadata.ctime = metadata.ctime;
1463         inode.metadata.mode = metadata.mode;
1464         inode.metadata.uid = metadata.uid;
1465         inode.metadata.gid = metadata.gid;
1466         Ok(())
1467     }
1468     fn resize(&self, len: usize) -> Result<(), SystemError> {
1469         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1470         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1471         let old_size = guard.metadata.size as usize;
1472 
1473         match &mut guard.inode_type {
1474             FATDirEntry::File(file) | FATDirEntry::VolId(file) => {
1475                 // 如果新的长度和旧的长度相同,那么就直接返回
1476                 match len.cmp(&old_size) {
1477                     Ordering::Equal => {
1478                         return Ok(());
1479                     }
1480                     Ordering::Greater => {
1481                         // 如果新的长度比旧的长度大,那么就在文件末尾添加空白
1482                         let mut buf: Vec<u8> = Vec::new();
1483                         let mut remain_size = len - old_size;
1484                         let buf_size = remain_size;
1485                         // let buf_size = core::cmp::min(remain_size, 512 * 1024);
1486                         buf.resize(buf_size, 0);
1487 
1488                         let mut offset = old_size;
1489                         while remain_size > 0 {
1490                             let write_size = core::cmp::min(remain_size, buf_size);
1491                             file.write(fs, &buf[0..write_size], offset as u64)?;
1492                             remain_size -= write_size;
1493                             offset += write_size;
1494                         }
1495                     }
1496                     Ordering::Less => {
1497                         file.truncate(fs, len as u64)?;
1498                     }
1499                 }
1500                 guard.update_metadata();
1501                 return Ok(());
1502             }
1503             FATDirEntry::Dir(_) => return Err(SystemError::ENOSYS),
1504             FATDirEntry::UnInit => {
1505                 error!("FATFS: param: Inode_type uninitialized.");
1506                 return Err(SystemError::EROFS);
1507             }
1508         }
1509     }
1510 
1511     fn truncate(&self, len: usize) -> Result<(), SystemError> {
1512         let guard: SpinLockGuard<FATInode> = self.0.lock();
1513         let old_size = guard.metadata.size as usize;
1514         if len < old_size {
1515             drop(guard);
1516             self.resize(len)
1517         } else {
1518             Ok(())
1519         }
1520     }
1521 
1522     fn list(&self) -> Result<Vec<String>, SystemError> {
1523         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1524         let fatent: &FATDirEntry = &guard.inode_type;
1525         match fatent {
1526             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1527                 return Err(SystemError::ENOTDIR);
1528             }
1529             FATDirEntry::Dir(dir) => {
1530                 // 获取当前目录下的所有目录项
1531                 let mut ret: Vec<String> = Vec::new();
1532                 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
1533                 for ent in dir_iter {
1534                     ret.push(ent.name());
1535 
1536                     // ====== 生成inode缓存,存入B树
1537                     let name = DName::from(ent.name().to_uppercase());
1538                     // debug!("name={name}");
1539 
1540                     if !guard.children.contains_key(&name)
1541                         && name.as_ref() != "."
1542                         && name.as_ref() != ".."
1543                     {
1544                         // 创建新的inode
1545                         let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
1546                             name.clone(),
1547                             guard.fs.upgrade().unwrap(),
1548                             guard.self_ref.clone(),
1549                             ent,
1550                         );
1551                         // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
1552                         guard.children.insert(name, entry_inode.clone());
1553                     }
1554                 }
1555                 return Ok(ret);
1556             }
1557             FATDirEntry::UnInit => {
1558                 error!("FATFS: param: Inode_type uninitialized.");
1559                 return Err(SystemError::EROFS);
1560             }
1561         }
1562     }
1563 
1564     fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
1565         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1566         let target = guard.find(name)?;
1567         return Ok(target);
1568     }
1569 
1570     fn open(
1571         &self,
1572         _data: SpinLockGuard<FilePrivateData>,
1573         _mode: &FileMode,
1574     ) -> Result<(), SystemError> {
1575         return Ok(());
1576     }
1577 
1578     fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> {
1579         return Ok(());
1580     }
1581 
1582     fn unlink(&self, name: &str) -> Result<(), SystemError> {
1583         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1584         let target: Arc<LockedFATInode> = guard.find(name)?;
1585         // 对目标inode上锁,以防更改
1586         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1587         // 先从缓存删除
1588         let nod = guard.children.remove(&DName::from(name.to_uppercase()));
1589 
1590         // 若删除缓存中为管道的文件,则不需要再到磁盘删除
1591         if nod.is_some() {
1592             let file_type = target_guard.metadata.file_type;
1593             if file_type == FileType::Pipe {
1594                 return Ok(());
1595             }
1596         }
1597 
1598         let dir = match &guard.inode_type {
1599             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1600                 return Err(SystemError::ENOTDIR);
1601             }
1602             FATDirEntry::Dir(d) => d,
1603             FATDirEntry::UnInit => {
1604                 error!("FATFS: param: Inode_type uninitialized.");
1605                 return Err(SystemError::EROFS);
1606             }
1607         };
1608         // 检查文件是否存在
1609         dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
1610 
1611         // 再从磁盘删除
1612         let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1613         drop(target_guard);
1614         return r;
1615     }
1616 
1617     fn rmdir(&self, name: &str) -> Result<(), SystemError> {
1618         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1619         let target: Arc<LockedFATInode> = guard.find(name)?;
1620         // 对目标inode上锁,以防更改
1621         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1622         // 先从缓存删除
1623         guard.children.remove(&DName::from(name.to_uppercase()));
1624 
1625         let dir = match &guard.inode_type {
1626             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1627                 return Err(SystemError::ENOTDIR);
1628             }
1629             FATDirEntry::Dir(d) => d,
1630             FATDirEntry::UnInit => {
1631                 error!("FATFS: param: Inode_type uninitialized.");
1632                 return Err(SystemError::EROFS);
1633             }
1634         };
1635         // 检查文件夹是否存在
1636         dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
1637 
1638         // 再从磁盘删除
1639         let r: Result<(), SystemError> =
1640             dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1641         match r {
1642             Ok(_) => return r,
1643             Err(r) => {
1644                 if r == SystemError::ENOTEMPTY {
1645                     // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
1646                     guard
1647                         .children
1648                         .insert(DName::from(name.to_uppercase()), target.clone());
1649                     drop(target_guard);
1650                 }
1651                 return Err(r);
1652             }
1653         }
1654     }
1655 
1656     fn move_to(
1657         &self,
1658         old_name: &str,
1659         target: &Arc<dyn IndexNode>,
1660         new_name: &str,
1661     ) -> Result<(), SystemError> {
1662         let old_id = self.metadata().unwrap().inode_id;
1663         let new_id = target.metadata().unwrap().inode_id;
1664         // 若在同一父目录下
1665         if old_id == new_id {
1666             let mut guard = self.0.lock();
1667             let old_inode: Arc<LockedFATInode> = guard.find(old_name)?;
1668             // 对目标inode上锁,以防更改
1669             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1670             let fs = old_inode_guard.fs.upgrade().unwrap();
1671             // 从缓存删除
1672             let _nod = guard.children.remove(&DName::from(old_name.to_uppercase()));
1673             let old_dir = match &guard.inode_type {
1674                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1675                     return Err(SystemError::ENOTDIR);
1676                 }
1677                 FATDirEntry::Dir(d) => d,
1678                 FATDirEntry::UnInit => {
1679                     error!("FATFS: param: Inode_type uninitialized.");
1680                     return Err(SystemError::EROFS);
1681                 }
1682             };
1683             // 检查文件是否存在
1684             // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?;
1685 
1686             old_dir.rename(fs, old_name, new_name)?;
1687         } else {
1688             let mut old_guard = self.0.lock();
1689             let other: &LockedFATInode = target
1690                 .downcast_ref::<LockedFATInode>()
1691                 .ok_or(SystemError::EPERM)?;
1692 
1693             let new_guard = other.0.lock();
1694             let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?;
1695             // 对目标inode上锁,以防更改
1696             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1697             let fs = old_inode_guard.fs.upgrade().unwrap();
1698             // 从缓存删除
1699             let _nod = old_guard
1700                 .children
1701                 .remove(&DName::from(old_name.to_uppercase()));
1702             let old_dir = match &old_guard.inode_type {
1703                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1704                     return Err(SystemError::ENOTDIR);
1705                 }
1706                 FATDirEntry::Dir(d) => d,
1707                 FATDirEntry::UnInit => {
1708                     error!("FATFS: param: Inode_type uninitialized.");
1709                     return Err(SystemError::EROFS);
1710                 }
1711             };
1712             let new_dir = match &new_guard.inode_type {
1713                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1714                     return Err(SystemError::ENOTDIR);
1715                 }
1716                 FATDirEntry::Dir(d) => d,
1717                 FATDirEntry::UnInit => {
1718                     error!("FATFA: param: Inode_type uninitialized.");
1719                     return Err(SystemError::EROFS);
1720                 }
1721             };
1722             // 检查文件是否存在
1723             old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?;
1724             old_dir.rename_across(fs, new_dir, old_name, new_name)?;
1725         }
1726 
1727         return Ok(());
1728     }
1729 
1730     fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> {
1731         let guard: SpinLockGuard<FATInode> = self.0.lock();
1732         if guard.metadata.file_type != FileType::Dir {
1733             return Err(SystemError::ENOTDIR);
1734         }
1735         match ino.into() {
1736             0 => {
1737                 return Ok(String::from("."));
1738             }
1739             1 => {
1740                 return Ok(String::from(".."));
1741             }
1742             ino => {
1743                 // 暴力遍历所有的children,判断inode id是否相同
1744                 // TODO: 优化这里,这个地方性能很差!
1745                 let mut key: Vec<String> = guard
1746                     .children
1747                     .iter()
1748                     .filter_map(|(k, v)| {
1749                         if v.0.lock().metadata.inode_id.into() == ino {
1750                             Some(k.to_string())
1751                         } else {
1752                             None
1753                         }
1754                     })
1755                     .collect();
1756 
1757                 match key.len() {
1758                     0=>{return Err(SystemError::ENOENT);}
1759                     1=>{return Ok(key.remove(0));}
1760                     _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
1761                 }
1762             }
1763         }
1764     }
1765 
1766     fn mknod(
1767         &self,
1768         filename: &str,
1769         mode: ModeType,
1770         _dev_t: DeviceNumber,
1771     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1772         let mut inode = self.0.lock();
1773         if inode.metadata.file_type != FileType::Dir {
1774             return Err(SystemError::ENOTDIR);
1775         }
1776 
1777         // 判断需要创建的类型
1778         if unlikely(mode.contains(ModeType::S_IFREG)) {
1779             // 普通文件
1780             return self.create(filename, FileType::File, mode);
1781         }
1782 
1783         let filename = DName::from(filename.to_uppercase());
1784         let nod = LockedFATInode::new(
1785             filename.clone(),
1786             inode.fs.upgrade().unwrap(),
1787             inode.self_ref.clone(),
1788             FATDirEntry::File(FATFile::default()),
1789         );
1790 
1791         if mode.contains(ModeType::S_IFIFO) {
1792             nod.0.lock().metadata.file_type = FileType::Pipe;
1793             // 创建pipe文件
1794             let pipe_inode = LockedPipeInode::new();
1795             // 设置special_node
1796             nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode));
1797         } else if mode.contains(ModeType::S_IFBLK) {
1798             nod.0.lock().metadata.file_type = FileType::BlockDevice;
1799             unimplemented!()
1800         } else if mode.contains(ModeType::S_IFCHR) {
1801             nod.0.lock().metadata.file_type = FileType::CharDevice;
1802             unimplemented!()
1803         } else {
1804             return Err(SystemError::EINVAL);
1805         }
1806 
1807         inode.children.insert(filename, nod.clone());
1808         Ok(nod)
1809     }
1810 
1811     fn special_node(&self) -> Option<SpecialNodeData> {
1812         self.0.lock().special_node.clone()
1813     }
1814 
1815     fn dname(&self) -> Result<DName, SystemError> {
1816         Ok(self.0.lock().dname.clone())
1817     }
1818 
1819     fn parent(&self) -> Result<Arc<dyn IndexNode>, SystemError> {
1820         self.0
1821             .lock()
1822             .parent
1823             .upgrade()
1824             .map(|item| item as Arc<dyn IndexNode>)
1825             .ok_or(SystemError::EINVAL)
1826     }
1827 }
1828 
1829 impl Default for FATFsInfo {
1830     fn default() -> Self {
1831         return FATFsInfo {
1832             lead_sig: FATFsInfo::LEAD_SIG,
1833             struc_sig: FATFsInfo::STRUC_SIG,
1834             free_count: 0xFFFFFFFF,
1835             next_free: RESERVED_CLUSTERS,
1836             trail_sig: FATFsInfo::TRAIL_SIG,
1837             dirty: false,
1838             offset: None,
1839         };
1840     }
1841 }
1842 
1843 impl Cluster {
1844     pub fn new(cluster: u64) -> Self {
1845         return Cluster {
1846             cluster_num: cluster,
1847             parent_cluster: 0,
1848         };
1849     }
1850 }
1851 
1852 /// @brief 用于迭代FAT表的内容的簇迭代器对象
1853 #[derive(Debug)]
1854 struct ClusterIter<'a> {
1855     /// 迭代器的next要返回的簇
1856     current_cluster: Option<Cluster>,
1857     /// 属于的文件系统
1858     fs: &'a FATFileSystem,
1859 }
1860 
1861 impl<'a> Iterator for ClusterIter<'a> {
1862     type Item = Cluster;
1863 
1864     fn next(&mut self) -> Option<Self::Item> {
1865         // 当前要返回的簇
1866         let ret: Option<Cluster> = self.current_cluster;
1867 
1868         // 获得下一个要返回簇
1869         let new: Option<Cluster> = match self.current_cluster {
1870             Some(c) => {
1871                 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
1872                 match entry {
1873                     Some(FATEntry::Next(c)) => Some(c),
1874                     _ => None,
1875                 }
1876             }
1877             _ => None,
1878         };
1879 
1880         self.current_cluster = new;
1881         return ret;
1882     }
1883 }
1884