xref: /DragonOS/kernel/src/filesystem/fat/fs.rs (revision 38458c72672b8f53ebe43c4300e3bcd504cb5abc)
1 use alloc::string::ToString;
2 use core::cmp::Ordering;
3 use core::intrinsics::unlikely;
4 use core::{any::Any, fmt::Debug};
5 use log::error;
6 use system_error::SystemError;
7 
8 use alloc::{
9     collections::BTreeMap,
10     string::String,
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 
15 use crate::driver::base::device::device_number::DeviceNumber;
16 use crate::filesystem::vfs::utils::DName;
17 use crate::filesystem::vfs::{Magic, SpecialNodeData, SuperBlock};
18 use crate::ipc::pipe::LockedPipeInode;
19 use crate::{
20     driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom},
21     filesystem::vfs::{
22         core::generate_inode_id,
23         file::{FileMode, FilePrivateData},
24         syscall::ModeType,
25         FileSystem, FileType, IndexNode, InodeId, Metadata,
26     },
27     libs::{
28         spinlock::{SpinLock, SpinLockGuard},
29         vec_cursor::VecCursor,
30     },
31     time::PosixTimeSpec,
32 };
33 
34 use super::entry::FATFile;
35 use super::{
36     bpb::{BiosParameterBlock, FATType},
37     entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
38     utils::RESERVED_CLUSTERS,
39 };
40 
41 const FAT_MAX_NAMELEN: u64 = 255;
42 
43 /// FAT32文件系统的最大的文件大小
44 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
45 
46 /// @brief 表示当前簇和上一个簇的关系的结构体
47 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
48 #[derive(Debug, Clone, Copy, Default)]
49 pub struct Cluster {
50     pub cluster_num: u64,
51     pub parent_cluster: u64,
52 }
53 
54 impl PartialOrd for Cluster {
55     /// @brief 根据当前簇号比较大小
56     fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
57         return self.cluster_num.partial_cmp(&other.cluster_num);
58     }
59 }
60 
61 impl PartialEq for Cluster {
62     /// @brief 根据当前簇号比较是否相等
63     fn eq(&self, other: &Self) -> bool {
64         self.cluster_num == other.cluster_num
65     }
66 }
67 
68 impl Eq for Cluster {}
69 
70 #[derive(Debug)]
71 pub struct FATFileSystem {
72     /// 当前文件系统所在的分区
73     pub partition: Arc<Partition>,
74     /// 当前文件系统的BOPB
75     pub bpb: BiosParameterBlock,
76     /// 当前文件系统的第一个数据扇区(相对分区开始位置)
77     pub first_data_sector: u64,
78     /// 文件系统信息结构体
79     pub fs_info: Arc<LockedFATFsInfo>,
80     /// 文件系统的根inode
81     root_inode: Arc<LockedFATInode>,
82 }
83 
84 /// FAT文件系统的Inode
85 #[derive(Debug)]
86 pub struct LockedFATInode(SpinLock<FATInode>);
87 
88 #[derive(Debug)]
89 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
90 
91 impl LockedFATFsInfo {
92     #[inline]
93     pub fn new(fs_info: FATFsInfo) -> Self {
94         return Self(SpinLock::new(fs_info));
95     }
96 }
97 
98 #[derive(Debug)]
99 pub struct FATInode {
100     /// 指向父Inode的弱引用
101     parent: Weak<LockedFATInode>,
102     /// 指向自身的弱引用
103     self_ref: Weak<LockedFATInode>,
104     /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。
105     /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
106     children: BTreeMap<DName, Arc<LockedFATInode>>,
107     /// 当前inode的元数据
108     metadata: Metadata,
109     /// 指向inode所在的文件系统对象的指针
110     fs: Weak<FATFileSystem>,
111 
112     /// 根据不同的Inode类型,创建不同的私有字段
113     inode_type: FATDirEntry,
114 
115     /// 若该节点是特殊文件节点,该字段则为真正的文件节点
116     special_node: Option<SpecialNodeData>,
117 
118     /// 目录名
119     dname: DName,
120 }
121 
122 impl FATInode {
123     /// @brief 更新当前inode的元数据
124     pub fn update_metadata(&mut self) {
125         // todo: 更新文件的访问时间等信息
126         match &self.inode_type {
127             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
128                 self.metadata.size = f.size() as i64;
129             }
130             FATDirEntry::Dir(d) => {
131                 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
132             }
133             FATDirEntry::UnInit => {
134                 error!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
135                 return;
136             }
137         };
138     }
139 
140     fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> {
141         match &self.inode_type {
142             FATDirEntry::Dir(d) => {
143                 let dname = DName::from(name.to_uppercase());
144                 // 尝试在缓存区查找
145                 if let Some(entry) = self.children.get(&dname) {
146                     return Ok(entry.clone());
147                 }
148                 // 在缓存区找不到
149                 // 在磁盘查找
150                 let fat_entry: FATDirEntry =
151                     d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
152                 // 创建新的inode
153                 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
154                     dname.clone(),
155                     self.fs.upgrade().unwrap(),
156                     self.self_ref.clone(),
157                     fat_entry,
158                 );
159                 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
160                 self.children.insert(dname, entry_inode.clone());
161                 return Ok(entry_inode);
162             }
163             FATDirEntry::UnInit => {
164                 panic!(
165                     "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
166                     self.fs
167                 )
168             }
169             _ => {
170                 return Err(SystemError::ENOTDIR);
171             }
172         }
173     }
174 }
175 
176 impl LockedFATInode {
177     pub fn new(
178         dname: DName,
179         fs: Arc<FATFileSystem>,
180         parent: Weak<LockedFATInode>,
181         inode_type: FATDirEntry,
182     ) -> Arc<LockedFATInode> {
183         let file_type = if let FATDirEntry::Dir(_) = inode_type {
184             FileType::Dir
185         } else {
186             FileType::File
187         };
188 
189         let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
190             parent,
191             self_ref: Weak::default(),
192             children: BTreeMap::new(),
193             fs: Arc::downgrade(&fs),
194             inode_type,
195             metadata: Metadata {
196                 dev_id: 0,
197                 inode_id: generate_inode_id(),
198                 size: 0,
199                 blk_size: fs.bpb.bytes_per_sector as usize,
200                 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
201                     fs.bpb.total_sectors_32 as usize
202                 } else {
203                     fs.bpb.total_sectors_16 as usize
204                 },
205                 atime: PosixTimeSpec::default(),
206                 mtime: PosixTimeSpec::default(),
207                 ctime: PosixTimeSpec::default(),
208                 file_type,
209                 mode: ModeType::from_bits_truncate(0o777),
210                 nlinks: 1,
211                 uid: 0,
212                 gid: 0,
213                 raw_dev: DeviceNumber::default(),
214             },
215             special_node: None,
216             dname,
217         })));
218 
219         inode.0.lock().self_ref = Arc::downgrade(&inode);
220 
221         inode.0.lock().update_metadata();
222 
223         return inode;
224     }
225 }
226 
227 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
228 #[derive(Debug)]
229 pub struct FATFsInfo {
230     /// Lead Signature - must equal 0x41615252
231     lead_sig: u32,
232     /// Value must equal 0x61417272
233     struc_sig: u32,
234     /// 空闲簇数目
235     free_count: u32,
236     /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
237     next_free: u32,
238     /// 0xAA550000
239     trail_sig: u32,
240     /// Dirty flag to flush to disk
241     dirty: bool,
242     /// FsInfo Structure 在磁盘上的字节偏移量
243     /// Not present for FAT12 and FAT16
244     offset: Option<u64>,
245 }
246 
247 impl FileSystem for FATFileSystem {
248     fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
249         return self.root_inode.clone();
250     }
251 
252     fn info(&self) -> crate::filesystem::vfs::FsInfo {
253         todo!()
254     }
255 
256     /// @brief 本函数用于实现动态转换。
257     /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
258     fn as_any_ref(&self) -> &dyn Any {
259         self
260     }
261 
262     fn name(&self) -> &str {
263         "fat"
264     }
265 
266     fn super_block(&self) -> SuperBlock {
267         SuperBlock::new(
268             Magic::FAT_MAGIC,
269             self.bpb.bytes_per_sector.into(),
270             FAT_MAX_NAMELEN,
271         )
272     }
273 }
274 
275 impl FATFileSystem {
276     /// FAT12允许的最大簇号
277     pub const FAT12_MAX_CLUSTER: u32 = 0xFF5;
278     /// FAT16允许的最大簇号
279     pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5;
280     /// FAT32允许的最大簇号
281     pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7;
282 
283     pub fn new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, SystemError> {
284         let bpb = BiosParameterBlock::new(partition.clone())?;
285 
286         // 从磁盘上读取FAT32文件系统的FsInfo结构体
287         let fs_info: FATFsInfo = match bpb.fat_type {
288             FATType::FAT32(bpb32) => {
289                 let fs_info_in_disk_bytes_offset = partition.lba_start * LBA_SIZE as u64
290                     + bpb32.fs_info as u64 * bpb.bytes_per_sector as u64;
291                 FATFsInfo::new(
292                     partition.clone(),
293                     fs_info_in_disk_bytes_offset,
294                     bpb.bytes_per_sector as usize,
295                 )?
296             }
297             _ => FATFsInfo::default(),
298         };
299 
300         // 根目录项占用的扇区数(向上取整)
301         let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32)
302             + (bpb.bytes_per_sector as u64 - 1))
303             / (bpb.bytes_per_sector as u64);
304 
305         // FAT表大小(单位:扇区)
306         let fat_size = if bpb.fat_size_16 != 0 {
307             bpb.fat_size_16 as u64
308         } else {
309             match bpb.fat_type {
310                 FATType::FAT32(x) => x.fat_size_32 as u64,
311                 _ => {
312                     error!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
313                     return Err(SystemError::EINVAL);
314                 }
315             }
316         };
317 
318         let first_data_sector =
319             bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
320 
321         // 创建文件系统的根节点
322         let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
323             parent: Weak::default(),
324             self_ref: Weak::default(),
325             children: BTreeMap::new(),
326             fs: Weak::default(),
327             inode_type: FATDirEntry::UnInit,
328             metadata: Metadata {
329                 dev_id: 0,
330                 inode_id: generate_inode_id(),
331                 size: 0,
332                 blk_size: bpb.bytes_per_sector as usize,
333                 blocks: if let FATType::FAT32(_) = bpb.fat_type {
334                     bpb.total_sectors_32 as usize
335                 } else {
336                     bpb.total_sectors_16 as usize
337                 },
338                 atime: PosixTimeSpec::default(),
339                 mtime: PosixTimeSpec::default(),
340                 ctime: PosixTimeSpec::default(),
341                 file_type: FileType::Dir,
342                 mode: ModeType::from_bits_truncate(0o777),
343                 nlinks: 1,
344                 uid: 0,
345                 gid: 0,
346                 raw_dev: DeviceNumber::default(),
347             },
348             special_node: None,
349             dname: DName::default(),
350         })));
351 
352         let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
353             partition,
354             bpb,
355             first_data_sector,
356             fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
357             root_inode,
358         });
359 
360         // 对root inode加锁,并继续完成初始化工作
361         let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
362         root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
363         root_guard.parent = Arc::downgrade(&result.root_inode);
364         root_guard.self_ref = Arc::downgrade(&result.root_inode);
365         root_guard.fs = Arc::downgrade(&result);
366         // 释放锁
367         drop(root_guard);
368 
369         return Ok(result);
370     }
371 
372     /// @brief 计算每个簇有多少个字节
373     #[inline]
374     pub fn bytes_per_cluster(&self) -> u64 {
375         return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
376     }
377 
378     /// @brief 读取当前簇在FAT表中存储的信息
379     ///
380     /// @param cluster 当前簇
381     ///
382     /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
383     /// @return Err(SystemError) 错误码
384     pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> {
385         let current_cluster = cluster.cluster_num;
386         if current_cluster < 2 {
387             // 0号簇和1号簇是保留簇,不允许用户使用
388             return Err(SystemError::EINVAL);
389         }
390 
391         let fat_type: FATType = self.bpb.fat_type;
392         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
393         let fat_start_sector = self.fat_start_sector();
394         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
395 
396         // cluster对应的FAT表项在分区内的字节偏移量
397         let fat_bytes_offset =
398             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
399 
400         // FAT表项所在的LBA地址
401         // let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
402         let fat_ent_lba = self.partition.lba_start + fat_bytes_offset / LBA_SIZE as u64;
403 
404         // FAT表项在逻辑块内的字节偏移量
405         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
406 
407         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
408         self.partition
409             .disk()
410             .read_at(fat_ent_lba as usize, self.lba_per_sector(), &mut v)?;
411 
412         let mut cursor = VecCursor::new(v);
413         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
414 
415         let res: FATEntry = match self.bpb.fat_type {
416             FATType::FAT12(_) => {
417                 let mut entry = cursor.read_u16()?;
418                 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
419                 if (current_cluster & 1) > 0 {
420                     entry >>= 4;
421                 } else {
422                     entry &= 0x0fff;
423                 }
424 
425                 if entry == 0 {
426                     FATEntry::Unused
427                 } else if entry == 0x0ff7 {
428                     FATEntry::Bad
429                 } else if entry >= 0x0ff8 {
430                     FATEntry::EndOfChain
431                 } else {
432                     FATEntry::Next(Cluster {
433                         cluster_num: entry as u64,
434                         parent_cluster: current_cluster,
435                     })
436                 }
437             }
438             FATType::FAT16(_) => {
439                 let entry = cursor.read_u16()?;
440 
441                 if entry == 0 {
442                     FATEntry::Unused
443                 } else if entry == 0xfff7 {
444                     FATEntry::Bad
445                 } else if entry >= 0xfff8 {
446                     FATEntry::EndOfChain
447                 } else {
448                     FATEntry::Next(Cluster {
449                         cluster_num: entry as u64,
450                         parent_cluster: current_cluster,
451                     })
452                 }
453             }
454             FATType::FAT32(_) => {
455                 let entry = cursor.read_u32()? & 0x0fffffff;
456 
457                 match entry {
458                     _n if (0x0ffffff7..=0x0fffffff).contains(&current_cluster) => {
459                         // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
460                         error!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
461                         FATEntry::Bad
462                     }
463                     0 => FATEntry::Unused,
464                     0x0ffffff7 => FATEntry::Bad,
465                     0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
466                     _n => FATEntry::Next(Cluster {
467                         cluster_num: entry as u64,
468                         parent_cluster: current_cluster,
469                     }),
470                 }
471             }
472         };
473         return Ok(res);
474     }
475 
476     /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
477     ///
478     /// @param cluster 当前簇
479     ///
480     /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
481     /// @return Err(SystemError) 错误码
482     pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> {
483         let current_cluster = cluster.cluster_num;
484 
485         let fat_type: FATType = self.bpb.fat_type;
486         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
487         let fat_start_sector = self.fat_start_sector();
488         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
489 
490         // cluster对应的FAT表项在分区内的字节偏移量
491         let fat_bytes_offset =
492             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
493 
494         // FAT表项所在的LBA地址
495         let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
496 
497         // FAT表项在逻辑块内的字节偏移量
498         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
499 
500         let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize];
501         self.partition
502             .disk()
503             .read_at(fat_ent_lba, self.lba_per_sector(), &mut v)?;
504 
505         let mut cursor = VecCursor::new(v);
506         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
507 
508         let res = match self.bpb.fat_type {
509             FATType::FAT12(_) => {
510                 let mut entry = cursor.read_u16()?;
511                 entry = if (current_cluster & 0x0001) > 0 {
512                     entry >> 4
513                 } else {
514                     entry & 0x0fff
515                 };
516                 entry as u64
517             }
518             FATType::FAT16(_) => {
519                 let entry = (cursor.read_u16()?) as u64;
520                 entry
521             }
522             FATType::FAT32(_) => {
523                 let entry = cursor.read_u32()? & 0x0fff_ffff;
524                 entry as u64
525             }
526         };
527 
528         return Ok(res);
529     }
530 
531     /// @brief 获取当前文件系统的root inode,在磁盘上的字节偏移量
532     pub fn root_dir_bytes_offset(&self) -> u64 {
533         match self.bpb.fat_type {
534             FATType::FAT32(s) => {
535                 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
536                     * (self.bpb.sector_per_cluster as u64)
537                     + self.first_data_sector;
538                 return (self.get_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
539             }
540             _ => {
541                 let root_sec = (self.bpb.rsvd_sec_cnt as u64)
542                     + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
543                 return (self.get_lba_from_offset(root_sec) * LBA_SIZE) as u64;
544             }
545         }
546     }
547 
548     /// @brief 获取当前文件系统的根目录项区域的结束位置,在磁盘上的字节偏移量。
549     /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
550     pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
551         match self.bpb.fat_type {
552             FATType::FAT12(_) | FATType::FAT16(_) => {
553                 return Some(
554                     self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
555                 );
556             }
557             _ => {
558                 return None;
559             }
560         }
561     }
562 
563     /// @brief 获取簇在磁盘内的字节偏移量(相对磁盘起始位置。注意,不是分区内偏移量)
564     pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
565         if cluster.cluster_num >= 2 {
566             // 指定簇的第一个扇区号
567             let first_sec_of_cluster = (cluster.cluster_num - 2)
568                 * (self.bpb.sector_per_cluster as u64)
569                 + self.first_data_sector;
570             return (self.get_lba_from_offset(first_sec_of_cluster) * LBA_SIZE) as u64;
571         } else {
572             return 0;
573         }
574     }
575 
576     /// @brief 获取一个空闲簇
577     ///
578     /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
579     ///
580     /// @return Ok(Cluster) 新获取的空闲簇
581     /// @return Err(SystemError) 错误码
582     pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> {
583         let end_cluster: Cluster = self.max_cluster_number();
584         let start_cluster: Cluster = match self.bpb.fat_type {
585             FATType::FAT32(_) => {
586                 let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff);
587                 if next_free < end_cluster.cluster_num {
588                     Cluster::new(next_free)
589                 } else {
590                     Cluster::new(RESERVED_CLUSTERS as u64)
591                 }
592             }
593             _ => Cluster::new(RESERVED_CLUSTERS as u64),
594         };
595 
596         // 寻找一个空的簇
597         let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
598             Ok(c) => c,
599             Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
600                 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
601             }
602             Err(e) => return Err(e),
603         };
604 
605         self.set_entry(free_cluster, FATEntry::EndOfChain)?;
606         // 减少空闲簇计数
607         self.fs_info.0.lock().update_free_count_delta(-1);
608         // 更新搜索空闲簇的参考量
609         self.fs_info
610             .0
611             .lock()
612             .update_next_free((free_cluster.cluster_num + 1) as u32);
613 
614         // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
615         if let Some(prev_cluster) = prev_cluster {
616             // debug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
617             self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
618         }
619         // 清空新获取的这个簇
620         self.zero_cluster(free_cluster)?;
621         return Ok(free_cluster);
622     }
623 
624     /// @brief 释放簇链上的所有簇
625     ///
626     /// @param start_cluster 簇链的第一个簇
627     pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> {
628         let clusters: Vec<Cluster> = self.clusters(start_cluster);
629         for c in clusters {
630             self.deallocate_cluster(c)?;
631         }
632         return Ok(());
633     }
634 
635     /// @brief 释放簇
636     ///
637     /// @param 要释放的簇
638     pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
639         let entry: FATEntry = self.get_fat_entry(cluster)?;
640         // 如果不是坏簇
641         if entry != FATEntry::Bad {
642             self.set_entry(cluster, FATEntry::Unused)?;
643             self.fs_info.0.lock().update_free_count_delta(1);
644             // 安全选项:清空被释放的簇
645             #[cfg(feature = "secure")]
646             self.zero_cluster(cluster)?;
647             return Ok(());
648         } else {
649             // 不能释放坏簇
650             error!("Bad clusters cannot be freed.");
651             return Err(SystemError::EFAULT);
652         }
653     }
654 
655     /// @brief 获取文件系统的根目录项
656     pub fn root_dir(&self) -> FATDir {
657         match self.bpb.fat_type {
658             FATType::FAT32(s) => {
659                 return FATDir {
660                     first_cluster: Cluster::new(s.root_cluster as u64),
661                     dir_name: String::from("/"),
662                     root_offset: None,
663                     short_dir_entry: None,
664                     loc: None,
665                 };
666             }
667             _ => FATDir {
668                 first_cluster: Cluster::new(0),
669                 dir_name: String::from("/"),
670                 root_offset: Some(self.root_dir_bytes_offset()),
671                 short_dir_entry: None,
672                 loc: None,
673             },
674         }
675     }
676 
677     /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
678     pub fn fat_start_sector(&self) -> u64 {
679         let active_fat = self.active_fat();
680         let fat_size = self.fat_size();
681         return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
682     }
683 
684     /// @brief 获取当前活动的FAT表
685     pub fn active_fat(&self) -> u64 {
686         if self.mirroring_enabled() {
687             return 0;
688         } else {
689             match self.bpb.fat_type {
690                 FATType::FAT32(bpb32) => {
691                     return (bpb32.ext_flags & 0x0f) as u64;
692                 }
693                 _ => {
694                     return 0;
695                 }
696             }
697         }
698     }
699 
700     /// @brief 获取当前文件系统的每个FAT表的大小
701     pub fn fat_size(&self) -> u64 {
702         if self.bpb.fat_size_16 != 0 {
703             return self.bpb.fat_size_16 as u64;
704         } else {
705             match self.bpb.fat_type {
706                 FATType::FAT32(bpb32) => {
707                     return bpb32.fat_size_32 as u64;
708                 }
709 
710                 _ => {
711                     panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
712                 }
713             }
714         }
715     }
716 
717     /// @brief 判断当前文件系统是否启用了FAT表镜像
718     pub fn mirroring_enabled(&self) -> bool {
719         match self.bpb.fat_type {
720             FATType::FAT32(bpb32) => {
721                 return (bpb32.ext_flags & 0x80) == 0;
722             }
723             _ => {
724                 return false;
725             }
726         }
727     }
728 
729     /// @brief 根据分区内的扇区偏移量,获得在磁盘上的LBA地址
730     #[inline]
731     pub fn get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
732         return (self.partition.lba_start
733             + in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
734             as usize;
735     }
736 
737     /// @brief 获取每个扇区占用多少个LBA
738     #[inline]
739     pub fn lba_per_sector(&self) -> usize {
740         return self.bpb.bytes_per_sector as usize / LBA_SIZE;
741     }
742 
743     /// @brief 将分区内字节偏移量转换为扇区偏移量
744     #[inline]
745     pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
746         return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
747     }
748 
749     /// @brief 根据磁盘上的字节偏移量,获取对应位置在分区内的字节偏移量
750     #[inline]
751     pub fn get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64 {
752         return disk_bytes_offset - (self.partition.lba_start * LBA_SIZE as u64);
753     }
754 
755     /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
756     #[inline]
757     pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
758         return bytes_offset % LBA_SIZE as u64;
759     }
760 
761     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
762     ///
763     /// @param start_cluster 整个FAT链的起始簇号
764     pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
765         return self.cluster_iter(start_cluster).collect();
766     }
767 
768     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
769     ///
770     /// @param start_cluster 整个FAT链的起始簇号
771     pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
772         return self
773             .cluster_iter(start_cluster)
774             .fold(0, |size, _cluster| size + 1);
775     }
776     /// @brief 获取一个簇迭代器对象
777     ///
778     /// @param start_cluster 整个FAT链的起始簇号
779     fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
780         return ClusterIter {
781             current_cluster: Some(start_cluster),
782             fs: self,
783         };
784     }
785 
786     /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
787     #[inline]
788     pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
789         return self.cluster_iter(start_cluster).nth(n);
790     }
791 
792     /// @brief 获取整个簇链的最后一个簇
793     #[inline]
794     pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
795         return self.cluster_iter(start_cluster).last();
796     }
797 
798     /// @brief 判断FAT文件系统的shut bit是否正常。
799     /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
800     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
801     ///
802     /// @return Ok(true) 正常
803     /// @return Ok(false) 不正常
804     /// @return Err(SystemError) 在判断时发生错误
805     #[allow(dead_code)]
806     pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> {
807         match self.bpb.fat_type {
808             FATType::FAT32(_) => {
809                 // 对于FAT32, error bit位于第一个扇区的第8字节。
810                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
811                 return Ok(bit > 0);
812             }
813             FATType::FAT16(_) => {
814                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
815                 return Ok(bit > 0);
816             }
817             _ => return Ok(true),
818         }
819     }
820 
821     /// @brief 判断FAT文件系统的hard error bit是否正常。
822     /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
823     /// 卷上的某些扇区可能已损坏。
824     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
825     ///
826     /// @return Ok(true) 正常
827     /// @return Ok(false) 不正常
828     /// @return Err(SystemError) 在判断时发生错误
829     pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> {
830         match self.bpb.fat_type {
831             FATType::FAT32(_) => {
832                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
833                 return Ok(bit > 0);
834             }
835             FATType::FAT16(_) => {
836                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
837                 return Ok(bit > 0);
838             }
839             _ => return Ok(true),
840         }
841     }
842 
843     /// @brief 设置文件系统的shut bit为正常状态
844     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
845     ///
846     /// @return Ok(()) 设置成功
847     /// @return Err(SystemError) 在设置过程中,出现错误
848     pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> {
849         match self.bpb.fat_type {
850             FATType::FAT32(_) => {
851                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
852                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
853 
854                 return Ok(());
855             }
856 
857             FATType::FAT16(_) => {
858                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
859                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
860                 return Ok(());
861             }
862             _ => return Ok(()),
863         }
864     }
865 
866     /// @brief 设置文件系统的hard error bit为正常状态
867     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
868     ///
869     /// @return Ok(()) 设置成功
870     /// @return Err(SystemError) 在设置过程中,出现错误
871     pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> {
872         match self.bpb.fat_type {
873             FATType::FAT32(_) => {
874                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
875                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
876                 return Ok(());
877             }
878 
879             FATType::FAT16(_) => {
880                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
881                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
882                 return Ok(());
883             }
884             _ => return Ok(()),
885         }
886     }
887 
888     /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
889     pub fn umount(&mut self) -> Result<(), SystemError> {
890         self.fs_info.0.lock().flush(&self.partition)?;
891 
892         self.set_shut_bit_ok()?;
893 
894         self.set_hard_error_bit_ok()?;
895 
896         self.partition.disk().sync()?;
897 
898         return Ok(());
899     }
900 
901     /// @brief 获取文件系统的最大簇号
902     pub fn max_cluster_number(&self) -> Cluster {
903         match self.bpb.fat_type {
904             FATType::FAT32(s) => {
905                 // FAT32
906 
907                 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
908                 let data_sec: u64 = self.bpb.total_sectors_32 as u64
909                     - (self.bpb.rsvd_sec_cnt as u64
910                         + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
911 
912                 // 数据区的簇数量
913                 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
914 
915                 // 返回最大的簇号
916                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
917             }
918 
919             _ => {
920                 // FAT12 / FAT16
921                 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32)
922                     + self.bpb.bytes_per_sector as u64
923                     - 1)
924                     / self.bpb.bytes_per_sector as u64;
925                 // 数据区扇区数
926                 let data_sec: u64 = self.bpb.total_sectors_16 as u64
927                     - (self.bpb.rsvd_sec_cnt as u64
928                         + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
929                         + root_dir_sectors);
930                 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
931                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
932             }
933         }
934     }
935 
936     /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
937     ///
938     /// @param start_cluster 起始簇号
939     /// @param end_cluster 终止簇号(不包含)
940     ///
941     /// @return Ok(Cluster) 寻找到的空闲簇
942     /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
943     pub fn get_free_cluster(
944         &self,
945         start_cluster: Cluster,
946         end_cluster: Cluster,
947     ) -> Result<Cluster, SystemError> {
948         let max_cluster: Cluster = self.max_cluster_number();
949         let mut cluster: u64 = start_cluster.cluster_num;
950 
951         let fat_type: FATType = self.bpb.fat_type;
952         let fat_start_sector: u64 = self.fat_start_sector();
953         let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
954 
955         match fat_type {
956             FATType::FAT12(_) => {
957                 let part_bytes_offset: u64 =
958                     fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
959                 let in_block_offset = self.get_in_block_offset(part_bytes_offset);
960 
961                 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
962 
963                 // 由于FAT12的FAT表不大于6K,因此直接读取6K
964                 let num_lba = (6 * 1024) / LBA_SIZE;
965                 let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE];
966                 self.partition.disk().read_at(lba, num_lba, &mut v)?;
967 
968                 let mut cursor: VecCursor = VecCursor::new(v);
969                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
970 
971                 let mut packed_val: u16 = cursor.read_u16()?;
972                 loop {
973                     let val = if (cluster & 0x1) > 0 {
974                         packed_val >> 4
975                     } else {
976                         packed_val & 0x0fff
977                     };
978                     if val == 0 {
979                         return Ok(Cluster::new(cluster));
980                     }
981 
982                     cluster += 1;
983 
984                     // 磁盘无剩余空间,或者簇号达到给定的最大值
985                     if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
986                         return Err(SystemError::ENOSPC);
987                     }
988 
989                     packed_val = match cluster & 1 {
990                         0 => cursor.read_u16()?,
991                         _ => {
992                             let next_byte = cursor.read_u8()? as u16;
993                             (packed_val >> 8) | (next_byte << 8)
994                         }
995                     };
996                 }
997             }
998             FATType::FAT16(_) => {
999                 // todo: 优化这里,减少读取磁盘的次数。
1000                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
1001                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
1002                         Cluster::new(cluster),
1003                         fat_start_sector,
1004                         bytes_per_sec,
1005                     );
1006                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1007 
1008                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1009 
1010                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1011                     self.partition
1012                         .disk()
1013                         .read_at_sync(lba, self.lba_per_sector(), &mut v)?;
1014 
1015                     let mut cursor: VecCursor = VecCursor::new(v);
1016                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1017 
1018                     let val = cursor.read_u16()?;
1019                     // 找到空闲簇
1020                     if val == 0 {
1021                         return Ok(Cluster::new(val as u64));
1022                     }
1023                     cluster += 1;
1024                 }
1025 
1026                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1027                 return Err(SystemError::ENOSPC);
1028             }
1029             FATType::FAT32(_) => {
1030                 // todo: 优化这里,减少读取磁盘的次数。
1031                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
1032                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
1033                         Cluster::new(cluster),
1034                         fat_start_sector,
1035                         bytes_per_sec,
1036                     );
1037                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1038 
1039                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1040 
1041                     let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE];
1042                     self.partition
1043                         .disk()
1044                         .read_at_sync(lba, self.lba_per_sector(), &mut v)?;
1045 
1046                     let mut cursor: VecCursor = VecCursor::new(v);
1047                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1048 
1049                     let val = cursor.read_u32()? & 0x0fffffff;
1050 
1051                     if val == 0 {
1052                         return Ok(Cluster::new(cluster));
1053                     }
1054                     cluster += 1;
1055                 }
1056 
1057                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1058                 return Err(SystemError::ENOSPC);
1059             }
1060         }
1061     }
1062 
1063     /// @brief 在FAT表中,设置指定的簇的信息。
1064     ///
1065     /// @param cluster 目标簇
1066     /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
1067     pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> {
1068         // fat表项在分区上的字节偏移量
1069         let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
1070             cluster,
1071             self.fat_start_sector(),
1072             self.bpb.bytes_per_sector as u64,
1073         );
1074 
1075         match self.bpb.fat_type {
1076             FATType::FAT12(_) => {
1077                 // 计算要写入的值
1078                 let raw_val: u16 = match fat_entry {
1079                     FATEntry::Unused => 0,
1080                     FATEntry::Bad => 0xff7,
1081                     FATEntry::EndOfChain => 0xfff,
1082                     FATEntry::Next(c) => c.cluster_num as u16,
1083                 };
1084 
1085                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1086 
1087                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1088 
1089                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1090                 self.partition.disk().read_at_sync(lba, 1, &mut v)?;
1091 
1092                 let mut cursor: VecCursor = VecCursor::new(v);
1093                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1094 
1095                 let old_val: u16 = cursor.read_u16()?;
1096                 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
1097                     (old_val & 0x000f) | (raw_val << 4)
1098                 } else {
1099                     (old_val & 0xf000) | raw_val
1100                 };
1101 
1102                 // 写回数据到磁盘上
1103                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1104                 cursor.write_u16(new_val)?;
1105                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1106                 return Ok(());
1107             }
1108             FATType::FAT16(_) => {
1109                 // 计算要写入的值
1110                 let raw_val: u16 = match fat_entry {
1111                     FATEntry::Unused => 0,
1112                     FATEntry::Bad => 0xfff7,
1113                     FATEntry::EndOfChain => 0xfdff,
1114                     FATEntry::Next(c) => c.cluster_num as u16,
1115                 };
1116 
1117                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1118 
1119                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1120 
1121                 let mut v: Vec<u8> = vec![0; LBA_SIZE];
1122                 self.partition.disk().read_at(lba, 1, &mut v)?;
1123 
1124                 let mut cursor: VecCursor = VecCursor::new(v);
1125                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1126 
1127                 cursor.write_u16(raw_val)?;
1128                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1129 
1130                 return Ok(());
1131             }
1132             FATType::FAT32(_) => {
1133                 let fat_size: u64 = self.fat_size();
1134                 let bound: u64 = if self.mirroring_enabled() {
1135                     1
1136                 } else {
1137                     self.bpb.num_fats as u64
1138                 };
1139                 // debug!("set entry, bound={bound}, fat_size={fat_size}");
1140                 for i in 0..bound {
1141                     // 当前操作的FAT表在磁盘上的字节偏移量
1142                     let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
1143                     let in_block_offset: u64 = self.get_in_block_offset(f_offset);
1144                     let lba = self.get_lba_from_offset(self.bytes_to_sector(f_offset));
1145 
1146                     // debug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
1147                     let mut v: Vec<u8> = vec![0; LBA_SIZE];
1148                     self.partition.disk().read_at(lba, 1, &mut v)?;
1149 
1150                     let mut cursor: VecCursor = VecCursor::new(v);
1151                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1152 
1153                     // FAT32的高4位保留
1154                     let old_bits = cursor.read_u32()? & 0xf0000000;
1155 
1156                     if fat_entry == FATEntry::Unused
1157                         && cluster.cluster_num >= 0x0ffffff7
1158                         && cluster.cluster_num <= 0x0fffffff
1159                     {
1160                         error!(
1161                             "FAT32: Reserved Cluster {:?} cannot be marked as free",
1162                             cluster
1163                         );
1164                         return Err(SystemError::EPERM);
1165                     }
1166 
1167                     // 计算要写入的值
1168                     let mut raw_val: u32 = match fat_entry {
1169                         FATEntry::Unused => 0,
1170                         FATEntry::Bad => 0x0FFFFFF7,
1171                         FATEntry::EndOfChain => 0x0FFFFFFF,
1172                         FATEntry::Next(c) => c.cluster_num as u32,
1173                     };
1174 
1175                     // 恢复保留位
1176                     raw_val |= old_bits;
1177 
1178                     // debug!("sent entry, raw_val={raw_val}");
1179 
1180                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1181                     cursor.write_u32(raw_val)?;
1182 
1183                     self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1184                 }
1185 
1186                 return Ok(());
1187             }
1188         }
1189     }
1190 
1191     /// @brief 清空指定的簇
1192     ///
1193     /// @param cluster 要被清空的簇
1194     pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
1195         // 准备数据,用于写入
1196         let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
1197         let offset: usize = self.cluster_bytes_offset(cluster) as usize;
1198         self.partition
1199             .disk()
1200             .write_at_bytes(offset, zeros.len(), zeros.as_slice())?;
1201         return Ok(());
1202     }
1203 }
1204 
1205 impl Drop for FATFileSystem {
1206     fn drop(&mut self) {
1207         let r = self.umount();
1208         if r.is_err() {
1209             error!(
1210                 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}",
1211                 r.as_ref().unwrap_err()
1212             );
1213         }
1214     }
1215 }
1216 
1217 impl FATFsInfo {
1218     const LEAD_SIG: u32 = 0x41615252;
1219     const STRUC_SIG: u32 = 0x61417272;
1220     const TRAIL_SIG: u32 = 0xAA550000;
1221     #[allow(dead_code)]
1222     const FS_INFO_SIZE: u64 = 512;
1223 
1224     /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
1225     ///
1226     /// @param partition 磁盘分区
1227     /// @param in_disk_fs_info_offset FSInfo扇区在磁盘内的字节偏移量(单位:字节)
1228     /// @param bytes_per_sec 每扇区字节数
1229     pub fn new(
1230         partition: Arc<Partition>,
1231         in_disk_fs_info_offset: u64,
1232         bytes_per_sec: usize,
1233     ) -> Result<Self, SystemError> {
1234         let mut v = vec![0; bytes_per_sec];
1235 
1236         // 计算fs_info扇区在磁盘上的字节偏移量,从磁盘读取数据
1237         partition
1238             .disk()
1239             .read_at_sync(in_disk_fs_info_offset as usize / LBA_SIZE, 1, &mut v)?;
1240         let mut cursor = VecCursor::new(v);
1241 
1242         let mut fsinfo = FATFsInfo {
1243             lead_sig: cursor.read_u32()?,
1244             ..Default::default()
1245         };
1246         cursor.seek(SeekFrom::SeekCurrent(480))?;
1247         fsinfo.struc_sig = cursor.read_u32()?;
1248         fsinfo.free_count = cursor.read_u32()?;
1249         fsinfo.next_free = cursor.read_u32()?;
1250 
1251         cursor.seek(SeekFrom::SeekCurrent(12))?;
1252 
1253         fsinfo.trail_sig = cursor.read_u32()?;
1254         fsinfo.dirty = false;
1255         fsinfo.offset = Some(in_disk_fs_info_offset);
1256 
1257         if fsinfo.is_valid() {
1258             return Ok(fsinfo);
1259         } else {
1260             error!("Error occurred while parsing FATFsInfo.");
1261             return Err(SystemError::EINVAL);
1262         }
1263     }
1264 
1265     /// @brief 判断是否为正确的FsInfo结构体
1266     fn is_valid(&self) -> bool {
1267         self.lead_sig == Self::LEAD_SIG
1268             && self.struc_sig == Self::STRUC_SIG
1269             && self.trail_sig == Self::TRAIL_SIG
1270     }
1271 
1272     /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
1273     ///
1274     /// @param 当前文件系统的最大簇号
1275     pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
1276         let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
1277         // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
1278         if self.free_count as u64 > count_clusters {
1279             return None;
1280         } else {
1281             match self.free_count {
1282                 // free count字段不可用
1283                 0xffffffff => return None,
1284                 // 返回FsInfo中存储的数据
1285                 n => return Some(n as u64),
1286             }
1287         }
1288     }
1289 
1290     /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
1291     ///
1292     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1293     pub fn update_free_count_abs(&mut self, new_count: u32) {
1294         self.free_count = new_count;
1295     }
1296 
1297     /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
1298     ///
1299     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1300     pub fn update_free_count_delta(&mut self, delta: i32) {
1301         self.free_count = (self.free_count as i32 + delta) as u32;
1302     }
1303 
1304     /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
1305     ///
1306     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1307     pub fn update_next_free(&mut self, next_free: u32) {
1308         // 这个值是参考量,不一定要准确,仅供加速查找
1309         self.next_free = next_free;
1310     }
1311 
1312     /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
1313     pub fn next_free(&self) -> Option<u64> {
1314         match self.next_free {
1315             0xffffffff => return None,
1316             0 | 1 => return None,
1317             n => return Some(n as u64),
1318         };
1319     }
1320 
1321     /// @brief 把fs info刷入磁盘
1322     ///
1323     /// @param partition fs info所在的分区
1324     pub fn flush(&self, partition: &Arc<Partition>) -> Result<(), SystemError> {
1325         if let Some(off) = self.offset {
1326             let in_block_offset = off % LBA_SIZE as u64;
1327 
1328             let lba = off as usize / LBA_SIZE;
1329 
1330             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1331             partition.disk().read_at(lba, 1, &mut v)?;
1332 
1333             let mut cursor: VecCursor = VecCursor::new(v);
1334             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1335 
1336             cursor.write_u32(self.lead_sig)?;
1337             cursor.seek(SeekFrom::SeekCurrent(480))?;
1338             cursor.write_u32(self.struc_sig)?;
1339             cursor.write_u32(self.free_count)?;
1340             cursor.write_u32(self.next_free)?;
1341             cursor.seek(SeekFrom::SeekCurrent(12))?;
1342             cursor.write_u32(self.trail_sig)?;
1343 
1344             partition.disk().write_at(lba, 1, cursor.as_slice())?;
1345         }
1346         return Ok(());
1347     }
1348 
1349     /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
1350     ///
1351     /// @param partition fs info所在的分区
1352     pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> {
1353         if let Some(off) = self.offset {
1354             let in_block_offset = off % LBA_SIZE as u64;
1355 
1356             let lba = off as usize / LBA_SIZE;
1357 
1358             let mut v: Vec<u8> = vec![0; LBA_SIZE];
1359             partition.disk().read_at(lba, 1, &mut v)?;
1360             let mut cursor: VecCursor = VecCursor::new(v);
1361             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1362             self.lead_sig = cursor.read_u32()?;
1363 
1364             cursor.seek(SeekFrom::SeekCurrent(480))?;
1365             self.struc_sig = cursor.read_u32()?;
1366             self.free_count = cursor.read_u32()?;
1367             self.next_free = cursor.read_u32()?;
1368             cursor.seek(SeekFrom::SeekCurrent(12))?;
1369             self.trail_sig = cursor.read_u32()?;
1370         }
1371         return Ok(());
1372     }
1373 }
1374 
1375 impl IndexNode for LockedFATInode {
1376     fn read_at(
1377         &self,
1378         offset: usize,
1379         len: usize,
1380         buf: &mut [u8],
1381         _data: SpinLockGuard<FilePrivateData>,
1382     ) -> Result<usize, SystemError> {
1383         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1384         match &guard.inode_type {
1385             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1386                 let r = f.read(
1387                     &guard.fs.upgrade().unwrap(),
1388                     &mut buf[0..len],
1389                     offset as u64,
1390                 );
1391                 guard.update_metadata();
1392                 return r;
1393             }
1394             FATDirEntry::Dir(_) => {
1395                 return Err(SystemError::EISDIR);
1396             }
1397             FATDirEntry::UnInit => {
1398                 error!("FATFS: param: Inode_type uninitialized.");
1399                 return Err(SystemError::EROFS);
1400             }
1401         }
1402     }
1403 
1404     fn write_at(
1405         &self,
1406         offset: usize,
1407         len: usize,
1408         buf: &[u8],
1409         _data: SpinLockGuard<FilePrivateData>,
1410     ) -> Result<usize, SystemError> {
1411         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1412         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1413 
1414         match &mut guard.inode_type {
1415             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1416                 let r = f.write(fs, &buf[0..len], offset as u64);
1417                 guard.update_metadata();
1418                 return r;
1419             }
1420             FATDirEntry::Dir(_) => {
1421                 return Err(SystemError::EISDIR);
1422             }
1423             FATDirEntry::UnInit => {
1424                 error!("FATFS: param: Inode_type uninitialized.");
1425                 return Err(SystemError::EROFS);
1426             }
1427         }
1428     }
1429 
1430     fn create(
1431         &self,
1432         name: &str,
1433         file_type: FileType,
1434         _mode: ModeType,
1435     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1436         // 由于FAT32不支持文件权限的功能,因此忽略mode参数
1437         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1438         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1439 
1440         match &mut guard.inode_type {
1441             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1442                 return Err(SystemError::ENOTDIR);
1443             }
1444             FATDirEntry::Dir(d) => match file_type {
1445                 FileType::File => {
1446                     d.create_file(name, fs)?;
1447                     return Ok(guard.find(name)?);
1448                 }
1449                 FileType::Dir => {
1450                     d.create_dir(name, fs)?;
1451                     return Ok(guard.find(name)?);
1452                 }
1453 
1454                 FileType::SymLink => return Err(SystemError::ENOSYS),
1455                 _ => return Err(SystemError::EINVAL),
1456             },
1457             FATDirEntry::UnInit => {
1458                 error!("FATFS: param: Inode_type uninitialized.");
1459                 return Err(SystemError::EROFS);
1460             }
1461         }
1462     }
1463 
1464     fn fs(&self) -> Arc<dyn FileSystem> {
1465         return self.0.lock().fs.upgrade().unwrap();
1466     }
1467 
1468     fn as_any_ref(&self) -> &dyn core::any::Any {
1469         return self;
1470     }
1471 
1472     fn metadata(&self) -> Result<Metadata, SystemError> {
1473         return Ok(self.0.lock().metadata.clone());
1474     }
1475     fn set_metadata(&self, metadata: &Metadata) -> Result<(), SystemError> {
1476         let inode = &mut self.0.lock();
1477         inode.metadata.atime = metadata.atime;
1478         inode.metadata.mtime = metadata.mtime;
1479         inode.metadata.ctime = metadata.ctime;
1480         inode.metadata.mode = metadata.mode;
1481         inode.metadata.uid = metadata.uid;
1482         inode.metadata.gid = metadata.gid;
1483         Ok(())
1484     }
1485     fn resize(&self, len: usize) -> Result<(), SystemError> {
1486         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1487         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1488         let old_size = guard.metadata.size as usize;
1489 
1490         match &mut guard.inode_type {
1491             FATDirEntry::File(file) | FATDirEntry::VolId(file) => {
1492                 // 如果新的长度和旧的长度相同,那么就直接返回
1493                 match len.cmp(&old_size) {
1494                     Ordering::Equal => {
1495                         return Ok(());
1496                     }
1497                     Ordering::Greater => {
1498                         // 如果新的长度比旧的长度大,那么就在文件末尾添加空白
1499                         let mut buf: Vec<u8> = Vec::new();
1500                         let mut remain_size = len - old_size;
1501                         let buf_size = remain_size;
1502                         // let buf_size = core::cmp::min(remain_size, 512 * 1024);
1503                         buf.resize(buf_size, 0);
1504 
1505                         let mut offset = old_size;
1506                         while remain_size > 0 {
1507                             let write_size = core::cmp::min(remain_size, buf_size);
1508                             file.write(fs, &buf[0..write_size], offset as u64)?;
1509                             remain_size -= write_size;
1510                             offset += write_size;
1511                         }
1512                     }
1513                     Ordering::Less => {
1514                         file.truncate(fs, len as u64)?;
1515                     }
1516                 }
1517                 guard.update_metadata();
1518                 return Ok(());
1519             }
1520             FATDirEntry::Dir(_) => return Err(SystemError::ENOSYS),
1521             FATDirEntry::UnInit => {
1522                 error!("FATFS: param: Inode_type uninitialized.");
1523                 return Err(SystemError::EROFS);
1524             }
1525         }
1526     }
1527 
1528     fn truncate(&self, len: usize) -> Result<(), SystemError> {
1529         let guard: SpinLockGuard<FATInode> = self.0.lock();
1530         let old_size = guard.metadata.size as usize;
1531         if len < old_size {
1532             drop(guard);
1533             self.resize(len)
1534         } else {
1535             Ok(())
1536         }
1537     }
1538 
1539     fn list(&self) -> Result<Vec<String>, SystemError> {
1540         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1541         let fatent: &FATDirEntry = &guard.inode_type;
1542         match fatent {
1543             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1544                 return Err(SystemError::ENOTDIR);
1545             }
1546             FATDirEntry::Dir(dir) => {
1547                 // 获取当前目录下的所有目录项
1548                 let mut ret: Vec<String> = Vec::new();
1549                 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
1550                 for ent in dir_iter {
1551                     ret.push(ent.name());
1552 
1553                     // ====== 生成inode缓存,存入B树
1554                     let name = DName::from(ent.name().to_uppercase());
1555                     // debug!("name={name}");
1556 
1557                     if !guard.children.contains_key(&name)
1558                         && name.as_ref() != "."
1559                         && name.as_ref() != ".."
1560                     {
1561                         // 创建新的inode
1562                         let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
1563                             name.clone(),
1564                             guard.fs.upgrade().unwrap(),
1565                             guard.self_ref.clone(),
1566                             ent,
1567                         );
1568                         // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
1569                         guard.children.insert(name, entry_inode.clone());
1570                     }
1571                 }
1572                 return Ok(ret);
1573             }
1574             FATDirEntry::UnInit => {
1575                 error!("FATFS: param: Inode_type uninitialized.");
1576                 return Err(SystemError::EROFS);
1577             }
1578         }
1579     }
1580 
1581     fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
1582         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1583         let target = guard.find(name)?;
1584         return Ok(target);
1585     }
1586 
1587     fn open(
1588         &self,
1589         _data: SpinLockGuard<FilePrivateData>,
1590         _mode: &FileMode,
1591     ) -> Result<(), SystemError> {
1592         return Ok(());
1593     }
1594 
1595     fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> {
1596         return Ok(());
1597     }
1598 
1599     fn unlink(&self, name: &str) -> Result<(), SystemError> {
1600         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1601         let target: Arc<LockedFATInode> = guard.find(name)?;
1602         // 对目标inode上锁,以防更改
1603         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1604         // 先从缓存删除
1605         let nod = guard.children.remove(&DName::from(name.to_uppercase()));
1606 
1607         // 若删除缓存中为管道的文件,则不需要再到磁盘删除
1608         if nod.is_some() {
1609             let file_type = target_guard.metadata.file_type;
1610             if file_type == FileType::Pipe {
1611                 return Ok(());
1612             }
1613         }
1614 
1615         let dir = match &guard.inode_type {
1616             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1617                 return Err(SystemError::ENOTDIR);
1618             }
1619             FATDirEntry::Dir(d) => d,
1620             FATDirEntry::UnInit => {
1621                 error!("FATFS: param: Inode_type uninitialized.");
1622                 return Err(SystemError::EROFS);
1623             }
1624         };
1625         // 检查文件是否存在
1626         dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
1627 
1628         // 再从磁盘删除
1629         let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1630         drop(target_guard);
1631         return r;
1632     }
1633 
1634     fn rmdir(&self, name: &str) -> Result<(), SystemError> {
1635         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1636         let target: Arc<LockedFATInode> = guard.find(name)?;
1637         // 对目标inode上锁,以防更改
1638         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1639         // 先从缓存删除
1640         guard.children.remove(&DName::from(name.to_uppercase()));
1641 
1642         let dir = match &guard.inode_type {
1643             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1644                 return Err(SystemError::ENOTDIR);
1645             }
1646             FATDirEntry::Dir(d) => d,
1647             FATDirEntry::UnInit => {
1648                 error!("FATFS: param: Inode_type uninitialized.");
1649                 return Err(SystemError::EROFS);
1650             }
1651         };
1652         // 检查文件夹是否存在
1653         dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
1654 
1655         // 再从磁盘删除
1656         let r: Result<(), SystemError> =
1657             dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1658         match r {
1659             Ok(_) => return r,
1660             Err(r) => {
1661                 if r == SystemError::ENOTEMPTY {
1662                     // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
1663                     guard
1664                         .children
1665                         .insert(DName::from(name.to_uppercase()), target.clone());
1666                     drop(target_guard);
1667                 }
1668                 return Err(r);
1669             }
1670         }
1671     }
1672 
1673     fn move_to(
1674         &self,
1675         old_name: &str,
1676         target: &Arc<dyn IndexNode>,
1677         new_name: &str,
1678     ) -> Result<(), SystemError> {
1679         let old_id = self.metadata().unwrap().inode_id;
1680         let new_id = target.metadata().unwrap().inode_id;
1681         // 若在同一父目录下
1682         if old_id == new_id {
1683             let mut guard = self.0.lock();
1684             let old_inode: Arc<LockedFATInode> = guard.find(old_name)?;
1685             // 对目标inode上锁,以防更改
1686             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1687             let fs = old_inode_guard.fs.upgrade().unwrap();
1688             // 从缓存删除
1689             let _nod = guard.children.remove(&DName::from(old_name.to_uppercase()));
1690             let old_dir = match &guard.inode_type {
1691                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1692                     return Err(SystemError::ENOTDIR);
1693                 }
1694                 FATDirEntry::Dir(d) => d,
1695                 FATDirEntry::UnInit => {
1696                     error!("FATFS: param: Inode_type uninitialized.");
1697                     return Err(SystemError::EROFS);
1698                 }
1699             };
1700             // 检查文件是否存在
1701             // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?;
1702 
1703             old_dir.rename(fs, old_name, new_name)?;
1704         } else {
1705             let mut old_guard = self.0.lock();
1706             let other: &LockedFATInode = target
1707                 .downcast_ref::<LockedFATInode>()
1708                 .ok_or(SystemError::EPERM)?;
1709 
1710             let new_guard = other.0.lock();
1711             let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?;
1712             // 对目标inode上锁,以防更改
1713             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1714             let fs = old_inode_guard.fs.upgrade().unwrap();
1715             // 从缓存删除
1716             let _nod = old_guard
1717                 .children
1718                 .remove(&DName::from(old_name.to_uppercase()));
1719             let old_dir = match &old_guard.inode_type {
1720                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1721                     return Err(SystemError::ENOTDIR);
1722                 }
1723                 FATDirEntry::Dir(d) => d,
1724                 FATDirEntry::UnInit => {
1725                     error!("FATFS: param: Inode_type uninitialized.");
1726                     return Err(SystemError::EROFS);
1727                 }
1728             };
1729             let new_dir = match &new_guard.inode_type {
1730                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1731                     return Err(SystemError::ENOTDIR);
1732                 }
1733                 FATDirEntry::Dir(d) => d,
1734                 FATDirEntry::UnInit => {
1735                     error!("FATFA: param: Inode_type uninitialized.");
1736                     return Err(SystemError::EROFS);
1737                 }
1738             };
1739             // 检查文件是否存在
1740             old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?;
1741             old_dir.rename_across(fs, new_dir, old_name, new_name)?;
1742         }
1743 
1744         return Ok(());
1745     }
1746 
1747     fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> {
1748         let guard: SpinLockGuard<FATInode> = self.0.lock();
1749         if guard.metadata.file_type != FileType::Dir {
1750             return Err(SystemError::ENOTDIR);
1751         }
1752         match ino.into() {
1753             0 => {
1754                 return Ok(String::from("."));
1755             }
1756             1 => {
1757                 return Ok(String::from(".."));
1758             }
1759             ino => {
1760                 // 暴力遍历所有的children,判断inode id是否相同
1761                 // TODO: 优化这里,这个地方性能很差!
1762                 let mut key: Vec<String> = guard
1763                     .children
1764                     .iter()
1765                     .filter_map(|(k, v)| {
1766                         if v.0.lock().metadata.inode_id.into() == ino {
1767                             Some(k.to_string())
1768                         } else {
1769                             None
1770                         }
1771                     })
1772                     .collect();
1773 
1774                 match key.len() {
1775                     0=>{return Err(SystemError::ENOENT);}
1776                     1=>{return Ok(key.remove(0));}
1777                     _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
1778                 }
1779             }
1780         }
1781     }
1782 
1783     fn mknod(
1784         &self,
1785         filename: &str,
1786         mode: ModeType,
1787         _dev_t: DeviceNumber,
1788     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1789         let mut inode = self.0.lock();
1790         if inode.metadata.file_type != FileType::Dir {
1791             return Err(SystemError::ENOTDIR);
1792         }
1793 
1794         // 判断需要创建的类型
1795         if unlikely(mode.contains(ModeType::S_IFREG)) {
1796             // 普通文件
1797             return self.create(filename, FileType::File, mode);
1798         }
1799 
1800         let filename = DName::from(filename.to_uppercase());
1801         let nod = LockedFATInode::new(
1802             filename.clone(),
1803             inode.fs.upgrade().unwrap(),
1804             inode.self_ref.clone(),
1805             FATDirEntry::File(FATFile::default()),
1806         );
1807 
1808         if mode.contains(ModeType::S_IFIFO) {
1809             nod.0.lock().metadata.file_type = FileType::Pipe;
1810             // 创建pipe文件
1811             let pipe_inode = LockedPipeInode::new();
1812             // 设置special_node
1813             nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode));
1814         } else if mode.contains(ModeType::S_IFBLK) {
1815             nod.0.lock().metadata.file_type = FileType::BlockDevice;
1816             unimplemented!()
1817         } else if mode.contains(ModeType::S_IFCHR) {
1818             nod.0.lock().metadata.file_type = FileType::CharDevice;
1819             unimplemented!()
1820         } else {
1821             return Err(SystemError::EINVAL);
1822         }
1823 
1824         inode.children.insert(filename, nod.clone());
1825         Ok(nod)
1826     }
1827 
1828     fn special_node(&self) -> Option<SpecialNodeData> {
1829         self.0.lock().special_node.clone()
1830     }
1831 
1832     fn dname(&self) -> Result<DName, SystemError> {
1833         Ok(self.0.lock().dname.clone())
1834     }
1835 
1836     fn parent(&self) -> Result<Arc<dyn IndexNode>, SystemError> {
1837         self.0
1838             .lock()
1839             .parent
1840             .upgrade()
1841             .map(|item| item as Arc<dyn IndexNode>)
1842             .ok_or(SystemError::EINVAL)
1843     }
1844 }
1845 
1846 impl Default for FATFsInfo {
1847     fn default() -> Self {
1848         return FATFsInfo {
1849             lead_sig: FATFsInfo::LEAD_SIG,
1850             struc_sig: FATFsInfo::STRUC_SIG,
1851             free_count: 0xFFFFFFFF,
1852             next_free: RESERVED_CLUSTERS,
1853             trail_sig: FATFsInfo::TRAIL_SIG,
1854             dirty: false,
1855             offset: None,
1856         };
1857     }
1858 }
1859 
1860 impl Cluster {
1861     pub fn new(cluster: u64) -> Self {
1862         return Cluster {
1863             cluster_num: cluster,
1864             parent_cluster: 0,
1865         };
1866     }
1867 }
1868 
1869 /// @brief 用于迭代FAT表的内容的簇迭代器对象
1870 #[derive(Debug)]
1871 struct ClusterIter<'a> {
1872     /// 迭代器的next要返回的簇
1873     current_cluster: Option<Cluster>,
1874     /// 属于的文件系统
1875     fs: &'a FATFileSystem,
1876 }
1877 
1878 impl<'a> Iterator for ClusterIter<'a> {
1879     type Item = Cluster;
1880 
1881     fn next(&mut self) -> Option<Self::Item> {
1882         // 当前要返回的簇
1883         let ret: Option<Cluster> = self.current_cluster;
1884 
1885         // 获得下一个要返回簇
1886         let new: Option<Cluster> = match self.current_cluster {
1887             Some(c) => {
1888                 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
1889                 match entry {
1890                     Some(FATEntry::Next(c)) => Some(c),
1891                     _ => None,
1892                 }
1893             }
1894             _ => None,
1895         };
1896 
1897         self.current_cluster = new;
1898         return ret;
1899     }
1900 }
1901