1 use alloc::string::ToString; 2 use core::cmp::Ordering; 3 use core::intrinsics::unlikely; 4 use core::{any::Any, fmt::Debug}; 5 use log::error; 6 use system_error::SystemError; 7 8 use alloc::{ 9 collections::BTreeMap, 10 string::String, 11 sync::{Arc, Weak}, 12 vec::Vec, 13 }; 14 15 use crate::driver::base::block::gendisk::GenDisk; 16 use crate::driver::base::device::device_number::DeviceNumber; 17 use crate::filesystem::vfs::file::PageCache; 18 use crate::filesystem::vfs::utils::DName; 19 use crate::filesystem::vfs::{Magic, SpecialNodeData, SuperBlock}; 20 use crate::ipc::pipe::LockedPipeInode; 21 use crate::mm::fault::{PageFaultHandler, PageFaultMessage}; 22 use crate::mm::VmFaultReason; 23 use crate::{ 24 driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom}, 25 filesystem::vfs::{ 26 core::generate_inode_id, 27 file::{FileMode, FilePrivateData}, 28 syscall::ModeType, 29 FileSystem, FileType, IndexNode, InodeId, Metadata, 30 }, 31 libs::{ 32 spinlock::{SpinLock, SpinLockGuard}, 33 vec_cursor::VecCursor, 34 }, 35 time::PosixTimeSpec, 36 }; 37 38 use super::entry::FATFile; 39 use super::{ 40 bpb::{BiosParameterBlock, FATType}, 41 entry::{FATDir, FATDirEntry, FATDirIter, FATEntry}, 42 utils::RESERVED_CLUSTERS, 43 }; 44 45 const FAT_MAX_NAMELEN: u64 = 255; 46 47 /// FAT32文件系统的最大的文件大小 48 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff; 49 50 /// @brief 表示当前簇和上一个簇的关系的结构体 51 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。 52 #[allow(dead_code)] 53 #[derive(Debug, Clone, Copy, Default)] 54 pub struct Cluster { 55 pub cluster_num: u64, 56 pub parent_cluster: u64, 57 } 58 59 impl PartialOrd for Cluster { 60 /// @brief 根据当前簇号比较大小 61 fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { 62 return self.cluster_num.partial_cmp(&other.cluster_num); 63 } 64 } 65 66 impl PartialEq for Cluster { 67 /// @brief 根据当前簇号比较是否相等 68 fn eq(&self, other: &Self) -> bool { 69 self.cluster_num == other.cluster_num 70 } 71 } 72 73 impl Eq for Cluster {} 74 75 #[derive(Debug)] 76 pub struct FATFileSystem { 77 /// 当前文件系统所在的分区 78 pub gendisk: Arc<GenDisk>, 79 /// 当前文件系统的BOPB 80 pub bpb: BiosParameterBlock, 81 /// 当前文件系统的第一个数据扇区(相对分区开始位置) 82 pub first_data_sector: u64, 83 /// 文件系统信息结构体 84 pub fs_info: Arc<LockedFATFsInfo>, 85 /// 文件系统的根inode 86 root_inode: Arc<LockedFATInode>, 87 } 88 89 /// FAT文件系统的Inode 90 #[derive(Debug)] 91 pub struct LockedFATInode(SpinLock<FATInode>); 92 93 #[derive(Debug)] 94 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>); 95 96 impl LockedFATFsInfo { 97 #[inline] 98 pub fn new(fs_info: FATFsInfo) -> Self { 99 return Self(SpinLock::new(fs_info)); 100 } 101 } 102 103 #[derive(Debug)] 104 pub struct FATInode { 105 /// 指向父Inode的弱引用 106 parent: Weak<LockedFATInode>, 107 /// 指向自身的弱引用 108 self_ref: Weak<LockedFATInode>, 109 /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。 110 /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。 111 children: BTreeMap<DName, Arc<LockedFATInode>>, 112 /// 当前inode的元数据 113 metadata: Metadata, 114 /// 指向inode所在的文件系统对象的指针 115 fs: Weak<FATFileSystem>, 116 117 /// 根据不同的Inode类型,创建不同的私有字段 118 inode_type: FATDirEntry, 119 120 /// 若该节点是特殊文件节点,该字段则为真正的文件节点 121 special_node: Option<SpecialNodeData>, 122 123 /// 目录名 124 dname: DName, 125 126 /// 页缓存 127 page_cache: Option<Arc<PageCache>>, 128 } 129 130 impl FATInode { 131 /// @brief 更新当前inode的元数据 132 pub fn update_metadata(&mut self) { 133 // todo: 更新文件的访问时间等信息 134 match &self.inode_type { 135 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 136 self.metadata.size = f.size() as i64; 137 } 138 FATDirEntry::Dir(d) => { 139 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64; 140 } 141 FATDirEntry::UnInit => { 142 error!("update_metadata: Uninitialized FATDirEntry: {:?}", self); 143 return; 144 } 145 }; 146 } 147 148 fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> { 149 match &self.inode_type { 150 FATDirEntry::Dir(d) => { 151 let dname = DName::from(name.to_uppercase()); 152 // 尝试在缓存区查找 153 if let Some(entry) = self.children.get(&dname) { 154 return Ok(entry.clone()); 155 } 156 // 在缓存区找不到 157 // 在磁盘查找 158 let fat_entry: FATDirEntry = 159 d.find_entry(name, None, None, self.fs.upgrade().unwrap())?; 160 // 创建新的inode 161 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new( 162 dname.clone(), 163 self.fs.upgrade().unwrap(), 164 self.self_ref.clone(), 165 fat_entry, 166 ); 167 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的 168 self.children.insert(dname, entry_inode.clone()); 169 return Ok(entry_inode); 170 } 171 FATDirEntry::UnInit => { 172 panic!( 173 "Uninitialized FAT Inode, fs = {:?}, inode={self:?}", 174 self.fs 175 ) 176 } 177 _ => { 178 return Err(SystemError::ENOTDIR); 179 } 180 } 181 } 182 } 183 184 impl LockedFATInode { 185 pub fn new( 186 dname: DName, 187 fs: Arc<FATFileSystem>, 188 parent: Weak<LockedFATInode>, 189 inode_type: FATDirEntry, 190 ) -> Arc<LockedFATInode> { 191 let file_type = if let FATDirEntry::Dir(_) = inode_type { 192 FileType::Dir 193 } else { 194 FileType::File 195 }; 196 197 let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode { 198 parent, 199 self_ref: Weak::default(), 200 children: BTreeMap::new(), 201 fs: Arc::downgrade(&fs), 202 inode_type, 203 metadata: Metadata { 204 dev_id: 0, 205 inode_id: generate_inode_id(), 206 size: 0, 207 blk_size: fs.bpb.bytes_per_sector as usize, 208 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type { 209 fs.bpb.total_sectors_32 as usize 210 } else { 211 fs.bpb.total_sectors_16 as usize 212 }, 213 atime: PosixTimeSpec::default(), 214 mtime: PosixTimeSpec::default(), 215 ctime: PosixTimeSpec::default(), 216 file_type, 217 mode: ModeType::from_bits_truncate(0o777), 218 nlinks: 1, 219 uid: 0, 220 gid: 0, 221 raw_dev: DeviceNumber::default(), 222 }, 223 special_node: None, 224 dname, 225 page_cache: None, 226 }))); 227 228 if !inode.0.lock().inode_type.is_dir() { 229 let page_cache = PageCache::new(Some(Arc::downgrade(&inode) as Weak<dyn IndexNode>)); 230 inode.0.lock().page_cache = Some(page_cache); 231 } 232 233 inode.0.lock().self_ref = Arc::downgrade(&inode); 234 235 inode.0.lock().update_metadata(); 236 237 return inode; 238 } 239 } 240 241 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘) 242 #[derive(Debug)] 243 pub struct FATFsInfo { 244 /// Lead Signature - must equal 0x41615252 245 lead_sig: u32, 246 /// Value must equal 0x61417272 247 struc_sig: u32, 248 /// 空闲簇数目 249 free_count: u32, 250 /// 第一个空闲簇的位置(不一定准确,仅供加速查找) 251 next_free: u32, 252 /// 0xAA550000 253 trail_sig: u32, 254 /// Dirty flag to flush to disk 255 dirty: bool, 256 /// FsInfo Structure 在磁盘上的字节偏移量 257 /// Not present for FAT12 and FAT16 258 offset: Option<u64>, 259 } 260 261 impl FileSystem for FATFileSystem { 262 fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> { 263 return self.root_inode.clone(); 264 } 265 266 fn info(&self) -> crate::filesystem::vfs::FsInfo { 267 todo!() 268 } 269 270 /// @brief 本函数用于实现动态转换。 271 /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self 272 fn as_any_ref(&self) -> &dyn Any { 273 self 274 } 275 276 fn name(&self) -> &str { 277 "fat" 278 } 279 280 fn super_block(&self) -> SuperBlock { 281 SuperBlock::new( 282 Magic::FAT_MAGIC, 283 self.bpb.bytes_per_sector.into(), 284 FAT_MAX_NAMELEN, 285 ) 286 } 287 288 unsafe fn fault(&self, pfm: &mut PageFaultMessage) -> VmFaultReason { 289 PageFaultHandler::filemap_fault(pfm) 290 } 291 292 unsafe fn map_pages( 293 &self, 294 pfm: &mut PageFaultMessage, 295 start_pgoff: usize, 296 end_pgoff: usize, 297 ) -> VmFaultReason { 298 PageFaultHandler::filemap_map_pages(pfm, start_pgoff, end_pgoff) 299 } 300 } 301 302 impl FATFileSystem { 303 /// FAT12允许的最大簇号 304 pub const FAT12_MAX_CLUSTER: u32 = 0xFF5; 305 /// FAT16允许的最大簇号 306 pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5; 307 /// FAT32允许的最大簇号 308 pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7; 309 310 pub fn new(gendisk: Arc<GenDisk>) -> Result<Arc<FATFileSystem>, SystemError> { 311 let bpb = BiosParameterBlock::new(&gendisk)?; 312 // 从磁盘上读取FAT32文件系统的FsInfo结构体 313 let fs_info: FATFsInfo = match bpb.fat_type { 314 FATType::FAT32(bpb32) => { 315 let fs_info_in_gendisk_bytes_offset = 316 bpb32.fs_info as usize * bpb.bytes_per_sector as usize; 317 FATFsInfo::new( 318 &gendisk, 319 fs_info_in_gendisk_bytes_offset, 320 bpb.bytes_per_sector as usize, 321 )? 322 } 323 _ => FATFsInfo::default(), 324 }; 325 326 // 根目录项占用的扇区数(向上取整) 327 let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32) 328 + (bpb.bytes_per_sector as u64 - 1)) 329 / (bpb.bytes_per_sector as u64); 330 331 // FAT表大小(单位:扇区) 332 let fat_size = if bpb.fat_size_16 != 0 { 333 bpb.fat_size_16 as u64 334 } else { 335 match bpb.fat_type { 336 FATType::FAT32(x) => x.fat_size_32 as u64, 337 _ => { 338 error!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16"); 339 return Err(SystemError::EINVAL); 340 } 341 } 342 }; 343 344 let first_data_sector = 345 bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors; 346 347 // 创建文件系统的根节点 348 let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode { 349 parent: Weak::default(), 350 self_ref: Weak::default(), 351 children: BTreeMap::new(), 352 fs: Weak::default(), 353 inode_type: FATDirEntry::UnInit, 354 metadata: Metadata { 355 dev_id: 0, 356 inode_id: generate_inode_id(), 357 size: 0, 358 blk_size: bpb.bytes_per_sector as usize, 359 blocks: if let FATType::FAT32(_) = bpb.fat_type { 360 bpb.total_sectors_32 as usize 361 } else { 362 bpb.total_sectors_16 as usize 363 }, 364 atime: PosixTimeSpec::default(), 365 mtime: PosixTimeSpec::default(), 366 ctime: PosixTimeSpec::default(), 367 file_type: FileType::Dir, 368 mode: ModeType::from_bits_truncate(0o777), 369 nlinks: 1, 370 uid: 0, 371 gid: 0, 372 raw_dev: DeviceNumber::default(), 373 }, 374 special_node: None, 375 dname: DName::default(), 376 page_cache: None, 377 }))); 378 379 let result: Arc<FATFileSystem> = Arc::new(FATFileSystem { 380 gendisk, 381 bpb, 382 first_data_sector, 383 fs_info: Arc::new(LockedFATFsInfo::new(fs_info)), 384 root_inode, 385 }); 386 387 // 对root inode加锁,并继续完成初始化工作 388 let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock(); 389 root_guard.inode_type = FATDirEntry::Dir(result.root_dir()); 390 root_guard.parent = Arc::downgrade(&result.root_inode); 391 root_guard.self_ref = Arc::downgrade(&result.root_inode); 392 root_guard.fs = Arc::downgrade(&result); 393 // 释放锁 394 drop(root_guard); 395 396 return Ok(result); 397 } 398 399 /// @brief 计算每个簇有多少个字节 400 #[inline] 401 pub fn bytes_per_cluster(&self) -> u64 { 402 return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64); 403 } 404 405 /// @brief 读取当前簇在FAT表中存储的信息 406 /// 407 /// @param cluster 当前簇 408 /// 409 /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释) 410 /// @return Err(SystemError) 错误码 411 pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> { 412 let current_cluster = cluster.cluster_num; 413 if current_cluster < 2 { 414 // 0号簇和1号簇是保留簇,不允许用户使用 415 return Err(SystemError::EINVAL); 416 } 417 418 let fat_type: FATType = self.bpb.fat_type; 419 // 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 420 let fat_start_sector = self.fat_start_sector(); 421 let bytes_per_sec = self.bpb.bytes_per_sector as u64; 422 423 // cluster对应的FAT表项在分区内的字节偏移量 424 let fat_bytes_offset = 425 fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec); 426 427 // FAT表项所在的分区内LBA地址 428 let fat_ent_lba = fat_bytes_offset / LBA_SIZE as u64; 429 430 // FAT表项在逻辑块内的字节偏移量 431 let blk_offset = self.get_in_block_offset(fat_bytes_offset); 432 433 let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize]; 434 self.gendisk.read_at(&mut v, fat_ent_lba as usize)?; 435 436 let mut cursor = VecCursor::new(v); 437 cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?; 438 439 let res: FATEntry = match self.bpb.fat_type { 440 FATType::FAT12(_) => { 441 let mut entry = cursor.read_u16()?; 442 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。 443 if (current_cluster & 1) > 0 { 444 entry >>= 4; 445 } else { 446 entry &= 0x0fff; 447 } 448 449 if entry == 0 { 450 FATEntry::Unused 451 } else if entry == 0x0ff7 { 452 FATEntry::Bad 453 } else if entry >= 0x0ff8 { 454 FATEntry::EndOfChain 455 } else { 456 FATEntry::Next(Cluster { 457 cluster_num: entry as u64, 458 parent_cluster: current_cluster, 459 }) 460 } 461 } 462 FATType::FAT16(_) => { 463 let entry = cursor.read_u16()?; 464 465 if entry == 0 { 466 FATEntry::Unused 467 } else if entry == 0xfff7 { 468 FATEntry::Bad 469 } else if entry >= 0xfff8 { 470 FATEntry::EndOfChain 471 } else { 472 FATEntry::Next(Cluster { 473 cluster_num: entry as u64, 474 parent_cluster: current_cluster, 475 }) 476 } 477 } 478 FATType::FAT32(_) => { 479 let entry = cursor.read_u32()? & 0x0fffffff; 480 481 match entry { 482 _n if (0x0ffffff7..=0x0fffffff).contains(¤t_cluster) => { 483 // 当前簇号不是一个能被获得的簇(可能是文件系统出错了) 484 error!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster); 485 FATEntry::Bad 486 } 487 0 => FATEntry::Unused, 488 0x0ffffff7 => FATEntry::Bad, 489 0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain, 490 _n => FATEntry::Next(Cluster { 491 cluster_num: entry as u64, 492 parent_cluster: current_cluster, 493 }), 494 } 495 } 496 }; 497 return Ok(res); 498 } 499 500 /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理) 501 /// 502 /// @param cluster 当前簇 503 /// 504 /// @return Ok(u64) 当前簇在FAT表中,存储的信息。 505 /// @return Err(SystemError) 错误码 506 pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> { 507 let current_cluster = cluster.cluster_num; 508 509 let fat_type: FATType = self.bpb.fat_type; 510 // 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 511 let fat_start_sector = self.fat_start_sector(); 512 let bytes_per_sec = self.bpb.bytes_per_sector as u64; 513 514 // cluster对应的FAT表项在分区内的字节偏移量 515 let fat_bytes_offset = 516 fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec); 517 518 // FAT表项所在的分区内LBA地址 519 let fat_ent_lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_bytes_offset)); 520 521 // FAT表项在逻辑块内的字节偏移量 522 let blk_offset = self.get_in_block_offset(fat_bytes_offset); 523 524 let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize]; 525 self.gendisk.read_at(&mut v, fat_ent_lba)?; 526 527 let mut cursor = VecCursor::new(v); 528 cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?; 529 530 let res = match self.bpb.fat_type { 531 FATType::FAT12(_) => { 532 let mut entry = cursor.read_u16()?; 533 entry = if (current_cluster & 0x0001) > 0 { 534 entry >> 4 535 } else { 536 entry & 0x0fff 537 }; 538 entry as u64 539 } 540 FATType::FAT16(_) => { 541 let entry = (cursor.read_u16()?) as u64; 542 entry 543 } 544 FATType::FAT32(_) => { 545 let entry = cursor.read_u32()? & 0x0fff_ffff; 546 entry as u64 547 } 548 }; 549 550 return Ok(res); 551 } 552 553 /// @brief 获取当前文件系统的root inode,在分区内的字节偏移量 554 pub fn root_dir_bytes_offset(&self) -> u64 { 555 match self.bpb.fat_type { 556 FATType::FAT32(s) => { 557 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2) 558 * (self.bpb.sector_per_cluster as u64) 559 + self.first_data_sector; 560 return (self.gendisk_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64; 561 } 562 _ => { 563 let root_sec = (self.bpb.rsvd_sec_cnt as u64) 564 + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64); 565 return (self.gendisk_lba_from_offset(root_sec) * LBA_SIZE) as u64; 566 } 567 } 568 } 569 570 /// @brief 获取当前文件系统的根目录项区域的结束位置,在分区内的字节偏移量。 571 /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None 572 pub fn root_dir_end_bytes_offset(&self) -> Option<u64> { 573 match self.bpb.fat_type { 574 FATType::FAT12(_) | FATType::FAT16(_) => { 575 return Some( 576 self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32, 577 ); 578 } 579 _ => { 580 return None; 581 } 582 } 583 } 584 585 /// 获取簇在分区内的字节偏移量 586 pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 { 587 if cluster.cluster_num >= 2 { 588 // 指定簇的第一个扇区号 589 let first_sec_of_cluster = (cluster.cluster_num - 2) 590 * (self.bpb.sector_per_cluster as u64) 591 + self.first_data_sector; 592 return first_sec_of_cluster * (self.bpb.bytes_per_sector as u64); 593 } else { 594 return 0; 595 } 596 } 597 598 /// @brief 获取一个空闲簇 599 /// 600 /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。 601 /// 602 /// @return Ok(Cluster) 新获取的空闲簇 603 /// @return Err(SystemError) 错误码 604 pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> { 605 let end_cluster: Cluster = self.max_cluster_number(); 606 let start_cluster: Cluster = match self.bpb.fat_type { 607 FATType::FAT32(_) => { 608 let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff); 609 if next_free < end_cluster.cluster_num { 610 Cluster::new(next_free) 611 } else { 612 Cluster::new(RESERVED_CLUSTERS as u64) 613 } 614 } 615 _ => Cluster::new(RESERVED_CLUSTERS as u64), 616 }; 617 618 // 寻找一个空的簇 619 let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) { 620 Ok(c) => c, 621 Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => { 622 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)? 623 } 624 Err(e) => return Err(e), 625 }; 626 627 self.set_entry(free_cluster, FATEntry::EndOfChain)?; 628 // 减少空闲簇计数 629 self.fs_info.0.lock().update_free_count_delta(-1); 630 // 更新搜索空闲簇的参考量 631 self.fs_info 632 .0 633 .lock() 634 .update_next_free((free_cluster.cluster_num + 1) as u32); 635 636 // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。 637 if let Some(prev_cluster) = prev_cluster { 638 // debug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}"); 639 self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?; 640 } 641 // 清空新获取的这个簇 642 self.zero_cluster(free_cluster)?; 643 return Ok(free_cluster); 644 } 645 646 /// @brief 释放簇链上的所有簇 647 /// 648 /// @param start_cluster 簇链的第一个簇 649 pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> { 650 let clusters: Vec<Cluster> = self.clusters(start_cluster); 651 for c in clusters { 652 self.deallocate_cluster(c)?; 653 } 654 return Ok(()); 655 } 656 657 /// @brief 释放簇 658 /// 659 /// @param 要释放的簇 660 pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> { 661 let entry: FATEntry = self.get_fat_entry(cluster)?; 662 // 如果不是坏簇 663 if entry != FATEntry::Bad { 664 self.set_entry(cluster, FATEntry::Unused)?; 665 self.fs_info.0.lock().update_free_count_delta(1); 666 // 安全选项:清空被释放的簇 667 #[cfg(feature = "fatfs-secure")] 668 self.zero_cluster(cluster)?; 669 return Ok(()); 670 } else { 671 // 不能释放坏簇 672 error!("Bad clusters cannot be freed."); 673 return Err(SystemError::EFAULT); 674 } 675 } 676 677 /// @brief 获取文件系统的根目录项 678 pub fn root_dir(&self) -> FATDir { 679 match self.bpb.fat_type { 680 FATType::FAT32(s) => { 681 return FATDir { 682 first_cluster: Cluster::new(s.root_cluster as u64), 683 dir_name: String::from("/"), 684 root_offset: None, 685 short_dir_entry: None, 686 loc: None, 687 }; 688 } 689 _ => FATDir { 690 first_cluster: Cluster::new(0), 691 dir_name: String::from("/"), 692 root_offset: Some(self.root_dir_bytes_offset()), 693 short_dir_entry: None, 694 loc: None, 695 }, 696 } 697 } 698 699 /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 700 pub fn fat_start_sector(&self) -> u64 { 701 let active_fat = self.active_fat(); 702 let fat_size = self.fat_size(); 703 return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size; 704 } 705 706 /// @brief 获取当前活动的FAT表 707 pub fn active_fat(&self) -> u64 { 708 if self.mirroring_enabled() { 709 return 0; 710 } else { 711 match self.bpb.fat_type { 712 FATType::FAT32(bpb32) => { 713 return (bpb32.ext_flags & 0x0f) as u64; 714 } 715 _ => { 716 return 0; 717 } 718 } 719 } 720 } 721 722 /// @brief 获取当前文件系统的每个FAT表的大小 723 pub fn fat_size(&self) -> u64 { 724 if self.bpb.fat_size_16 != 0 { 725 return self.bpb.fat_size_16 as u64; 726 } else { 727 match self.bpb.fat_type { 728 FATType::FAT32(bpb32) => { 729 return bpb32.fat_size_32 as u64; 730 } 731 732 _ => { 733 panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16"); 734 } 735 } 736 } 737 } 738 739 /// @brief 判断当前文件系统是否启用了FAT表镜像 740 pub fn mirroring_enabled(&self) -> bool { 741 match self.bpb.fat_type { 742 FATType::FAT32(bpb32) => { 743 return (bpb32.ext_flags & 0x80) == 0; 744 } 745 _ => { 746 return false; 747 } 748 } 749 } 750 751 /// 获取分区内的扇区偏移量 752 #[inline] 753 pub fn gendisk_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize { 754 return (in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64)) 755 as usize; 756 } 757 758 /// @brief 获取每个扇区占用多少个LBA 759 #[inline] 760 pub fn lba_per_sector(&self) -> usize { 761 return self.bpb.bytes_per_sector as usize / LBA_SIZE; 762 } 763 764 /// @brief 将分区内字节偏移量转换为扇区偏移量 765 #[inline] 766 pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 { 767 return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64); 768 } 769 770 /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量 771 #[inline] 772 pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 { 773 return bytes_offset % LBA_SIZE as u64; 774 } 775 776 /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息 777 /// 778 /// @param start_cluster 整个FAT链的起始簇号 779 pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> { 780 return self.cluster_iter(start_cluster).collect(); 781 } 782 783 /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇) 784 /// 785 /// @param start_cluster 整个FAT链的起始簇号 786 pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 { 787 return self 788 .cluster_iter(start_cluster) 789 .fold(0, |size, _cluster| size + 1); 790 } 791 /// @brief 获取一个簇迭代器对象 792 /// 793 /// @param start_cluster 整个FAT链的起始簇号 794 fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter { 795 return ClusterIter { 796 current_cluster: Some(start_cluster), 797 fs: self, 798 }; 799 } 800 801 /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始) 802 #[inline] 803 pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> { 804 return self.cluster_iter(start_cluster).nth(n); 805 } 806 807 /// @brief 获取整个簇链的最后一个簇 808 #[inline] 809 pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> { 810 return self.cluster_iter(start_cluster).last(); 811 } 812 813 /// @brief 判断FAT文件系统的shut bit是否正常。 814 /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的” 815 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 816 /// 817 /// @return Ok(true) 正常 818 /// @return Ok(false) 不正常 819 /// @return Err(SystemError) 在判断时发生错误 820 #[allow(dead_code)] 821 pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> { 822 match self.bpb.fat_type { 823 FATType::FAT32(_) => { 824 // 对于FAT32, error bit位于第一个扇区的第8字节。 825 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000; 826 return Ok(bit > 0); 827 } 828 FATType::FAT16(_) => { 829 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000; 830 return Ok(bit > 0); 831 } 832 _ => return Ok(true), 833 } 834 } 835 836 /// @brief 判断FAT文件系统的hard error bit是否正常。 837 /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明 838 /// 卷上的某些扇区可能已损坏。 839 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 840 /// 841 /// @return Ok(true) 正常 842 /// @return Ok(false) 不正常 843 /// @return Err(SystemError) 在判断时发生错误 844 pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> { 845 match self.bpb.fat_type { 846 FATType::FAT32(_) => { 847 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000; 848 return Ok(bit > 0); 849 } 850 FATType::FAT16(_) => { 851 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000; 852 return Ok(bit > 0); 853 } 854 _ => return Ok(true), 855 } 856 } 857 858 /// @brief 设置文件系统的shut bit为正常状态 859 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 860 /// 861 /// @return Ok(()) 设置成功 862 /// @return Err(SystemError) 在设置过程中,出现错误 863 pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> { 864 match self.bpb.fat_type { 865 FATType::FAT32(_) => { 866 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000; 867 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 868 869 return Ok(()); 870 } 871 872 FATType::FAT16(_) => { 873 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000; 874 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 875 return Ok(()); 876 } 877 _ => return Ok(()), 878 } 879 } 880 881 /// @brief 设置文件系统的hard error bit为正常状态 882 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 883 /// 884 /// @return Ok(()) 设置成功 885 /// @return Err(SystemError) 在设置过程中,出现错误 886 pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> { 887 match self.bpb.fat_type { 888 FATType::FAT32(_) => { 889 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000; 890 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 891 return Ok(()); 892 } 893 894 FATType::FAT16(_) => { 895 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000; 896 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 897 return Ok(()); 898 } 899 _ => return Ok(()), 900 } 901 } 902 903 /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘 904 pub fn umount(&mut self) -> Result<(), SystemError> { 905 self.fs_info.0.lock().flush(&self.gendisk)?; 906 907 self.set_shut_bit_ok()?; 908 909 self.set_hard_error_bit_ok()?; 910 911 self.gendisk.sync()?; 912 913 return Ok(()); 914 } 915 916 /// @brief 获取文件系统的最大簇号 917 pub fn max_cluster_number(&self) -> Cluster { 918 match self.bpb.fat_type { 919 FATType::FAT32(s) => { 920 // FAT32 921 922 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区) 923 let data_sec: u64 = self.bpb.total_sectors_32 as u64 924 - (self.bpb.rsvd_sec_cnt as u64 925 + self.bpb.num_fats as u64 * s.fat_size_32 as u64); 926 927 // 数据区的簇数量 928 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64; 929 930 // 返回最大的簇号 931 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1); 932 } 933 934 _ => { 935 // FAT12 / FAT16 936 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32) 937 + self.bpb.bytes_per_sector as u64 938 - 1) 939 / self.bpb.bytes_per_sector as u64; 940 // 数据区扇区数 941 let data_sec: u64 = self.bpb.total_sectors_16 as u64 942 - (self.bpb.rsvd_sec_cnt as u64 943 + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64) 944 + root_dir_sectors); 945 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64; 946 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1); 947 } 948 } 949 } 950 951 /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇 952 /// 953 /// @param start_cluster 起始簇号 954 /// @param end_cluster 终止簇号(不包含) 955 /// 956 /// @return Ok(Cluster) 寻找到的空闲簇 957 /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC. 958 pub fn get_free_cluster( 959 &self, 960 start_cluster: Cluster, 961 end_cluster: Cluster, 962 ) -> Result<Cluster, SystemError> { 963 let max_cluster: Cluster = self.max_cluster_number(); 964 let mut cluster: u64 = start_cluster.cluster_num; 965 966 let fat_type: FATType = self.bpb.fat_type; 967 let fat_start_sector: u64 = self.fat_start_sector(); 968 let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64; 969 970 match fat_type { 971 FATType::FAT12(_) => { 972 let part_bytes_offset: u64 = 973 fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec); 974 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 975 976 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 977 978 // 由于FAT12的FAT表不大于6K,因此直接读取6K 979 let num_lba = (6 * 1024) / LBA_SIZE; 980 let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE]; 981 self.gendisk.read_at(&mut v, lba)?; 982 983 let mut cursor: VecCursor = VecCursor::new(v); 984 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 985 986 let mut packed_val: u16 = cursor.read_u16()?; 987 loop { 988 let val = if (cluster & 0x1) > 0 { 989 packed_val >> 4 990 } else { 991 packed_val & 0x0fff 992 }; 993 if val == 0 { 994 return Ok(Cluster::new(cluster)); 995 } 996 997 cluster += 1; 998 999 // 磁盘无剩余空间,或者簇号达到给定的最大值 1000 if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num { 1001 return Err(SystemError::ENOSPC); 1002 } 1003 1004 packed_val = match cluster & 1 { 1005 0 => cursor.read_u16()?, 1006 _ => { 1007 let next_byte = cursor.read_u8()? as u16; 1008 (packed_val >> 8) | (next_byte << 8) 1009 } 1010 }; 1011 } 1012 } 1013 FATType::FAT16(_) => { 1014 // todo: 优化这里,减少读取磁盘的次数。 1015 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num { 1016 let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset( 1017 Cluster::new(cluster), 1018 fat_start_sector, 1019 bytes_per_sec, 1020 ); 1021 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 1022 1023 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 1024 1025 let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE]; 1026 self.gendisk.read_at(&mut v, lba)?; 1027 1028 let mut cursor: VecCursor = VecCursor::new(v); 1029 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1030 1031 let val = cursor.read_u16()?; 1032 // 找到空闲簇 1033 if val == 0 { 1034 return Ok(Cluster::new(val as u64)); 1035 } 1036 cluster += 1; 1037 } 1038 1039 // 磁盘无剩余空间,或者簇号达到给定的最大值 1040 return Err(SystemError::ENOSPC); 1041 } 1042 FATType::FAT32(_) => { 1043 // todo: 优化这里,减少读取磁盘的次数。 1044 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num { 1045 let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset( 1046 Cluster::new(cluster), 1047 fat_start_sector, 1048 bytes_per_sec, 1049 ); 1050 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 1051 1052 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 1053 1054 let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE]; 1055 self.gendisk.read_at(&mut v, lba)?; 1056 1057 let mut cursor: VecCursor = VecCursor::new(v); 1058 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1059 1060 let val = cursor.read_u32()? & 0x0fffffff; 1061 1062 if val == 0 { 1063 return Ok(Cluster::new(cluster)); 1064 } 1065 cluster += 1; 1066 } 1067 1068 // 磁盘无剩余空间,或者簇号达到给定的最大值 1069 return Err(SystemError::ENOSPC); 1070 } 1071 } 1072 } 1073 1074 /// @brief 在FAT表中,设置指定的簇的信息。 1075 /// 1076 /// @param cluster 目标簇 1077 /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号) 1078 pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> { 1079 // fat表项在分区上的字节偏移量 1080 let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset( 1081 cluster, 1082 self.fat_start_sector(), 1083 self.bpb.bytes_per_sector as u64, 1084 ); 1085 1086 match self.bpb.fat_type { 1087 FATType::FAT12(_) => { 1088 // 计算要写入的值 1089 let raw_val: u16 = match fat_entry { 1090 FATEntry::Unused => 0, 1091 FATEntry::Bad => 0xff7, 1092 FATEntry::EndOfChain => 0xfff, 1093 FATEntry::Next(c) => c.cluster_num as u16, 1094 }; 1095 1096 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset); 1097 1098 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset)); 1099 1100 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1101 self.gendisk.read_at(&mut v, lba)?; 1102 1103 let mut cursor: VecCursor = VecCursor::new(v); 1104 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1105 1106 let old_val: u16 = cursor.read_u16()?; 1107 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 { 1108 (old_val & 0x000f) | (raw_val << 4) 1109 } else { 1110 (old_val & 0xf000) | raw_val 1111 }; 1112 1113 // 写回数据到磁盘上 1114 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1115 cursor.write_u16(new_val)?; 1116 self.gendisk.write_at(cursor.as_slice(), lba)?; 1117 return Ok(()); 1118 } 1119 FATType::FAT16(_) => { 1120 // 计算要写入的值 1121 let raw_val: u16 = match fat_entry { 1122 FATEntry::Unused => 0, 1123 FATEntry::Bad => 0xfff7, 1124 FATEntry::EndOfChain => 0xfdff, 1125 FATEntry::Next(c) => c.cluster_num as u16, 1126 }; 1127 1128 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset); 1129 1130 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset)); 1131 1132 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1133 self.gendisk.read_at(&mut v, lba)?; 1134 1135 let mut cursor: VecCursor = VecCursor::new(v); 1136 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1137 1138 cursor.write_u16(raw_val)?; 1139 self.gendisk.write_at(cursor.as_slice(), lba)?; 1140 1141 return Ok(()); 1142 } 1143 FATType::FAT32(_) => { 1144 let fat_size: u64 = self.fat_size(); 1145 let bound: u64 = if self.mirroring_enabled() { 1146 1 1147 } else { 1148 self.bpb.num_fats as u64 1149 }; 1150 // debug!("set entry, bound={bound}, fat_size={fat_size}"); 1151 for i in 0..bound { 1152 // 当前操作的FAT表在磁盘上的字节偏移量 1153 let f_offset: u64 = fat_part_bytes_offset + i * fat_size; 1154 let in_block_offset: u64 = self.get_in_block_offset(f_offset); 1155 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(f_offset)); 1156 1157 // debug!("set entry, lba={lba}, in_block_offset={in_block_offset}"); 1158 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1159 self.gendisk.read_at(&mut v, lba)?; 1160 1161 let mut cursor: VecCursor = VecCursor::new(v); 1162 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1163 1164 // FAT32的高4位保留 1165 let old_bits = cursor.read_u32()? & 0xf0000000; 1166 1167 if fat_entry == FATEntry::Unused 1168 && cluster.cluster_num >= 0x0ffffff7 1169 && cluster.cluster_num <= 0x0fffffff 1170 { 1171 error!( 1172 "FAT32: Reserved Cluster {:?} cannot be marked as free", 1173 cluster 1174 ); 1175 return Err(SystemError::EPERM); 1176 } 1177 1178 // 计算要写入的值 1179 let mut raw_val: u32 = match fat_entry { 1180 FATEntry::Unused => 0, 1181 FATEntry::Bad => 0x0FFFFFF7, 1182 FATEntry::EndOfChain => 0x0FFFFFFF, 1183 FATEntry::Next(c) => c.cluster_num as u32, 1184 }; 1185 1186 // 恢复保留位 1187 raw_val |= old_bits; 1188 1189 // debug!("sent entry, raw_val={raw_val}"); 1190 1191 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1192 cursor.write_u32(raw_val)?; 1193 1194 self.gendisk.write_at(cursor.as_slice(), lba)?; 1195 } 1196 1197 return Ok(()); 1198 } 1199 } 1200 } 1201 1202 /// # 清空指定的簇 1203 /// 1204 /// # 参数 1205 /// - cluster 要被清空的簇 1206 pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> { 1207 // 准备数据,用于写入 1208 let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize]; 1209 let offset = self.cluster_bytes_offset(cluster) as usize; 1210 self.gendisk.write_at_bytes(&zeros, offset)?; 1211 return Ok(()); 1212 } 1213 } 1214 1215 impl Drop for FATFileSystem { 1216 fn drop(&mut self) { 1217 let r = self.umount(); 1218 if r.is_err() { 1219 error!( 1220 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}", 1221 r.as_ref().unwrap_err() 1222 ); 1223 } 1224 } 1225 } 1226 1227 impl FATFsInfo { 1228 const LEAD_SIG: u32 = 0x41615252; 1229 const STRUC_SIG: u32 = 0x61417272; 1230 const TRAIL_SIG: u32 = 0xAA550000; 1231 #[allow(dead_code)] 1232 const FS_INFO_SIZE: u64 = 512; 1233 1234 /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体 1235 /// 1236 /// @param partition 磁盘分区 1237 /// @param in_gendisk_fs_info_offset FSInfo扇区在gendisk内的字节偏移量(单位:字节) 1238 /// @param bytes_per_sec 每扇区字节数 1239 pub fn new( 1240 gendisk: &Arc<GenDisk>, 1241 in_gendisk_fs_info_offset: usize, 1242 bytes_per_sec: usize, 1243 ) -> Result<Self, SystemError> { 1244 let mut v = vec![0; bytes_per_sec]; 1245 1246 // 读取磁盘上的FsInfo扇区 1247 gendisk.read_at_bytes(&mut v, in_gendisk_fs_info_offset)?; 1248 1249 let mut cursor = VecCursor::new(v); 1250 1251 let mut fsinfo = FATFsInfo { 1252 lead_sig: cursor.read_u32()?, 1253 ..Default::default() 1254 }; 1255 cursor.seek(SeekFrom::SeekCurrent(480))?; 1256 fsinfo.struc_sig = cursor.read_u32()?; 1257 fsinfo.free_count = cursor.read_u32()?; 1258 fsinfo.next_free = cursor.read_u32()?; 1259 1260 cursor.seek(SeekFrom::SeekCurrent(12))?; 1261 1262 fsinfo.trail_sig = cursor.read_u32()?; 1263 fsinfo.dirty = false; 1264 fsinfo.offset = Some(gendisk.disk_bytes_offset(in_gendisk_fs_info_offset) as u64); 1265 1266 if fsinfo.is_valid() { 1267 return Ok(fsinfo); 1268 } else { 1269 error!("Error occurred while parsing FATFsInfo."); 1270 return Err(SystemError::EINVAL); 1271 } 1272 } 1273 1274 /// @brief 判断是否为正确的FsInfo结构体 1275 fn is_valid(&self) -> bool { 1276 self.lead_sig == Self::LEAD_SIG 1277 && self.struc_sig == Self::STRUC_SIG 1278 && self.trail_sig == Self::TRAIL_SIG 1279 } 1280 1281 /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量 1282 /// 1283 /// @param 当前文件系统的最大簇号 1284 pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> { 1285 let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1; 1286 // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值 1287 if self.free_count as u64 > count_clusters { 1288 return None; 1289 } else { 1290 match self.free_count { 1291 // free count字段不可用 1292 0xffffffff => return None, 1293 // 返回FsInfo中存储的数据 1294 n => return Some(n as u64), 1295 } 1296 } 1297 } 1298 1299 /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count 1300 /// 1301 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 1302 pub fn update_free_count_abs(&mut self, new_count: u32) { 1303 self.free_count = new_count; 1304 } 1305 1306 /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta. 1307 /// 1308 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 1309 pub fn update_free_count_delta(&mut self, delta: i32) { 1310 self.free_count = (self.free_count as i32 + delta) as u32; 1311 } 1312 1313 /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free. 1314 /// 1315 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 1316 pub fn update_next_free(&mut self, next_free: u32) { 1317 // 这个值是参考量,不一定要准确,仅供加速查找 1318 self.next_free = next_free; 1319 } 1320 1321 /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考) 1322 pub fn next_free(&self) -> Option<u64> { 1323 match self.next_free { 1324 0xffffffff => return None, 1325 0 | 1 => return None, 1326 n => return Some(n as u64), 1327 }; 1328 } 1329 1330 /// @brief 把fs info刷入磁盘 1331 /// 1332 /// @param partition fs info所在的分区 1333 pub fn flush(&self, gendisk: &Arc<GenDisk>) -> Result<(), SystemError> { 1334 if let Some(off) = self.offset { 1335 let in_block_offset = off % LBA_SIZE as u64; 1336 1337 let lba = off as usize / LBA_SIZE; 1338 1339 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1340 gendisk.read_at(&mut v, lba)?; 1341 1342 let mut cursor: VecCursor = VecCursor::new(v); 1343 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1344 1345 cursor.write_u32(self.lead_sig)?; 1346 cursor.seek(SeekFrom::SeekCurrent(480))?; 1347 cursor.write_u32(self.struc_sig)?; 1348 cursor.write_u32(self.free_count)?; 1349 cursor.write_u32(self.next_free)?; 1350 cursor.seek(SeekFrom::SeekCurrent(12))?; 1351 cursor.write_u32(self.trail_sig)?; 1352 1353 gendisk.write_at(cursor.as_slice(), lba)?; 1354 } 1355 return Ok(()); 1356 } 1357 1358 /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中 1359 /// 1360 /// @param partition fs info所在的分区 1361 pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> { 1362 if let Some(off) = self.offset { 1363 let in_block_offset = off % LBA_SIZE as u64; 1364 1365 let lba = off as usize / LBA_SIZE; 1366 1367 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1368 partition.disk().read_at(lba, 1, &mut v)?; 1369 let mut cursor: VecCursor = VecCursor::new(v); 1370 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1371 self.lead_sig = cursor.read_u32()?; 1372 1373 cursor.seek(SeekFrom::SeekCurrent(480))?; 1374 self.struc_sig = cursor.read_u32()?; 1375 self.free_count = cursor.read_u32()?; 1376 self.next_free = cursor.read_u32()?; 1377 cursor.seek(SeekFrom::SeekCurrent(12))?; 1378 self.trail_sig = cursor.read_u32()?; 1379 } 1380 return Ok(()); 1381 } 1382 } 1383 1384 impl IndexNode for LockedFATInode { 1385 fn read_at( 1386 &self, 1387 offset: usize, 1388 len: usize, 1389 buf: &mut [u8], 1390 _data: SpinLockGuard<FilePrivateData>, 1391 ) -> Result<usize, SystemError> { 1392 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1393 match &guard.inode_type { 1394 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 1395 let r = f.read( 1396 &guard.fs.upgrade().unwrap(), 1397 &mut buf[0..len], 1398 offset as u64, 1399 ); 1400 guard.update_metadata(); 1401 return r; 1402 } 1403 FATDirEntry::Dir(_) => { 1404 return Err(SystemError::EISDIR); 1405 } 1406 FATDirEntry::UnInit => { 1407 error!("FATFS: param: Inode_type uninitialized."); 1408 return Err(SystemError::EROFS); 1409 } 1410 } 1411 } 1412 1413 fn write_at( 1414 &self, 1415 offset: usize, 1416 len: usize, 1417 buf: &[u8], 1418 _data: SpinLockGuard<FilePrivateData>, 1419 ) -> Result<usize, SystemError> { 1420 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1421 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1422 1423 match &mut guard.inode_type { 1424 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 1425 let r = f.write(fs, &buf[0..len], offset as u64); 1426 guard.update_metadata(); 1427 return r; 1428 } 1429 FATDirEntry::Dir(_) => { 1430 return Err(SystemError::EISDIR); 1431 } 1432 FATDirEntry::UnInit => { 1433 error!("FATFS: param: Inode_type uninitialized."); 1434 return Err(SystemError::EROFS); 1435 } 1436 } 1437 } 1438 1439 fn create( 1440 &self, 1441 name: &str, 1442 file_type: FileType, 1443 _mode: ModeType, 1444 ) -> Result<Arc<dyn IndexNode>, SystemError> { 1445 // 由于FAT32不支持文件权限的功能,因此忽略mode参数 1446 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1447 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1448 1449 match &mut guard.inode_type { 1450 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1451 return Err(SystemError::ENOTDIR); 1452 } 1453 FATDirEntry::Dir(d) => match file_type { 1454 FileType::File => { 1455 d.create_file(name, fs)?; 1456 return Ok(guard.find(name)?); 1457 } 1458 FileType::Dir => { 1459 d.create_dir(name, fs)?; 1460 return Ok(guard.find(name)?); 1461 } 1462 1463 FileType::SymLink => return Err(SystemError::ENOSYS), 1464 _ => return Err(SystemError::EINVAL), 1465 }, 1466 FATDirEntry::UnInit => { 1467 error!("FATFS: param: Inode_type uninitialized."); 1468 return Err(SystemError::EROFS); 1469 } 1470 } 1471 } 1472 1473 fn fs(&self) -> Arc<dyn FileSystem> { 1474 return self.0.lock().fs.upgrade().unwrap(); 1475 } 1476 1477 fn as_any_ref(&self) -> &dyn core::any::Any { 1478 return self; 1479 } 1480 1481 fn metadata(&self) -> Result<Metadata, SystemError> { 1482 return Ok(self.0.lock().metadata.clone()); 1483 } 1484 fn set_metadata(&self, metadata: &Metadata) -> Result<(), SystemError> { 1485 let inode = &mut self.0.lock(); 1486 inode.metadata.atime = metadata.atime; 1487 inode.metadata.mtime = metadata.mtime; 1488 inode.metadata.ctime = metadata.ctime; 1489 inode.metadata.mode = metadata.mode; 1490 inode.metadata.uid = metadata.uid; 1491 inode.metadata.gid = metadata.gid; 1492 Ok(()) 1493 } 1494 fn resize(&self, len: usize) -> Result<(), SystemError> { 1495 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1496 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1497 let old_size = guard.metadata.size as usize; 1498 1499 match &mut guard.inode_type { 1500 FATDirEntry::File(file) | FATDirEntry::VolId(file) => { 1501 // 如果新的长度和旧的长度相同,那么就直接返回 1502 match len.cmp(&old_size) { 1503 Ordering::Equal => { 1504 return Ok(()); 1505 } 1506 Ordering::Greater => { 1507 // 如果新的长度比旧的长度大,那么就在文件末尾添加空白 1508 let mut buf: Vec<u8> = Vec::new(); 1509 let mut remain_size = len - old_size; 1510 let buf_size = remain_size; 1511 // let buf_size = core::cmp::min(remain_size, 512 * 1024); 1512 buf.resize(buf_size, 0); 1513 1514 let mut offset = old_size; 1515 while remain_size > 0 { 1516 let write_size = core::cmp::min(remain_size, buf_size); 1517 file.write(fs, &buf[0..write_size], offset as u64)?; 1518 remain_size -= write_size; 1519 offset += write_size; 1520 } 1521 } 1522 Ordering::Less => { 1523 file.truncate(fs, len as u64)?; 1524 } 1525 } 1526 guard.update_metadata(); 1527 return Ok(()); 1528 } 1529 FATDirEntry::Dir(_) => return Err(SystemError::ENOSYS), 1530 FATDirEntry::UnInit => { 1531 error!("FATFS: param: Inode_type uninitialized."); 1532 return Err(SystemError::EROFS); 1533 } 1534 } 1535 } 1536 1537 fn truncate(&self, len: usize) -> Result<(), SystemError> { 1538 let guard: SpinLockGuard<FATInode> = self.0.lock(); 1539 let old_size = guard.metadata.size as usize; 1540 if len < old_size { 1541 drop(guard); 1542 self.resize(len) 1543 } else { 1544 Ok(()) 1545 } 1546 } 1547 1548 fn list(&self) -> Result<Vec<String>, SystemError> { 1549 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1550 let fatent: &FATDirEntry = &guard.inode_type; 1551 match fatent { 1552 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1553 return Err(SystemError::ENOTDIR); 1554 } 1555 FATDirEntry::Dir(dir) => { 1556 // 获取当前目录下的所有目录项 1557 let mut ret: Vec<String> = Vec::new(); 1558 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap()); 1559 for ent in dir_iter { 1560 ret.push(ent.name()); 1561 1562 // ====== 生成inode缓存,存入B树 1563 let name = DName::from(ent.name().to_uppercase()); 1564 // debug!("name={name}"); 1565 1566 if !guard.children.contains_key(&name) 1567 && name.as_ref() != "." 1568 && name.as_ref() != ".." 1569 { 1570 // 创建新的inode 1571 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new( 1572 name.clone(), 1573 guard.fs.upgrade().unwrap(), 1574 guard.self_ref.clone(), 1575 ent, 1576 ); 1577 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的 1578 guard.children.insert(name, entry_inode.clone()); 1579 } 1580 } 1581 return Ok(ret); 1582 } 1583 FATDirEntry::UnInit => { 1584 error!("FATFS: param: Inode_type uninitialized."); 1585 return Err(SystemError::EROFS); 1586 } 1587 } 1588 } 1589 1590 fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> { 1591 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1592 let target = guard.find(name)?; 1593 return Ok(target); 1594 } 1595 1596 fn open( 1597 &self, 1598 _data: SpinLockGuard<FilePrivateData>, 1599 _mode: &FileMode, 1600 ) -> Result<(), SystemError> { 1601 return Ok(()); 1602 } 1603 1604 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> { 1605 return Ok(()); 1606 } 1607 1608 fn unlink(&self, name: &str) -> Result<(), SystemError> { 1609 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1610 let target: Arc<LockedFATInode> = guard.find(name)?; 1611 // 对目标inode上锁,以防更改 1612 let target_guard: SpinLockGuard<FATInode> = target.0.lock(); 1613 // 先从缓存删除 1614 let nod = guard.children.remove(&DName::from(name.to_uppercase())); 1615 1616 // 若删除缓存中为管道的文件,则不需要再到磁盘删除 1617 if nod.is_some() { 1618 let file_type = target_guard.metadata.file_type; 1619 if file_type == FileType::Pipe { 1620 return Ok(()); 1621 } 1622 } 1623 1624 let dir = match &guard.inode_type { 1625 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1626 return Err(SystemError::ENOTDIR); 1627 } 1628 FATDirEntry::Dir(d) => d, 1629 FATDirEntry::UnInit => { 1630 error!("FATFS: param: Inode_type uninitialized."); 1631 return Err(SystemError::EROFS); 1632 } 1633 }; 1634 // 检查文件是否存在 1635 dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?; 1636 1637 // 再从磁盘删除 1638 let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true); 1639 drop(target_guard); 1640 return r; 1641 } 1642 1643 fn rmdir(&self, name: &str) -> Result<(), SystemError> { 1644 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1645 let target: Arc<LockedFATInode> = guard.find(name)?; 1646 // 对目标inode上锁,以防更改 1647 let target_guard: SpinLockGuard<FATInode> = target.0.lock(); 1648 // 先从缓存删除 1649 guard.children.remove(&DName::from(name.to_uppercase())); 1650 1651 let dir = match &guard.inode_type { 1652 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1653 return Err(SystemError::ENOTDIR); 1654 } 1655 FATDirEntry::Dir(d) => d, 1656 FATDirEntry::UnInit => { 1657 error!("FATFS: param: Inode_type uninitialized."); 1658 return Err(SystemError::EROFS); 1659 } 1660 }; 1661 // 检查文件夹是否存在 1662 dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?; 1663 1664 // 再从磁盘删除 1665 let r: Result<(), SystemError> = 1666 dir.remove(guard.fs.upgrade().unwrap().clone(), name, true); 1667 match r { 1668 Ok(_) => return r, 1669 Err(r) => { 1670 if r == SystemError::ENOTEMPTY { 1671 // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存 1672 guard 1673 .children 1674 .insert(DName::from(name.to_uppercase()), target.clone()); 1675 drop(target_guard); 1676 } 1677 return Err(r); 1678 } 1679 } 1680 } 1681 1682 fn move_to( 1683 &self, 1684 old_name: &str, 1685 target: &Arc<dyn IndexNode>, 1686 new_name: &str, 1687 ) -> Result<(), SystemError> { 1688 let old_id = self.metadata().unwrap().inode_id; 1689 let new_id = target.metadata().unwrap().inode_id; 1690 // 若在同一父目录下 1691 if old_id == new_id { 1692 let mut guard = self.0.lock(); 1693 let old_inode: Arc<LockedFATInode> = guard.find(old_name)?; 1694 // 对目标inode上锁,以防更改 1695 let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock(); 1696 let fs = old_inode_guard.fs.upgrade().unwrap(); 1697 // 从缓存删除 1698 let _nod = guard.children.remove(&DName::from(old_name.to_uppercase())); 1699 let old_dir = match &guard.inode_type { 1700 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1701 return Err(SystemError::ENOTDIR); 1702 } 1703 FATDirEntry::Dir(d) => d, 1704 FATDirEntry::UnInit => { 1705 error!("FATFS: param: Inode_type uninitialized."); 1706 return Err(SystemError::EROFS); 1707 } 1708 }; 1709 // 检查文件是否存在 1710 // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?; 1711 1712 old_dir.rename(fs, old_name, new_name)?; 1713 } else { 1714 let mut old_guard = self.0.lock(); 1715 let other: &LockedFATInode = target 1716 .downcast_ref::<LockedFATInode>() 1717 .ok_or(SystemError::EPERM)?; 1718 1719 let new_guard = other.0.lock(); 1720 let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?; 1721 // 对目标inode上锁,以防更改 1722 let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock(); 1723 let fs = old_inode_guard.fs.upgrade().unwrap(); 1724 // 从缓存删除 1725 let _nod = old_guard 1726 .children 1727 .remove(&DName::from(old_name.to_uppercase())); 1728 let old_dir = match &old_guard.inode_type { 1729 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1730 return Err(SystemError::ENOTDIR); 1731 } 1732 FATDirEntry::Dir(d) => d, 1733 FATDirEntry::UnInit => { 1734 error!("FATFS: param: Inode_type uninitialized."); 1735 return Err(SystemError::EROFS); 1736 } 1737 }; 1738 let new_dir = match &new_guard.inode_type { 1739 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1740 return Err(SystemError::ENOTDIR); 1741 } 1742 FATDirEntry::Dir(d) => d, 1743 FATDirEntry::UnInit => { 1744 error!("FATFA: param: Inode_type uninitialized."); 1745 return Err(SystemError::EROFS); 1746 } 1747 }; 1748 // 检查文件是否存在 1749 old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?; 1750 old_dir.rename_across(fs, new_dir, old_name, new_name)?; 1751 } 1752 1753 return Ok(()); 1754 } 1755 1756 fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> { 1757 let guard: SpinLockGuard<FATInode> = self.0.lock(); 1758 if guard.metadata.file_type != FileType::Dir { 1759 return Err(SystemError::ENOTDIR); 1760 } 1761 match ino.into() { 1762 0 => { 1763 return Ok(String::from(".")); 1764 } 1765 1 => { 1766 return Ok(String::from("..")); 1767 } 1768 ino => { 1769 // 暴力遍历所有的children,判断inode id是否相同 1770 // TODO: 优化这里,这个地方性能很差! 1771 let mut key: Vec<String> = guard 1772 .children 1773 .iter() 1774 .filter_map(|(k, v)| { 1775 if v.0.lock().metadata.inode_id.into() == ino { 1776 Some(k.to_string()) 1777 } else { 1778 None 1779 } 1780 }) 1781 .collect(); 1782 1783 match key.len() { 1784 0=>{return Err(SystemError::ENOENT);} 1785 1=>{return Ok(key.remove(0));} 1786 _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino) 1787 } 1788 } 1789 } 1790 } 1791 1792 fn mknod( 1793 &self, 1794 filename: &str, 1795 mode: ModeType, 1796 _dev_t: DeviceNumber, 1797 ) -> Result<Arc<dyn IndexNode>, SystemError> { 1798 let mut inode = self.0.lock(); 1799 if inode.metadata.file_type != FileType::Dir { 1800 return Err(SystemError::ENOTDIR); 1801 } 1802 1803 // 判断需要创建的类型 1804 if unlikely(mode.contains(ModeType::S_IFREG)) { 1805 // 普通文件 1806 return self.create(filename, FileType::File, mode); 1807 } 1808 1809 let filename = DName::from(filename.to_uppercase()); 1810 let nod = LockedFATInode::new( 1811 filename.clone(), 1812 inode.fs.upgrade().unwrap(), 1813 inode.self_ref.clone(), 1814 FATDirEntry::File(FATFile::default()), 1815 ); 1816 1817 if mode.contains(ModeType::S_IFIFO) { 1818 nod.0.lock().metadata.file_type = FileType::Pipe; 1819 // 创建pipe文件 1820 let pipe_inode = LockedPipeInode::new(); 1821 // 设置special_node 1822 nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode)); 1823 } else if mode.contains(ModeType::S_IFBLK) { 1824 nod.0.lock().metadata.file_type = FileType::BlockDevice; 1825 unimplemented!() 1826 } else if mode.contains(ModeType::S_IFCHR) { 1827 nod.0.lock().metadata.file_type = FileType::CharDevice; 1828 unimplemented!() 1829 } else { 1830 return Err(SystemError::EINVAL); 1831 } 1832 1833 inode.children.insert(filename, nod.clone()); 1834 Ok(nod) 1835 } 1836 1837 fn special_node(&self) -> Option<SpecialNodeData> { 1838 self.0.lock().special_node.clone() 1839 } 1840 1841 fn dname(&self) -> Result<DName, SystemError> { 1842 Ok(self.0.lock().dname.clone()) 1843 } 1844 1845 fn parent(&self) -> Result<Arc<dyn IndexNode>, SystemError> { 1846 self.0 1847 .lock() 1848 .parent 1849 .upgrade() 1850 .map(|item| item as Arc<dyn IndexNode>) 1851 .ok_or(SystemError::EINVAL) 1852 } 1853 1854 fn page_cache(&self) -> Option<Arc<PageCache>> { 1855 self.0.lock().page_cache.clone() 1856 } 1857 } 1858 1859 impl Default for FATFsInfo { 1860 fn default() -> Self { 1861 return FATFsInfo { 1862 lead_sig: FATFsInfo::LEAD_SIG, 1863 struc_sig: FATFsInfo::STRUC_SIG, 1864 free_count: 0xFFFFFFFF, 1865 next_free: RESERVED_CLUSTERS, 1866 trail_sig: FATFsInfo::TRAIL_SIG, 1867 dirty: false, 1868 offset: None, 1869 }; 1870 } 1871 } 1872 1873 impl Cluster { 1874 pub fn new(cluster: u64) -> Self { 1875 return Cluster { 1876 cluster_num: cluster, 1877 parent_cluster: 0, 1878 }; 1879 } 1880 } 1881 1882 /// @brief 用于迭代FAT表的内容的簇迭代器对象 1883 #[derive(Debug)] 1884 struct ClusterIter<'a> { 1885 /// 迭代器的next要返回的簇 1886 current_cluster: Option<Cluster>, 1887 /// 属于的文件系统 1888 fs: &'a FATFileSystem, 1889 } 1890 1891 impl<'a> Iterator for ClusterIter<'a> { 1892 type Item = Cluster; 1893 1894 fn next(&mut self) -> Option<Self::Item> { 1895 // 当前要返回的簇 1896 let ret: Option<Cluster> = self.current_cluster; 1897 1898 // 获得下一个要返回簇 1899 let new: Option<Cluster> = match self.current_cluster { 1900 Some(c) => { 1901 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok(); 1902 match entry { 1903 Some(FATEntry::Next(c)) => Some(c), 1904 _ => None, 1905 } 1906 } 1907 _ => None, 1908 }; 1909 1910 self.current_cluster = new; 1911 return ret; 1912 } 1913 } 1914